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Recently, Mahmoudi and Mahmoodian [7] introduced a new class of distributions which contains univariate
normal–geometric distribution as a special case. This class of distributions are very flexible and can be used
quite effectively to analyze skewed data. In this paper we propose a new bivariate distribution with the normal–
geometric distribution marginals. Different properties of this new bivariate distribution have been studied. This
distribution has five unknown parameters. The EM algorithm is used to determine the maximum likelihood
estimates of the parameters. We analyze one series of real data set for illustrative purposes.
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1. Introduction

In recent years, different techniques for extending the family of normal distributions have been
proposed. The most usual procedure derived from Azzalini [1] consists in deriving a skew-normal
distribution through the transformation φ(z;λ ) = 2φ(z)Φ(λ z),z,λ ∈ R. Recently, Mahmoudi and
Mahmoodian [7] considered univariate normal–power series class of distributions which contains
normal–geometric distribution as a special case. They, by compounding normal and power series
class of distributions, introduced an alternative skewed model. The normal–geometric distribution
is defined as follows: The univariate random variable X is said to have a normal–geometric (NG)
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distribution, denoted by X ∼ NG(µ,σ ,θ), where µ ∈ R, σ > 0 and θ < 1, if its pdf is given by

f (x; µ,σ ,θ) =
(1−θ)φ(x; µ,σ)

(1−θΦ(x; µ,σ))2 .

where φ(·; µ,σ) and Φ(·; µ,σ) are pdf and cdf of normal distribution with mean µ and variance σ2.
Different properties of the NG distribution have been discussed by Mahmoudi and Mahmoodian [7].

Recently, Jafari and Roozgar [4] introduced a new bivariate distribution by compounding a
bivariate linear failure rate with a power series class of distributions. The bivariate Weibull–power
series introduced and studied by Roozegar and Nadarajah [9].

In this paper, we introduce bivariate normal–geometric distribution with the normal–geometric
distribution marginals. Different properties of this new distribution have been investigated. It is
observed that the generation of random samples from the proposed bivariate model is very simple,
hence simulation experiments can be performed quite conveniently. The bivariate normal–geometric
distribution has five parameters. The maximum likelihood estimators (MLEs) of the unknown
parameters cannot be obtained in explicit forms. One needs to solve five non–linear equations,
simultaneously. We propose to use EM algorithm to compute the MLEs of the unknown param-
eters. It is observed that the EM algorithm can be implemented quite conveniently. The analysis
of one series of real data has been performed for illustrative purposes, and it is observed that the
proposed model provides a good fit to the real data set.

To begin with, we shall use the following notation throughout this paper: φ(·) and Φ(·) for the
standard normal probability density and cumulative distribution function, respectively, φn(· ; µµµ,ΣΣΣ)

for the pdf of Nn(µµµ,ΣΣΣ) (n -variate normal distribution with mean vector µµµ and covariance matrix
ΣΣΣ, Φn(· ; µµµ,ΣΣΣ) for the cdf of Nn(µµµ,ΣΣΣ) (in both singular and non-singular cases), simply Φn(· ;ΣΣΣ)

for the case when µµµ = 0. Furthermore, for r,k ∈ N, let 1r, Ir and 0r×k denote the vector of ones,
the identity matrix of dimension r, and r× k zero matrix, respectively, and let X−i be the vector
obtained from X by deleting its ith component.

The rest of the paper is organized as follows. In Section 2, we introduce the bivariate normal–
geometric distribution. In Section 3, different properties of the proposed bivariate normal–geometric
are discussed. EM algorithm is presented in Section 4. Simulation study is given in Section 5.
Application to one real data set is given in Section 6. Finally, Section 7 concludes the paper.

2. Bivariate Normal–Geometric Distribution

Bivariate normal–geometric (BNG) distribution can be constructed as follows. Let {X1, ..,XN} and
{Y1, ..,YN} be sequence of mutually independent and identically distributed (i.i.d.) N(µ1,σ

2
1 ) and

N(µ2,σ
2
2 ), respectively. Also N has a geometric distribution with the probability mass function

P(N = n) = (1−θ)θ n−1, n = 1, ... , 0 < θ < 1.

