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1. Introduction

The Lindley distribution has the probability density function (pdf)

f (x;θ) =
θ 2

1+θ
(1+ x)e−θx, ,x > 0, θ > 0. (1.1)

and the cumulative distribution function (cdf)

F(x;θ) = 1− 1+θ +θx
1+θ

e−θx, ,x > 0, θ > 0. (1.2)

The Lindley distribution was originally introduced by Lindley [15] in the context of Bayesian statis-
tics. In recent years, this distribution has been studied and generalized by several authors, see, for
example, Ghitany et al. [12], Zakerzadeh and Dolati [27], Ghitany et al. [11], Bakouch et al. [7],
Ghitany et al. [10], Torabi et al. [23], Asgharzadeh et al. [4] and Asgharzadeh et al. [5]. Estimation
for the Lindley distribution were discussed by Krishna and Kumar [14], Ali et al. [2], Gupta and
Singh [13], Al-Mutairi et al. [3]. Recently, Asgharzadeh et al. [6] discussed the inferential methods
for the Lindley distribution based on record data.

In this paper, we aim to study the point and interval estimation of the parameter in the Lind-
ley distribution and to study the prediction of future failures based on Type II censored data. We
obtain the moment-based estimator (MBE), maximum likelihood estimator (MLE) and the Bayes
estimator for the parameter of Lindley distribution. The existence and uniqueness of the MBE and
MLE are discussed. The prediction of future observations is also developed based on Type II cen-
sored data. Although the estimation of parameter of the Lindley distribution has been discussed
extensively in the literature, a comprehensive comparison of different methods for estimation has
not been done. Moreover, another contribution of our work is the development of the MBE and
proofing the existence and uniqueness of the MBE and MLE. In addition, the Bayesian approaches
proposed in this paper are also different from the existing methods. Specifically, we attempt using
the importance sampling method to compute the predictive density and the corresponding credible
interval. Nevertheless, we have also discussed the prediction problem for future failures which has
not been considered before.

This paper is organized as follows. In Section 2, we discuss the point and interval estima-
tion methods based on frequentist approach. We propose a moment-based estimation method and
develop the EM algorithm for the computation of the MLE. The existence and uniqueness of the
MBE and MLE are discussed. Difference confidence interval construction methods for the model
parameter are then discussed. Bootstrap method based on the MLE for point and interval estima-
tion is also discussed in Section 2. Bayesian estimator and the corresponding credible interval are
developed in Section 3. In Section 4, we derive the prediction of future observations based on Type
II censored data. In Section 5, a real data analysis is presented to illustrate the methodologies devel-
oped here. In Section 6, a Monte Carlo simulation study is used to study the performances of the
proposed methodologies and recommendations are provided. Finally, in Section 7, we discuss how
the methodologies developed in this paper can be extended to other censoring schemes.

2. Point and Interval Estimation based on Frequentist Approach

Suppose it is planned that the life-testing experiment will be terminated as soon as the m-th (where
m is pre-fixed) failure is observed. Then, only the first m failures out of n units under test will be
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observed. The data obtained from such an experiment will be referred to as a Type II censored
sample. Suppose X1:n < X2:n < · · ·< Xm:n is an ordered Type II censored sample from a population
with pdf f (x;θ) and cdf F(x;θ) in Eqs. (1.1) and (1.2), respectively. For notation simplicity, we
denote the observed values of X1:n < X2:n < · · ·< Xm:n by x1 < x2 < · · ·< xm instead of x1:n < x2:n <

· · ·< xm:n.

2.1. Moment-based estimation

Moment-based estimation of the shape parameter θ of the Lindley distribution can be obtained
through the spacings of the transformed Type II censored sample X1:n <X2:n < · · ·<Xm:n as follows.
Let us define

Yi:n =− ln[1−F(Xi:n,θ)] = θXi:n − ln
(

1+θ +θXi:n

1+θ

)
, i = 1,2, . . . ,m,

then Y1:n < Y2:n < · · · < Ym:n are Type II censored sample from a standard exponential distribution.
Moreover, the spacings 

Z1 = nY1:n

Z2 = (n−1)(Y2:n −Y1:n)
...
Zm = (n−m+1)(Ym:n −Ym−1:n)

are independently and identically distributed random variables from a standard exponential distri-
bution. Therefore, we have

Q(θ) = 2
m

∑
i=1

Zi = 2
m−1

∑
i=1

Yi:n +2(n−m+1)Ym:n]

= 2
m

∑
i=1

ciYi:n

= 2
m

∑
i=1

ci

[
θXi:n − ln

(
1+θ +θXi:n

1+θ

)]
has a chi-square distribution with 2m degrees of freedom, where c1 = · · · = cm−1 = 1 and cm =

n−m+1. Now, since Z = (∑m
i=1 Zi)/m → 1 in probability as m → ∞, by setting the left hand side

equals to 1, the moment-based estimate (MBE) of θ , denoted as θ̂MB, can be computed as the
solution of the nonlinear equation

m

∑
i=1

ci

[
θXi:n − ln

(
1+θ +θXi:n

1+θ

)]
= m.

Note that

Q(θ) = 2
m

∑
i=1

ci

[
θXi:n − ln

(
1+θ +θXi:n

1+θ

)]
is a continuous function of θ on (0,∞) and

d
dθ

[
θXi:n − ln

(
1+θ +θXi:n

1+θ

)]
=

θ(X2
i:n +θXi:n +θX2

i:n +2Xi:n +1)
(1+θ)(1+θ +θXi:n)

≥ 0.
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This implies that d
dθ Q(θ) ≥ 0 and consequently, Q(θ) is an monotonic increasing function in θ .