Moreover, N is independent of Xi’s and Yi’s. Let

U1 = max(X1, ..,XN) and U2 = max(Y1, ..,YN).
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The joint cdf of (U1,U2) is

FU1,U2(u1,u2) =P(U1 ≤ u1,U2 ≤ u2)

=
∞

∑
n=1

(1−θ)θ n−1 [Φ(u1; µ1,σ1)Φ(u2; µ2,σ2)]
n

=
(1−θ)Φ(u1; µ1,σ1)Φ(u2; µ2,σ2)

1−θΦ(u1; µ1,σ1)Φ(u2; µ2,σ2)
. (2.1)

The bivariate random vector (U1,U2) is said to have a BNG, denoted by BNG(µ1,µ2,σ1,σ2,θ), if
(U1,U2) has the joint cdf in (2.1). The joint pdf and survival functions of (U1,U2) are

fU1,U2(u1,u2) =
(1−θ)φ(u1; µ1,σ1)φ(u2; µ2,σ2)

(1−θΦ(u1; µ1,σ1)Φ(u2; µ2,σ2))2 ×
[

1+
2θΦ(u1; µ1,σ1)Φ(u2; µ2,σ2)

(1−θΦ(u1; µ1,σ1)Φ(u2; µ2,σ2))

]
,

and

SU1,U2(u1,u2) = 1− (1−θ)Φ(u1; µ1,σ1)

1−θΦ(u1; µ1,σ1)
− (1−θ)Φ(u2; µ2,σ2)

1−θΦ(u2; µ2,σ2)
+

(1−θ)Φ(u1; µ1,σ1)Φ(u2; µ2,σ2)

1−θΦ(u1; µ1,σ1)Φ(u2; µ2,σ2)
.

respectively. Figure 1 shows the BNG density function for selected values θ where µ1 = µ1 = 0 and
σ1 = σ1 = 1. From Figure 1, it is quite apparent that it can take different shapes, and it is unimodal
for different values of the parameters.

The following theorem provides the marginal distribution and conditional cdf of the BNG dis-
tribution.

Theorem 2.1. If (U1,U2)∼ BNG(µ1,µ2,σ1,σ2,θ), then
(i) Ui ∼NG(µi,σi,θ), i = 1,2.

(ii) The conditional pdf of U1 given U2 = u2 is

fU1|U2(u1|u2) = φ(u1; µ1,σ1)

(
θΦ(u2; µ2,σ2)−1

θΦ(u1; µ1,σ1)Φ(u2; µ2,σ2)−1

)2

− 2θΦ(u1; µ1,σ1)Φ(u2; µ2,σ2)φ(u1; µ1,σ1)(θΦ(u2; µ2,σ2)−1)2

(θΦ(u1; µ1,σ1)Φ(u2; µ2,σ2)−1)3 .

(iii) The conditional cdf of U1 given U2 = u2 is

P(U1 ≤ u1 |U2 = u2) = Φ(u1; µ1,σ1)×
(

1−θΦ(u2; µ2,σ2)

1−θΦ(u1; µ1,σ1)Φ(u2; µ2,σ2)

)2
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Fig. 1. The pdf of BNG distribution when µ1 = µ1 = 0 and σ1 = σ1 = 1 and θ = 0.01 (left top), θ = 0.3 (right top),
θ = 0.8 (left bottom), θ = 0.99 (right bottom)

Proof. The proof of (i) and (ii) can be obtained in a routine matter. For part (iii), we can write

P(U1 ≤ u1 |U2 = u2) =
P(U1 ≤ u1,U2 = u2)

P(U2 = u2)

=
∞

∑
n=1

P(U1 ≤ u1 | N = n,U2 = u2)×P(N = n |U2 = u2)

=
∞

∑
n=1

(Φ(u1; µ1,σ1))
n nθ

n−1 (Φ(u2; µ2,σ2))
n−1

= Φ(u1; µ1,σ1)(1−θΦ(u2; µ2,σ2))
2

∞

∑
n=1

nθ
n−1 (Φ(u1; µ1,σ1)Φ(u2; µ2,σ2))

n−1

= Φ(u1; µ1,σ1)×
(

1−θΦ(u2; µ2,σ2)