Therefore, the existence and uniqueness of the MBE of θ , which is a solution to Q(θ) = 2m, is
guaranteed.

2.2. Maximum likelihood estimation

The likelihood function can be written as

L(θ |x) = n!
(n−m)!

{
m

∏
i=1

f (xi;θ)

}
[1−F(xm;θ)]n−m,

where x = (x1,x2, . . . ,xm). For the Lindley distribution with pdf in (1.1) and cdf in (1.2), the likeli-
hood function is given by

L(θ |x) = C
m

∏
i=1

[
θ 2

1+θ
(1+ xi)e−θxi

][
1+θ +θxm

1+θ
e−θxm

]n−m

=
Cθ 2m

(1+θ)n

m

∏
i=1

(1+ xi)[1+θ +θxm]
n−me−θ [∑m

i=1 xi+(n−m)xm],

where C is a normalizing constant independent of the parameter θ . Hence, the log-likelihood func-
tion can be expressed as

lnL(θ |x) = constant+2m lnθ −n ln(1+θ)+(n−m) ln(1+θ +θxm)

− θ

[
m

∑
i=1

xi +(n−m)xm

]
.

From the log-likelihood function, we obtain the normal equation as

d lnL(θ)
dθ

=
2m
θ

− n
1+θ

+
(n−m)(1+ xm)

1+θ +θxm
−

[
m

∑
i=1

xi +(n−m)xm

]
= 0.

The MLE of θ , denoted as θ̂ML, can be obtained by solving the normal equation. We have

−d2 lnL(θ)
dθ 2 =

2m
θ 2 − n

(1+θ)2 +
(n−m)(1+ xm)

2

(1+θ +θxm)2 (2.1)

and the observed Fisher information can be obtained by substituting θ̂ in place of θ in Eq. (2.1).
The asymptotic variance of the MLE, denoted by σ2, can be computed by taking the inverse of the
observed Fisher information.

The following theorem shows the existence and uniqueness of the MLE of θ based on Type II
censored sample.

Theorem 1. Suppose we have observed the Type II censored sample x = (x1, · · · ,xm), where X fol-
lows the Lindley distribution. Then, the MLE of θ exists and is unique if m > n

2 .
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Proof. Define φ(θ) = d lnL(θ)
dθ . We note that

lim
θ→0

φ(θ) = +∞, lim
θ→+∞

φ(θ) =−
m

∑
i=1

xi − (n−m)xm < 0,

and

φ ′(θ) =
d2 lnL(θ)

dθ 2 =
(n−2m)θ 2 −4mθ −2m

θ 2(1+θ)2 − (n−m)(1+ xm)
2

(1+θ +θxm)2 < 0.

Therefore, φ(θ) is a continuous function on (0,∞) which decreases monotonically from +∞ to
negative values. Therefore, the MLE of θ which is a solution to φ(θ) = 0, exists and is unique, if
m > n

2 . In other words, the MLE exists and it is unique, if the censoring proportion is less than 50%.
Besides obtaining the MLE by using direct optimization using numerical methods such as the

Newton-Raphson method, the expectation-maximization (EM) algorithm is considered here. Since
the MLE based on complete sample is in closed-from and the moments of the left-truncated Lindley
distribution can be computed easily, the EM algorithm has the advantage over direct maximization
here.

2.2.1. EM algorithm

Consider the random variable Y follows the left-truncated Lindley distribution truncated at T with
pdf

g(y) =
f (y)

1−F(T )

=
θ 2

θ +1+θT
(1+ y)e−θ(y−T ),y > T,θ > 0,

the expected value of Y is

E(Y ) =
1

θ(θ +1+θT )

[
2+(2T +1)θ +T (1+T )θ 2] .

Let Ys, s = 1,2, . . . ,(n−m), be the censored lifetimes under the Type II censoring scheme, then Ys

follows the left-truncated Lindley distribution with T = xm. Suppose θ(h) is the estimate of θ in
the h-th iteration, then in the E-step of the (h+1)-th iteration of the EM-algorithm, one requires to
compute

E(Ys) =
1

θ(h)(θ(h)+1+θ(h)xm)

[
2+(2xm +1)θ(h)+ xm(1+ xm)θ 2

(h)

]
,

s= 1,2, . . . ,(n−m). Since the log-likelihood function of θ based on a complete sample x1,x2, . . . ,xn

is

lnL(θ |x) = constant+2n lnθ −n ln ln(1+θ)−θ
n

∑
i=1

xi

which gives the MLE of θ as

θ̂ =
−(X̄ −1)+

√
(X̄ −1)2 +8X̄

2X̄
,
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where X̄ = ∑n
i=1 xi/n, then, in the (h+1)-th iteration of the M-step in the EM-algorithm, the value

of θ(h+1) is computed by the following formula:

θ̂(h+1) =
−(X̄(h)−1)+

√
(X̄(h)−1)2 +8X̄(h)

2X̄(h)
,

where X̄(h) =
1
n

[
m
∑

i=1
xi +(n−m)E(Ys)

]
. The MLE of θ can be obtained by repeating the E-step

and M-step until convergence occurs. A reasonable starting value for θ(0) is the estimate of the
parameter based on the “pseudo-complete” sample by replacing the censored observations Ys by
xm,s = 1,2, . . . ,(n−m).

Louis [17] developed a procedure for extracting the observed information matrix when the EM-
algorithm is used to find the MLE in incomplete data problem. The idea of the procedure can be
expressed by the missing information principle (see, for example, Louis [17] and Tanner [22]):

Observed information = Complete information−Missing information

= IC(θ)− IM(θ).

The complete information based on a complete sample of size n is

IC(θ) =
2n
θ

− n
(θ +1)2

and the missing information based on a Type II censored sample with effective sample size m is

IM(θ) =
2(n−m)

θ
− (n−m)(1+ xm)

2

(θ +1+θxm)2 .

This result in the same expression of the observed information presented in Eq. (2.1) and the asymp-
totic variance of θ̂ can be estimated as Var(θ̂) = 1/I(θ̂), where I(θ) = IC(θ)− IM(θ).

2.3. Bootstrap Estimation

Based on the MLE described in Section 2.2, we can develop bias-adjusted estimator based on the
parametric bootstrap method (Efron and Tibshirani, [9]). The detailed description of the bootstrap
method and the computational formula of the bootstrap bias-adjusted estimator will be discussed in
Section 2.4.3.

2.4. Interval estimation

2.4.1. Exact confidence interval

We know that the pivot

Q(θ) = Q(θ ;X) = 2
m

∑
i=1

ci

[
θXi:n − ln

(
1+θ +θXi:n

1+θ

)]
has a chi-square distribution with 2m degrees of freedom, where c1 = · · · = cm−1 = 1 and cm =

n−m+1. So, a 100(1−α)% confidence interval for θ can be constructed from the relation

Pr
(

χ2
α/2,2m < Q(θ)< χ2

1−α/2,2m

)
= 1−α,
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where χ2
α/2,2m and χ2

1−α/2,2m denote the lower and upper α/2 percentage points of a chi-
square distribution with 2m degrees of freedom. Since Q(θ) is strictly increasing in θ , an exact
100(1−α)% confidence interval for θ based on the pivotal quantity Q(θ) can be computed as(

Q−1(χ2
α/2,2m),Q

−1(χ2
1−α/2,2m)

)
, where Q−1(t) is the solution of θ for the equation Q(θ) = t.

2.4.2. Asymptotic confidence intervals based on MLE

Let us now consider the asymptotic confidence interval using the asymptotic normality of the MLE.
Following the general asymptotic theory of MLE, the sampling distribution of

θ̂ −θ√
Var(θ̂)

can be approximated by a standard normal distribution. A two-sided 100(1 − α)% normal-
approximation confidence interval for θ can then be constructed as

[θ̂l, θ̂u] = θ̂ ± z1− α
2

√
Var(θ̂),

where zq is the q-th percentile of the standard normal distribution. Since θ is a positive parameter
and the lower end of the confidence interval in (2.2) could be less than zero, a modified confidence
interval of θ can be obtained as

[θ̂l+, θ̂u] =

[
max

(
0, θ̂ − z1−α/2

√
Var(θ̂)

)
, θ̂ + z1−α/2

√
Var(θ̂)

]
.

Alternatively, to ensure the resulting confidence limits for θ to be positive, it is also possible to use
a logarithm transformation to obtain an approximate confidence interval for θ (see, for example,
Meeker and Escobar, [18]) by approximating the distribution of ln(θ̂)−ln(θ)√

Var(ln(θ̂))
by a standard normal

distribution, where Var(ln(θ̂)) can be approximated by delta method as

V̂ar(ln(θ̂)) =
V̂ar(θ̂)

θ̂ 2
.

The resulting 100(1−α)% approximate confidence interval for θ based on the logarithm trans-
formed MLE is then given by

[θ̂ ∗
l , θ̂

∗
u ] =

 θ̂

exp

(
z1− α

2

√
Var(θ̂)

θ̂

) , θ̂ · exp

z1− α
2

√
Var(θ̂)

θ̂


 .

2.4.3. Parametric bootstrap method

In this section, we construct confidence intervals based on the percentile parametric bootstrap
method (Efron and Tibshirani, [9]) as well as develop bias-adjusted estimator based on parametric
bootstrap. To obtain the percentile bootstrap confidence intervals, we use the following algorithm:

1. Based on the original sample x = (x1,x2, · · · ,xm), obtain θ̂ , the MLE of θ .
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2. Simulate the first m order statistics from a sample of size n from Lindley distribution with
parameter θ̂ : x(1) = (x(1)1:n, x(1)2:n, . . . , x(1)m:n).

3. Compute the MLE of θ based on x(1), say θ̂ (1).
4. Repeat Steps 2 – 3 B times and obtain θ̂ (1), θ̂ (2), . . . , θ̂ (B).
5. Arrange θ̂ (1), θ̂ (2), . . . , θ̂ (B) in ascending order and obtain θ̂ [1], θ̂ [2], . . . , θ̂ [B].

A two-sided 100(1−α)% percentile bootstrap confidence interval of θ , say [θ ∗
L ,θ ∗

U ], is then given
by

θ ∗
L = θ̂ ([Bα/2]), θ ∗

U = θ̂ ([B(1−α/2)]),

Based on the bootstrap samples, we can also approximate the bias of the MLE as B̂ias= θ̂(·)− θ̂ ,

where θ̂(·) =
1
B

B
∑

i=1
θ̂ [i]. The bootstrap estimator θ̂(·) can be viewed as a bias-adjusted estimator,

denoted as θ̂B, because θ̂B = θ̂ − B̂ias = θ̂(·).