1−θΦ(u1; µ1,σ1)Φ(u2; µ2,σ2)

)2

.
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3. Properties

To better motivate the results developed in this section, we first provide a brief definition of the
multivariate unified skew-normal (SUN) distributions. Let V1 and V2 be two random vectors of
dimensions m and n, respectively, and

(
V1

V2

)
∼ Nm+n

((
ηηη

ξξξ

)
,

(
ΓΓΓ ΛΛΛ

T

ΛΛΛ ΩΩΩ

))
.

The n-dimensional random vector Z is said to have the SUN distribution with parameter ααα =

(ξξξ ,ηηη ,ΩΩΩ,,,ΓΓΓ,,,ΛΛΛ) , where ξξξ ∈Rn and ηηη ∈Rm are location vectors, ΩΩΩ∈Rn×n and ΓΓΓ∈Rm×m are disper-
sion matrices, and ΛΛΛ ∈ Rn×m is a skewness/shape matrix, denoted by Z ∼ SUNn,m ( ξξξ ,ηηη ,ΩΩΩ,,,ΓΓΓ,,,ΛΛΛ)

or simply by Z∼ SUNn,m (ααα), if

Z d
= V2 | (V1 > 0).

The density function of Z is given by [see [2]]

fSUNn,m (z;ααα) =
φn (z;ξξξ ,ΩΩΩ)Φm

(
ηηη +ΛΛΛ

T
ΩΩΩ
−1 (z−ξξξ ) ;ΓΓΓ−ΛΛΛ

T
ΩΩΩ
−1

ΛΛΛ

)
Φm (ηηη ;ΓΓΓ)

.

Furthermore, when Z∼ SUNn,m (α), the mgf of Z is available in an explicit form and is given by

MSUNn,m (s;ααα) =
exp
(

ξξξ
T s+1

2 sT ΩΩΩs
)

Φm
(
ηηη +ΛΛΛ

T s;ΓΓΓ
)

Φm (ηηη ;ΓΓΓ)
. (3.1)

Now, Let X and Y be two random vectors of dimensions n, and (XT ,YT ) having a multivariate
normal distribution

(
X
Y

)
∼ N2n (µµµ,ΣΣΣ) ,

where

µµµ =

(
1nµ1

1nµ2

)
and ΣΣΣ =

(
σ2

1 In 0n×n

σ2
2 In

)
.

If X(n) = max(X1, · · · ,Xn) and Y(n) = max(Y1, · · · ,Yn) be the largest order statistics obtained from X
and Y, respectively, then the joint pdf of (X(n),Y(n)) is given by (see [8])
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fX(n),Y(n)(u1,u2) = fSUN2,2n−2(u1,u2;α), (3.2)

where ααα = (ξξξ ,0,ΩΩΩ,ΓΓΓ,,,ΛΛΛ), with

ξξξ =

(
µ1

µ2

)
,ΩΩΩ =

(
σ2

1 0
0 σ2

2

)
,

ΓΓΓ =

(
σ2

1
(
In−1 +1n−11T

n−1
)

0n−1×n−1

σ2
2
(
In−1 +1n−11T

n−1
)) ,

ΛΛΛ =

(
1n−1σ2

1 0n−1×n−1

1n−1σ2
2

)
.

In the following proposition, we first present the mixture representation for fU1,U2(u1,u2).

Proposition 3.1. The densities of BNG class can be written as follows

fU1,U2(u1,u2) =
∞

∑
n=1

P(N = n) fX(n),Y(n)(u1,u2), (3.3)

where fX(n),Y(n)(u1,u2) is the joint density function of (X(n),Y(n)) in (3.2).