3. Bayesian estimation and credible interval

In the Bayesian approach, θ is considered a random variable having a specific prior distribution.
We consider the gamma prior with shape parameter a and rate parameter b, denoted as G(a,b), for
θ which has pdf

π(θ ;a,b) =
ba

Γ(a)
θ a−1e−bθ , θ > 0, (3.1)

where a > 0 and b > 0. Most often, the parameters a and b are obtained from the past history. The
gamma distribution is chosen to be the prior distribution here because the posterior distribution of
θ , given the data, can be written as a product of a gamma pdf and a term involving θ and xm,

π(θ |x) ∝ θ 2m+a−1 exp

{
−θ

[
m

∑
i=1

xi +(n−m)xm +b

]}

×(1+θ +θxm)
n−m

(1+θ)n . (3.2)

In fact, one can consider other probability distributions with positive support as the prior distribution
of θ .

To obtain the Bayes estimator of θ , we consider the squared error loss (SEL) function

L1(θ , θ̂) = (θ̂ −θ)2.

We also consider the linear exponential (LINEX) loss function

L2(θ , θ̂) = ec(θ̂−θ)− c(θ̂ −θ)−1,

which is one of the most popular asymmetric loss functions. This loss function was introduced
by Varian [24]. For the LINEX loss function, the sign and magnitude of the shape parameter c
represents the direction and degree of symmetry, respectively. (If c > 0, the overestimation is more
serious than underestimation, and vice-versa.) For c close to zero, the LINEX loss is approximately
squared error loss (SEL) and therefore almost symmetric.
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The Bayes estimator of θ under the SEL, θ̂BS, is

θ̂BS = Eθ (θ |x) =
∫ ∞

0 θπ(θ |x)dθ∫ ∞
0 π(θ |x)dθ

. (3.3)

Also, the Bayes estimator of θ under the LINEX loss , θ̂BL, is

θ̂BL =−1
c

log
(

Eθ (e−cθ |x)
)
=−1

c
log
(∫ ∞

0 e−cθ π(θ |x)dθ∫ ∞
0 π(θ |x)dθ

)
. (3.4)

Due to the complex form of π(θ |x), the Bayes estimators of θ cannot be obtained in closed forms.
Here, we consider two methods namely (i) Lindley’s approximation method; and (ii) importance
sampling method to obtain the approximate Bayes estimator.

3.1. Lindley’s approximation

The Lindley’s approximation was originally proposed by Lindley [15] to approximate the ratio of
two integrals such as (3.3) and (3.4). This method has been used in the literature to approximate the
Bayes estimator, see, for example, Lindley [16] and Press [19].
In the one parameter case, the form of Lindley’s approximation for any function of θ , say U(θ) ,
reduces to the following form:

E(U(θ)|x) =U(θ)+
1
2
[U2 +2U1ρ1] [σ(θ)]2 +

1
2

l3U1[σ(θ)]4, (3.5)

where li = ∂ i

∂θ i lnL(θ |x), for i = 1,2,3, U j =
∂ j

∂θ j U(θ), for j = 1,2, ρ1 =
∂

∂θ ρ(θ), ρ(θ) = lnπ(θ)
and [σ(θ)]2 is the inverse of Fisher information in (3.3).
To apply the Lindley’s approximation, we first obtain

l3(θ) =
4m
θ 3 − 2n

(1+θ)3 +
2(n−m)xm(1+ xm)

2

(1+θ +θxm)3 .

From the prior density in (3.1), we observe that ρ1 =
a−1

θ − b. Under SEL, U(θ) = θ and for
LINEX loss function U(θ) = e−cθ . Substitution these in (3.5), we obtain the Bayes estimate of θ
using Lindley’s approximation method under SEL as

θ̂BLS = θ̂ +

(
a−1

θ̂
−b
)

σ 2(θ̂)+
1
2

l3(θ̂)σ 4(θ̂). (3.6)

and under LINEX loss function as

θ̂BLL = θ̂ − 1
c

log
{

1+
(

c2

2
− c(

a−1
θ̂

−b)
)

σ 2(θ̂)− c
2

l3(θ̂)σ 4(θ̂)
}
, (3.7)

where θ̂ is MLE of θ .

3.2. Importance sampling method

Besides the Lindley’s approximation method, the importance sampling procedure can be used to
obtain the Bayes estimator of θ . Importance sampling is considered here instead of direct sampling
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because importance sampling is more efficient in the sense that the variance of the resulting esti-
mator obtained from importance sampling is smaller. Note that the posterior density of θ can be
written as

π(θ |x) ∝ π

(
θ ;2m+a,

m

∑
i=1

xi +(n−m)xm +b

)
g(θ |x), (3.8)

where π (θ ; ·, ·) is presented in equation (3.1) and

g(θ |x) = (1+θ +θxm)
n−m

(1+θ)n . (3.9)

We now apply the importance sampling scheme to generate samples from the posterior distribution
π(θ |x) using the following algorithm:

Step 1. Generate θ1, · · · ,θM from G(2m+a,∑m
i=1 xi +(n−m)xm +b).

Step 2. Obtain an approximate Bayes estimate under SEL as

θ̂BMS =
∑M

i=1 θig(θi|x)
∑M

i=1 g(θi|x)
. (3.10)

and under LINEX loss function as

θ̂BML =−1
c

log
(

∑M
i=1 e−cθig(θi|x)
∑M

i=1 g(θi|x)

)
. (3.11)

Then, the credible interval of θ can be obtained by using the results in Chen and Shao [8]. Let
π(θ |x) and Π(θ |x) be the posterior density and posterior distribution functions of θ , respectively
and let θ (β ) be the β -th quantile of θ , i.e,

θ (β ) = inf{θ : Π(θ |x)≥ β}, 0 < β < 1. (3.12)

For a given θ ∗, we have Π(θ ∗|x) = E{Iθ≤θ ∗(θ)|x}, where IA is the indicator function such that
IA(θ) = 1 if A is true and IA(θ) = 0 otherwise. Therefore, a simulation consistent estimator of
Π(θ ∗|x) can be obtained as

Π̂(θ ∗|x) =
1
M ∑M

i=1 Iθi≤θ ∗(θ)g(θi|x)
1
M ∑M

i=1 g(θi|x)
. (3.13)

Let {θ(i)}, for i = 1, . . . ,M, be the ordered values of θi, and

wi =
g(θ(i)|x)

∑M
i=1 g(θ(i)|x)

be the associated weight, then we have

Π̂(θ ∗|x) =


0, for θ ∗ < θ(1),

∑i
j=1 w j, for θ(i) ≤ θ ∗ < θ(i+1),

1, for θ ∗ ≥ θ(M).

(3.14)
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Hence, θ (β ) can be approximated by

θ̂ (β ) =

{
θ(1), for β = 0,
θ(i), for ∑i−1

j=1 w j < β ≤ ∑i
j=1 w j.

(3.15)

To obtain a 100(1−β )% highest posterior density (HPD) credible interval for θ , consider intervals
of the form

R j =

[
θ̂(

j
M ), θ̂

(
j+[(1−β )M]

M

)]
, (3.16)

for j = 1,2, . . . ,M− [(1−β )M], where [a] denotes the largest integer less than or equal to a. Finally,
among all R j, j = 1,2, . . . ,M− [(1−β )M], choose the interval which has the smallest length.

4. Prediction of Future Failures

In this section, we discuss the prediction of the censored lifetimes Xi:n, (i = m+ 1,m+ 2, . . . ,n),
based on the observed Type II censored sample x = (x1,x2, · · · ,xm). Due to the well-known Marko-
vian property of Type II right censored order statistics, the density of Ys = X(m+s):n given Xm = xm is
the same as the density of the s-th order statistic of a sample of size n−m from the population with
the right truncated density f (y)/(1−F(xm)),y ≥ xm. Therefore, the conditional density of Ys given
Xm = xm is given by

fs(y|xm) = s
(

n−m
s

)
f (y) [F(y)−F(xm)]

s−1 [1−F(y)]n−m−s

× [1−F(xm)]
−(n−m) . (4.1)

For the Lindley distribution with pdf and cdf in (1.1) and (1.2), respectively, equation (4.1) can be
written as

f (y|xm,θ) = s
(

n−m
s

)
θ 2(1+ y)(1+θ +θy)n−m−se−θ(n−m−s+1)yeθ(n−m)xm

×(1+θ +θxm)
−(n−m)

[
(1+θ +θxm)e−θxm − (1+θ +θy)e−θy

]s−1
. (4.2)

Using the binomial expansion[
(1+θ +θxm)e−θxm − (1+θ +θy)e−θy

]s−1
=

s−1

∑
k=1

(
s−1

k

)
(−1)s−k−1(1+θ +θxm)

ke−θkxm(1+θ +θy)s−k−1e−θ(s−k−1)y,

the conditional density of Ys = Xs:n−m given Xm = xm, can be expressed as

f (y|xm,θ) = s
(

n−m
s

)
θ 2(1+ y)

s−1

∑
k=1

(
s−1

k

)
(−1)s−k−1(1+θ +θy)n−m−k−1

×exp{−θ(n−m− k)(y− xm)}(1+θ +θxm)
k−n+m. (4.3)

The Bayes predictive density function of Y given xm is given by

f ∗s (y|xm) =
∫ ∞

0
f (y|xm,θ)π(θ |xm)dθ . (4.4)
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Based on the priors, the joint posterior density function of θ given the data is

π(θ |xm) ∝ π

(
θ ;2m+a,

m

∑
i=1

xi +(n−m)xm +b

)
g(θ |xm) (4.5)

Substituting (4.5) in (4.4), the predictive density function f ∗s (y|xm) can be obtained as

f ∗s (y|xm) =
∫ ∞

0
f (y|xm,θ)G

(
2m+a,

m

∑
i=1

xi +(n−m)xm +b

)
g(θ |xm)dθ . (4.6)

The Bayesian point predictors can be obtained from the predictive density function f ∗s (y|xm)

and given the loss function. The Bayesian point predictor of Ys = Xs:n−m under the SEL is

ŶSEP =
∫ ∞

xm

y f ∗s (y|xm)dy. (4.7)

Since (4.7) can not be computed explicitly, we adopt here the following algorithm to obtain the
Bayesian point predictor:

Step 1. Generate θ1, · · · ,θM from G(2m+a,∑m
i=1 xi +(n−m)xm +b).