Proposition 3.2. If the random vector (U1,U2)∼ BNG(µ1,µ2,σ1,σ2,θ), then
(i) the mgf of (U1,U2) is available and for s ∈ R2, is given by

MU1,U2(s) =
∞

∑
n=1

(1−θ)θ n−1MSUN2,n−2(s;ααα)

=
∞

∑
n=1

(1−θ)θ n−1×
exp
(

ξξξ
T s+ 1

2 sT ΩΩΩs
)

Φ2n−2
(
ΛΛΛ

T s;ΓΓΓ
)

Φ2n−2 (0;ΓΓΓ)
.

(ii) The product moment E(U1U2) is given by

E(U1U2) =

=
∞

∑
n=1

(1−θ)θ n−1
[

µ1 +
n(n−1)σ1

2
√

π
Φn−2

(
0;In−2 +

1
2

1n−21T
n−2

)]
×
[

µ2 +
n(n−1)σ2

2
√

π
Φn−2

(
0;In−2 +

1
2

1n−21T
n−2

)]
.

Proof. we use (3.1) and (3.3) to proof part (i). For part (ii), we can write

E(U1U2) = E(E(X(N)Y(N) | N = n)) =
∞

∑
n=1

(1−θ)θ n−1E(X(n)Y(n))

=
∞

∑
n=1

(1−θ)θ n−1E(X(n))E(Y(n))

and based on [5], we have

E(X(n)) = µ1 +
n(n−1)σ1

2
√

π
Φn−2

(
0;In−2 +

1
2

1n−21T
n−2

)
,
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and

E(Y(n)) = µ2 +
n(n−1)σ2

2
√

π
Φn−2

(
0;In−2 +

1
2

1n−21T
n−2

)
,

which completes the proof.

The stress-strength parameter, R = P(U1 < U2), is useful for data analysis purposes. The fol-
lowing result gives the stress-strength parameter of BNG model.

Proposition 3.3. If (U1,U2)∼ BNG(µ1,µ2,σ1,σ2,θ), then

P(U1 <U2) =
∞

∑
n=1

(1−θ)θ n−1FSUN1,2n−2 (0;ααα) ,

where FSUN1,2n−2 (·;ααα) is the cdf of the univariate SUN1,2n−2(ααα) distribution, and ααα =(µ1−µ2,0,σ2
1

+σ2
2 ,ΓΓΓ,,,ΛΛΛ), with

ΓΓΓ =

(
σ2

1
(
In−1 +1n−11T

n−1
)

0n−1×n−1

σ2
2
(
In−1 +1n−11T

n−1
)) ,

ΛΛΛ =

(
1n−1σ2

1 0n−1×n−1

1n−1σ2
2

)
.

Proof. We have

P(U1 <U2) = P(X(N) < Y(N)) =
∞

∑
n=1

(1−θ)θ n−1P(X(n) < Y(n))

Now, we compute P(X(n) < Y(n)).

P(X(n) < Y(n)) =
n

∑
i=1

n

∑
j=1

P(1n−1Xi−X−i > 0,1n−1Yj−Y− j > 0 )×

P(Xi−Yj ≤ 0 | 1n−1Xi−X−i > 0,1n−1Yj−Y− j > 0).

Since, for i = 1, · · · ,n and j = 1, · · · ,n

 1n−1Xi−X−i

1n−1Yj−Y− j

Xi−Yj

∼ N2n

((
0

µ1−µ2

)
,

(
ΓΓΓ ΛΛΛ

σ2
1 +σ2

2

))
,

by using the definition of the univariate SUN distribution, we have

P(Xi−Yj ≤ 0 | 1n−1Xi−X−i > 0,1n−1Yj−Y− j > 0) = FSUN1,2n−2 (0;α) ,

and
n

∑
i=1

n

∑
j=1

P(1n−1Xi−X−i > 0,1n−1Yj−Y− j > 0) = 1.

which completes the proof.
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Proposition 3.4. If (U1,U2)∼ BNG(µ1,µ2,σ1,σ2,θ), then
(i) The cdf and pdf of max(U1,U2) is

Fmax(U1,U2)(u) = P(U1 ≤ u,U2 ≤ u) =
(1−θ)Φ(u; µ1,σ1)Φ(u; µ2,σ2)

1−θΦ(u; µ1,σ1)Φ(u; µ2,σ2)
,

and

fmax(U1,U2)(u) =
(1−θ) [θφ(u; µ1,σ1)Φ(u; µ2,σ2)+θφ(u; µ2,σ2)Φ(u; µ1,σ1)]

θ (1−θΦ(u; µ1,σ1)Φ(u; µ2,σ2))
2 .

(ii) The cdf and pdf of min(U1,U2) is

Fmin(U1,U2)(u) = P(min(U1,U2)≤ u)

=
(1−θ)Φ(u; µ1,σ1)

1−θΦ(u; µ1,σ1)
+

(1−θ)Φ(u; µ2,σ2)

1−θΦ(u; µ2,σ2)

− (1−θ)Φ(u; µ1,σ1)Φ(u; µ2,σ2)

1−θΦ(u; µ1,σ1)Φ(u; µ2,σ2)
,

and

fmin(U1,U2)(u) =
(1−θ)φ(u; µ1,σ1)

(1−θΦ(u; µ1,σ1))2 +
(1−θ)φ(u; µ2,σ2)

(1−θΦ(u; µ2,σ2))2 − fmax(U1,U2)(u).

4. Inference

In this section, we consider estimation of unknown parameters of the BNG distributions. Let
{(u11,u21), ...,(u1n,u2n)} be a bivariate sample of size n from BNG with parameters ΨΨΨ =

(µ1,σ1,µ2,σ2,θ). The log likelihood function can be written as

ln = ln(ΨΨΨ) = n log(1−θ)−n log(σ1)−n log(σ1)−2n log(2π) (4.1)

− 1
2

n

∑
i=1

t2
1i−

1
2

n

∑
i=1

t2
2i +

n

∑
i=1

log
[

1+
2θΦ(u1i; µ1,σ1)Φ(u2i; µ2,σ2)

(1−θΦ(u1i; µ1,σ1)Φ(u2i; µ2,σ2))

]
,

where t1i =
u1i−µ1

σ1
and t2i =

u2i−µ2
σ2

. The maximum likelihood estimators (MLEs) can be obtained
by maximizing (4.1) with respect to the unknown parameters. Clearly, MLEs cannot be obtained
in closed forms. We may use the Newton-Raphson method, but one of the problems is its con-
vergence. If the initial guesses are not close to the optimal value, the iteration may not converge.
Due to this reason, we propose to use EM algorithm to compute the MLEs. The EM algorithm
is a very powerful tool in handling the incomplete data problem ( [3]). Let the complete-data be
(U11,U21), ...,(U1n,U2n) with observed values (u11,u21), ...,(u1n,u2n) and the hypothetical random
variable Z1, ...,Zn. We define a hypothetical complete-data distribution with a joint probability den-
sity function in the form

g(z,u1,u2;ΨΨΨ) = (1−θ)θ z−1z2
φ(u1; µ1,σ1)φ(u2; µ2,σ2) [Φ(u1; µ1,σ1)Φ(u2; µ2,σ2)]

z−1 ,

where µ1, µ2 ∈ R, σ1, σ2 > 0 and z ∈ N. Suppose Ψ
(k) = (µ

(k)
1 ,σ

(k)
1 ,µ

(k)
2 ,σ

(k)
2 ,θ (k)) is the current

estimate (in the kth iteration) of Ψ. Then, the E-step of an EM cycle requires the expectation of
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(Z|U1,U2; ΨΨΨ). Consider θ∗ = θΦ(u1; µ1,σ1)Φ(u2; µ2,σ2), then the probability density function of
Z given U1 = u1,U2 = u2 is given by

g(z|u1,u2) =
z2(1−θ∗)

3 [θ∗]
z−1

θ∗+1
,

and its expected value is

E (Z|u1,u2;ΨΨΨ) =
θ 2
∗ +4θ∗+1

1−θ 2
∗

.