Step 2. Obtain the simulation consistent estimators of f ∗s (y|xm) by the importance sampling tech-
nique as

f̂ ∗s (y|xm) =
∑M

i=1 f (y|xm,θi)g(θi|xm)

∑M
i=1 g(θi|xm)

. (4.8)

Step 3. By using (3.9), (4.7) and (4.8), the Bayes predictor of the future failure under SEL, Ŷs,SP,
can be obtained as

Ŷs,SP =
∑M

i=1 I(xm,θi)g(θi|xm)

∑M
i=1 g(θi|xm)

, (4.9)

and under LINEX loss function as

Ŷs,LP =−1
c

log
(

∑M
i=1 J(xm,θi)g(θi|xm)

∑M
i=1 g(θi|xm)

)
, (4.10)

where I(xm,θ) and J(xm,θ) are given by

I(xm,θ) = s
(

n−m
s

)
θ 2

s−1

∑
k=0

(
s−1

k

)
(−1)s−k−1 eθ(n−m−k)xm

(1+θ +θxm)n−m−k

×
∫ ∞

xm

y(1+ y)(1+θ +θy)n−m−k−1e−θ(n−m−k)ydy.

and

J(xm,θ) = s
(

n−m
s

)
θ 2

s−1

∑
k=0

(
s−1

k

)
(−1)s−k−1 eθ(n−m−k)xm

(1+θ +θxm)n−m−k

×
∫ ∞

xm

e−cy(1+ y)(1+θ +θy)n−m−k−1e−θ(n−m−k)ydy.

respectively.
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Bayesian prediction intervals are obtained from the Bayes predictive density f ∗s (y|xm). The 100(1−
α)% Bayesian prediction interval for Ys is given by (L(xm),U(xm)), where L(xm) and U(xm) can be
obtained by solving the following two nonlinear equations simultaneously

Pr(Y > L(xm)|xm) =
∫ ∞

L(xm)
f ∗s (y|xm)dy = 1− α

2
, (4.11)

Pr(Y >U(xm)|xm) =
∫ ∞

U(xm)
f ∗s (y|xm)dy =

α
2
. (4.12)

By using f̂ ∗s (y|xm) defined in (4.8) to approximate f ∗s (y|xm), we can approximate L(xm) and U(xm)

as

1− α
2
=

1
M ∑M

i=1 K(L(xm),θi)g(θi|xm)
1
M ∑M

i=1 g(θi|xm)
, (4.13)

and

α
2
=

1
M ∑M

i=1 K(U(xm),θi)g(θi|xm)
1
M ∑M

i=1 g(θi|xm)
, (4.14)

where

K(z,θ) = s
(

n−m
s

)
θ 2

s−1

∑
k=0

(
s−1

k

)
(−1)s−k−1 eθ(n−m−k)z

(1+θ +θz)n−m−k

×
∫ ∞

z
(1+ y)(1+θ +θy)n−m−k−1e−θ(n−m−k)ydy. (4.15)

5. Real Data Analysis

To illustrate the methodologies developed in this paper, we present the analysis of a real data set
here. The following data set presented in Wang [25] contains the failure time of 18 electronic devices
under a life test. This data set has been analyzed recently by a number of authors in different studies
(see, for example, Xie et al. [26], Rao [20], Rezaei and Tahmasbi [21] and Abd-Elrahman [1]).

5 11 21 31 46 75 98 122 145
165 195 224 245 293 321 330 350 420

To check the validity of using Lindley distribution to fit this data set, Kolmogorov-Smirnov
(K-S) test is applied. The the K-S statistic of the distance between the fitted and the empirical
distribution function (based on the parameter θ = 0.01156) is 0.1751 and the corresponding p-value
is 0.5961. Therefore, it is reasonable to use the Lindley distribution to fit the data.

Suppose that the life test ended when the 15-th observation is observed, i.e., we observe a Type
II censored sample with n = 18 and m = 15. Based on the estimation methods presented in Sections
2 – 4, the point and interval estimates of the Lindley parameter θ are summarized in Table 1. We
also compute the Bayesian point and interval predictors for the future lifetimes. The results are
presented in Table 2. Note that for computing Bayes estimators and 95% HPD credible intervals,
since we do not have any prior information, we used the non-informative prior with parameters
a = b = 0.
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Table 1. Point and interval estimates of the Lindley parameter in the illustrative example based on different methods.

Method Point Estimate
BME 0.01042
MLE 0.01086
Bootstrap 0.01120

Square Error 0.01086
Bayes (Lindley) LINEX(c =−1) 0.01085

LINEX(c = 0.1) 0.01085
LINEX(c = 1) 0.01085

Square Error 0.01076
Bayes (Importance Sampling) LINEX(c =−1) 0.01076

LINEX(c = 0.1) 0.01076
LINEX(c = 1) 0.01076

Method Interval Estimate
Exact method (0.00702, 0.01435)
Normal-approximation of MLE (0.00634, 0.01312)
Normal-approximation of log-MLE (0.00687, 0.01378)
Percentile Bootstrap (0.00788, 0.01588)
HPD credible interval (0.00756, 0.01440)

Table 2. Bayesian point and interval predictors of the censored lifetimes in the illustrative example
Observed value Point prediction Interval prediction

SE LINEX
c =−1 c = 0.1 c = 1

s = 1 330 341.578 337.064 340.261 346.548 (301.991 , 370.368)
s = 2 350 364.889 355.618 365.247 374.167 (312.414 , 506.451)
s = 3 420 437.427 424.641 439.051 451.062 (388.772 , 540.697)

6. Monte Carlo Simulation Study

To evaluate the performance of different estimation procedures developed in this paper, a Monte
Carlo simulation study with different settings is used. Different values of the parameter (θ = 0.5,
and θ = 1), different prior distributions (G(3,1) and G(0,0)) for the Bayesian methods, and dif-
ferent sample sizes are considered. Note that G(3,1) is an informative prior while G(0,0) is an
noninformative prior. Tables 3 and 4 present the estimated biases and mean squared errors (MSEs)
of the different point estimators of θ based on 5,000 replications. Specifically, the estimated biases
and MSEs are computed as

B̂ias =
1
N

N

∑
i=1

(θ̂i −θ)

and

M̂SE =
1
N

N

∑
i=1

(θ̂i −θ)2,

where θ̂i is the estimate of θ obtained in the i-th simulation, where i = 1, . . . ,N and N = 5,000.
For interval estimation, we computed the 95% confidence intervals (CIs) for θ based on the

exact method, and the asymptotic distributions of the MLE and logarithm of MLE. Furthermore,
we computed the bootstrap percentile confidence interval and the HPD credible intervals. The per-
formances of different interval estimation methods are compared in terms of their simulated average
widths and simulated coverage probabilities based on 5,000 replications. The results are reported in
Tables 5.
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Table 5. Estimated average widths (AW) and coverage probabilities (CP) of the interval estimates for θ = 1.0.

n m Exact MLE Log-MLE Boot HPD
G(0,0) G(3,1)

20 15 AW 0.7782 0.7801 0.7984 0.8425 0.7103 0.6541
CP 0.9496 0.9534 0.9488 0.9250 0.9470 0.9510

30 20 AW 0.6609 0.6593 0.6706 0.6960 0.5942 0.5609
CP 0.9492 0.9536 0.9486 0.9370 0.9450 0.9480

25 AW 0.5970 0.5978 0.6063 0.6230 0.4879 0.4704
CP 0.9510 0.9526 0.9456 0.9350 0.9380 0.9430

40 25 AW 0.5837 0.5832 0.5911 0.6076 0.5163 0.4946
CP 0.9523 0.9518 0.9454 0.9460 0.9470 0.9490

30 AW 0.5377 0.5358 0.5420 0.5559 0.4377 0.4238
CP 0.9512 0.9542 0.9532 0.9460 0.9370 0.9410

35 AW 0.5032 0.5026 0.5078 0.5178 0.3694 0.3609
CP 0.9504 0.9494 0.9484 0.9370 0.9340 0.9390

50 30 AW 0.5286 0.5276 0.5335 0.5486 0.4589 0.4431
CP 0.9483 0.9496 0.9464 0.9420 0.9450 0.9480

35 AW 0.4933 0.4917 0.4965 0.5073 0.3961 0.3865
CP 0.9497 0.9550 0.9522 0.9390 0.9380 0.9430

40 AW 0.4661 0.4644 0.4685 0.4760 0.3409 0.3347
CP 0.9500 0.9526 0.9508 0.9420 0.9340 0.9400

45 AW 0.4434 0.4432 0.4468 0.4516 0.2928 0.2879
CP 0.9495 0.9530 0.9538 0.9420 0.9300 0.9360

From Tables 3 and 4, it is observed the bootstrap estimator is better than the other estimators
in terms of both biases and MSEs. The Bayes estimator based on non-informative prior perform
better than the MLE. In addition, the MBE and the MLE performs similarly in terms of biases
and MSEs. Comparing the Bayes estimators based on different prior distributions, as expected, the
Bayes estimator based on the informative prior perform better than the Bayes estimator based on the
non-informative prior, in terms of both biases and MSEs. Comparing the Bayes estimators obtained
using Lindley’s approximation and importance sampling methods, we observe that the Lindley’s
approximation method is better than the importance sampling method.

For interval estimation, from Table 5, it is observed that all the simulated coverage probabilities
are very close to the nominal level 95%. For all interval estimators, as m increases, the estimated
average width of the interval decreases. Comparing the average widths of the interval estimates, it is
observed that the Bayesian credible intervals are superior to the bootstrap and asymptotic confidence
intervals. The average width of the 95% confidence intervals based on the asymptotic distribution of
the MLE is slightly smaller than the corresponding average lengths of the exact confidence intervals
and the intervals based on the asymptotic distribution of logarithm of MLE.

Based on the simulation results, overall speaking, we would recommend the use bootstrap bias-
adjusted estimator for point estimation and the use of Bayesian credible interval for interval estima-
tion, especially when reliable prior information about the Lindley parameter is available.
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7. Extensions to Different Censoring Schemes

In this paper, we discussed the statistical inference for Lindley distribution based on Type II cen-
sored data, but the proposed methodologies can be adopted when different censoring schemes are
used in the life testing experiment. Here, we describe the extensions for the hybrid and progressive
Type II censored data.

7.1. Hybrid Censoring

The hybrid censoring scheme is a mixture of Type I and Type II censoring schemes. Let X1:n < .. . <

Xn:n denote the ordered lifetime of the experimental units. In Type I hybrid censoring scheme, the
experiment stops at T0 = min{Xm:n,T}, where m and T are pre-fixed. Therefore, in Type I hybrid
censoring scheme, one observes X1:n . . . ,Xm:n, if Xm:n < T (Case I), or X1:n, . . . ,Xr:n when r < m, and
Xr:n < T < Xr+1:n (Case II). Here r is a random variable and r = 0, . . . ,m−1.