By using the maximum likelihood estimation over ΨΨΨ, with the missing Z’s replaced by their con-
ditional expectations given above, the M-step of EM cycle is completed. The log likelihood of the
model parameters for the complete data set is

l∗n(u1,u2,z; µ1,µ2,σ1,σ2,θ)

∝
n

∑
i=1

zi logθ −n logσ1−n logσ2−
1

2σ2
1

n

∑
i=1

(u1i−µ1)
2− 1

2σ2
2

n

∑
i=1

(u2i−µ2)
2

+
n

∑
i=1

(zi−1) logΦ(u1i; µ1,σ1)+
n

∑
i=1

(zi−1) logΦ(u2i; µ2,σ2)−n log(θ)+n log(1−θ).

The maximum likelihood estimates can be obtained from the iterative algorithm given by

1(
σ̂
(k)
1

)2

n

∑
i=1

(
u1i− µ̂

(k+1)
1

)
−

n

∑
i=1

(
ẑ(k)i −1

)
φ(u1i; µ̂

(k+1)
1 , σ̂

(k)
1 )

Φ(u1i; µ̂
(k+1)
1 , σ̂

(k)
1 )

= 0,

1(
σ̂
(k)
2

)2

n

∑
i=1

(
u2i− µ̂

(k+1)
2

)
−

n

∑
i=1

(
ẑ(k)i −1

)
φ(u2i; µ̂

(k+1)
2 , σ̂

(k)
2 )

Φ(u2i; µ̂
(k+1)
2 , σ̂

(k)
2 )

= 0,

n

σ̂
(k+1)
1

− 1(
σ̂
(k+1)
1

)3

n

∑
i=1

(
u1i− µ̂

(k)
1

)2
+

1

σ̂
(k+1)
1

n

∑
i=1

(
ẑi
(k)−1

) (u1i− µ̂
(k)
1

)
φ(u1i; µ̂

(k)
1 , σ̂

(k+1)
1 )

Φ(u1i; µ̂
(k)
1 , σ̂

(k+1)
1 )

= 0,

n

σ̂
(k+1)
2

− 1(
σ̂
(k+1)
2

)3

n

∑
i=1

(
u2i− µ̂

(k)
2

)2
+

1

σ̂
(k+1)
2

n

∑
i=1

(
ẑi
(k)−1

) (u2i− µ̂
(k)
2

)
φ(u2i; µ̂

(k)
2 , σ̂

(k+1)
2 )

Φ(u2i; µ̂
(k)
2 , σ̂

(k+1)
2 )

= 0,

θ̂
(k+1) =

1
n

θ̂
(k+1)

(
θ̂
(k+1)−1

) n

∑
i=1

ẑ(k)i ,

where µ̂
(k+1)
1 , µ̂

(k+1)
2 , σ̂

(k+1)
1 , σ̂

(k+1)
2 and θ̂ (k+1) are found numerically. Here, for i = 1, ...,n, we

have that

ẑ(k)i = E
(

Z|U1 = u1i,U2 = u2i; µ
(k)
1 ,µ

(k)
2 ,σ

(k)
1 ,σ

(k)
2 ,θ (k)

)
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5. Simulation

This section provides the results of simulation study. Simulations have been performed in order to
investigate the proposed estimator of, µ1,σ1,µ2,σ2 and θ of the proposed EM method. Generation
from a BNG distribution is straightforward using the definition of the model. First generate N from
geometric distribution and call the observed value n, then generate {X1, ..,Xn} and {Y1, ..,Yn} from
N(µ1,σ

2
1 ) and N(µ2,σ

2
2 ), and U1 = max(X1, ..,Xn) and U2 = max(Y1, ..,Yn) is the required sam-

ple. We simulate 500 times under the BNG distribution with three different sets of parameters and
sample sizes n =100, 200 and 500. For each sample size, we compute the MLEs by EM method.
We also compute the standard error of the MLEs of the EM algorithm. The results for the BNG
distribution are shown in Table 1. Some of the points are quite clear from the simulation results: (i)
Convergence has been achieved in all cases and this emphasizes the numerical stability of the EM
algorithm. (ii) The differences between the average estimates and the true values are almost small.
(iii) These results suggest that the EM estimates have performed consistently. (iv) As the sample
size increases, the standard errors of the MLEs decrease.