Let X = (X1:n, . . . ,Xd:n) denote a Type I hybrid censored sample. Based on the observed sample
x = (x1:d , . . . ,xd:n), the likelihood function is

L(θ |x) = n!
(n−d)!

d

∏
i=1

f (xi:d ;θ)[1−F(T0;θ)]n−d , (7.1)

where d denotes the number of failures, d = m for Case I and, d = r for Case II. For the Lindley
distribution, we obtain the log-likelihood equation as

d lnL(θ)
dθ

=
2d
θ

− n
1+θ

+
(n−d)(1+T0)

1+θ +θT0
−

[
d

∑
i=1

xi:d +(n−d)T0

]
= 0,

which has the same form as Eq. (2.1), except m is replaced by d, and xm is replaced by T0. Therefore,
the MLE of θ can be obtained as described in Section 2.2.

To compute the Bayes estimator and credible interval of θ , it is assumed that θ have the same
prior as described in Eq. (3.1). We then obtain the posterior distribution of θ given the data as

π(θ |x) ∝ θ 2d+a−1 exp

{
−θ

[
d

∑
i=1

xi:d +(n−d)T0 +b

]}

× (1+θ +θT0)
n−d

(1+θ)n ,

which has the same form as Eq. (3.2), except m is replaced by d, and xm is replaced by T0. There-
fore, using the methods described in Section 3, the Bayes estimator and the corresponding credible
interval can be obtained.

Now, we discuss the Bayesian prediction of Y =Xs+d:n(s= 1, . . . ,n−d) of all the n−d censored
units based on observed data X =(X1:n, . . . ,Xd:n). The conditional density of Y =Xs+d:n given X = x,
for y ≥ T0, is

fs(y|x) = s
(

n−d
s

)
f (y) [F(y)−F(T0)]

s−1 [1−F(y)]n−d−s

× [1−F(T0)]
−(n−d) ,

which have the same form as Eq. (4.1). Therefore, using the same method as described in Section
4, Bayesian point and interval predictors can be obtained.
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For the case of Type II hybrid censoring scheme in which the experiment stops at T ′
0 =

max{Xm:n,T}, the similar results can be obtained by some modifications.

7.2. Progressive Type II Censoring

The progressive Type II censoring, after starting the life-testing experiment with n units, arises
as follows. Suppose that n units are placed on a life-testing experiment and only m(< n) units
are completely observed until failure. Immediately following the first failure, R1 surviving units
are removed from the test at random and the experiment continues with (n−R1 − 1) units. Then,
immediately following the second failure, R2 surviving units are removed from the test at random.
This process continues until, at the time of the m-th failure, all the remaining Rm = n−R1 −R2 −
·· ·−Rm−1 −m units are removed from the experiment. Here, the values of Ri, i = 1,2, . . . ,m, are
fixed prior to study.

Let X1:m:n < X2:m:n < · · · < Xm:m:n denote a progressively Type II censored sample from the
Lindley distribution with pdf in Eq. (1.1), with (R1, · · · ,Rm) being the progressive censoring scheme.
Based on the observed censored sample x1:m, · · · ,xm:m, the likelihood function is

L(θ |x) = A
m

∏
i=1

f (xi:m,θ)[1−F(xi:m,θ)]Ri

= A θ 2m(1+θ)−n
m

∏
i=1

{
(1+ xi:m)(1+θ +θxi:m)

Ri
}

e−θ ∑m
i=1(Ri+1)xi:m ,

where A = n(n−1−R1)(n−2−R1 −R2) · · ·(n−m+1−R1 · · ·−Rm−1). Therefore, the MLE of θ
can be obtained from solving the likelihood equation

d lnL(θ |x)
dθ

=
2m
θ

− n
1+θ

+
m

∑
i=1

Ri
1+ xi:m

1+θ +θxi:m
−

m

∑
i=1

(Ri +1)xi:m = 0.

Considering a gamma prior for θ as described in Eq. (3.1), the posterior distribution of θ given
the data can be written as

π(θ |x) ∝ π

(
θ ;2m+a,

m

∑
i=1

(Ri +1)xi:m +b

)
g1(θ |x),

where

g1(θ |x) =
∏m

i=1(1+θ +θxi:m)
Ri

(1+θ)n .

Therefore, the Bayes estimator and credible interval of θ can be computed again as described in
Section 3.

For the prediction of the future lifetimes, Y = Xs:Ri(s = 1,2, . . . ,Ri; i = 1,2, . . . ,m), let us first
consider the conditional density of Y = Xs:Ri given x = (x1:m:n, · · · ,xm:m:n). The conditional density
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of Y , given Xm:m:n = xm:m:n, is

f (y|x,θ) = s
(

Ri

s

)
f (y;θ) [F(y;θ)−F(xi:m:n;θ)]s−1

× [1−F(y;θ)]Ri−s [1−F(xi:m:n;θ)]−Ri

= s
(

Ri

s

)
θ 2(1+ y)

s−1

∑
k=0

(
s−1

k

)
(−1)s−k−1(1+θ +θy)Ri−k−1

× exp{−θ [(Ri − k−1)y+(k−Ri)xi:m:n]}(1+θ +θxi:m:n)
k−Ri .

Now, the Bayes predictive density function of Y given X = x is

f ∗s (y|x) =
∫ ∞

0
f (y|x,θ)π(θ |x)dθ

=
∫ ∞

0
f (y|x,θ)π

(
θ ;2m+a,

m

∑
i=1

(Ri +1)xi:m +b

)
g1(θ |x)dθ ,

which has the similar form as Eq. (4.6). Therefore, Bayesian point and interval predictors can be
obtained as described in Section 4.
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