Table 1. The averages of the MLE’s, mean of the simulated standard errors of the BNG distribution.
AE Std

n (µ1,σ1,µ2,σ2,θ) µ̂1 σ̂1 µ̂2 σ̂2 θ̂ µ̂1 σ̂1 µ̂2 σ̂2 θ̂

100 (0.0,1.0,0.0,1.0,0.1) -0.0317 0.9896 -0.0334 0.9931 0.1409 0.0150 0.0070 0.0140 0.0070 0.0140
(0.0,1.0,0.0,1.0,0.3) 0.0214 0.9894 0.0175 0.9949 0.2652 0.0160 0.0070 0.0160 0.0070 0.0160
(0.0,1.0,0.0,1.0,0.7) 0.1287 0.9794 0.1519 0.9749 0.6113 0.0230 0.0070 0.0220 0.0080 0.0120

200 (0.0,1.0,0.0,1.0,0.1) -0.0129 0.9956 -0.0158 0.9969 0.1170 0.0073 0.0035 0.0068 0.0036 0.0076
(0.0,1.0,0.0,1.0,0.3) 0.0203 0.9977 0.0258 0.9904 0.2689 0.0091 0.0036 0.0080 0.0036 0.0086
(0.0,1.0,0.0,1.0,0.7) 0.1426 0.9791 0.1658 0.9686 0.6139 0.0123 0.0038 0.0109 0.0040 0.0060

500 (0.0,1.0,0.0,1.0,0.1) -0.0031 0.9973 -0.0058 0.9978 0.1052 0.0030 0.0015 0.0029 0.0014 0.0036
(0.0,1.0,0.0,1.0,0.3) 0.0094 0.9976 0.0162 0.9977 0.2861 0.0036 0.0015 0.0033 0.0014 0.0036
(0.0,1.0,0.0,1.0,0.7) 0.1394 0.9795 0.1587 0.9762 0.6216 0.0054 0.0014 0.0049 0.0016 0.0027

6. Application

In this section, we try to illustrate the better performance of the proposed model. For this end, we fit
BNG model to a real data set. We also fit the bivariate normal (BN) distribution to make a compar-
ison with the BNG model. This data, taken from [6], are related to air pollution. Here, we consider
two variables of these data, viz., Solar rad (U1) and O3 (U2). We first test the marginal distributions.
For this purpose, We compute the Kolmogorov-Smirnov distance between the empirical and fitted
distribution functions, and the associated p-value (in parentheses) for U1 and U2 in Table 2. These
results suggest that BNG and BN may be used for analyzing this bivariate data set.

Table 2. Kolmogorov-Smirnov distance and the associated p value.

Dist. U1 U2

NG 0.0637 (0.9956) 0.1466 (0.3275)
N 0.1319 (0.4577) 0.1491 (0.3079)
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For comparison purposes, we estimate parameters by numerically maximizing the likelihood
function. The MLEs of the parameters, the maximized loglikelihood, the AIC (Akaike Information
Criterion) and BIC (Bayesian Information Criterion) for the BNG and BN models are given in
Table 3.As is well-known, a model with a minimum AIC value is to be preferred. Therefore BNG
distribution provides a better fit to this data set than BN.

Table 3. Parameter estimates, AIC and BIC for air pollution data.

Dist. Parameter estimates -log(L) AIC BIC

BNG µ̂1=-76.90, σ̂1=40.62, µ̂2=-35.69, σ̂2=11.99, θ̂=0.99 305.2414 620.4827 629.1711
BN µ̂1= 73.85, σ̂1=17.33,µ̂2= 9.40, σ̂2= 5.56, ρ̂=0.319 307.8487 625.6973 634.3857

7. Conclusion

In this paper we have introduced the bivariate normal–geometric distribution whose marginals are
normal–geometric distributions. Several statistical properties of this new bivariate distribution have
been studied. The estimation of the unknown parameters of the proposed distribution is approached
by the EM algorithm. Finally, we fitted BNG models to a real data set to show the potential of the
new proposed class.
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