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This article deals with using E-Bayesian method under progressively type-II censored sample from the Rayleigh
distribution (RD) for computing the estimates of the parameter. The Bayesian and E-Bayesian estimators are
obtained under squared error and LINEX loss functions. A comparison between E-Bayesian method and cor-
responding Bayes and maximum likelihood methods is presented using the Monte Carlo simulation study.
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1. Introduction

The Rayleigh distribution is a special case of the Weibull distribution, which provides a population
model useful in several areas of statistics, including life testing and reliability study. A number
of authors have considered the problem of estimation of the parameter of Rayleigh distribution
using different types of censoring and non-censoring data. Among others, Sinha and Howlader [15]
obtained credible and HPD intervals of the parameter and reliability of Rayleigh distribution, Lalitha
and Anand [11] studied the modified maximum likelihood estimation for Rayleigh distribution,
Fernandez [7] obtained the Bayesian inference from type II doubly censored Rayleigh data, Raqab
and Madi [14] considered the estimation of the predictive distribution of the total time on test up to
a certain failure in a future sample on the basis of a doubly censored random sample of failure times
drawn from a Rayleigh distribution, Soliman and AL-Aboud [17] discussed the Bayesian inference
using recored values from Rayleigh Model, Kim and Han [12] discussed estimation of the scale
parameter of Rayleigh distribution under general progressive censoring. Lee et al. [13] obtained a
Bayes estimator under the Rayleigh distribution with the progressive type II right censored sample.
Abou-Elheggag [1] obtained a Bayes estimator under the Rayleigh distribution with the progressive
first-failure censored data.
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The probability density function (pdf) and cumulative distribution function (cdf) of the Rayleigh
distribution RD(θ), respectively, given by

fX (x;θ) = 2θxexp
{
−θx2} ,x > 0,θ > 0, (1.1)

and

FX (x;θ) = 1− exp
{
−θx2} ,x > 0,θ > 0. (1.2)

The progressive type-II censoring scheme can be described as follows: Suppose that n units are
placed on test and the experimenter decides before hand the quantity m, the number of failures to be
observed. Now at the time of the first failure, R1 of the remaining n−1 surviving units are randomly
removed from the experiment. At the time of the second failure, R2 of the remaining n−R1− 1
units are randomly removed from the experiment. Finally, at the time of the m− th failure, all
the remaining surviving units Rm = n−m−R1− ·· ·−Rm− 1 are removed from the experiment.
Therefore, a progressive type-II censoring scheme consists of m, and R1, · · · ,Rm such that R1 +

R2 + · · ·+Rm = n−m. A recent account on progressive censoring schemes can be obtained in the
monograph by Balakrishnan and Aggarwala [3] or in the excellent review article by Balakrishnan
[2].

This article can be organized as follows. In Section 2, we present the derivation of the maximum
likelihood estimator (MLE) of the involved parameter. Bayesian estimation under squared error and
LINEX loss functions is described in Section 3. Section 4 deals with the formulas of E-Bayesian
estimation of the parameter under squared error and LINEX loss functions. In Section 5, the prop-
erties of E-Bayesian estimation are discussed. Section 6 gives a simulation study. Finally, Section 7
provides some concluding remarks.

2. Maximum likelihood estimation

Let X1:m:n < X2:m:n < ... < Xm:m:n is a progressive type II censored sample from the RD(θ), with
corresponding censoring scheme R=(R1,R2, ...,Rm). With progressive type II censoring, n products
(or items) are placed on test, the joint density function of all m progressive type II censored order
statistic is given by (see Balakrishnan and Aggarwala [3])

fx1,x2,...,xm (x1,x2, ...,xm) = A
m

∏
i=1

fX (x;θ) [1−FX (x;θ)]Ri , (2.1)

where xi is used instead of Xi:m:n, 0 < x1 < ... < xm < ∞, fX (x;θ) and FX (x;θ) are the pdf and cdf
of X as (1.1)–(1.2), respectively. R≥ 0, i = 1,2, ...,m and

A = n(n−1−R1)(n−2−R1−R2)...

(
n−

m−1

∑
i=1

Ri−m+1

)
(2.2)

Upon substituting (1.1) and (1.2) into (2.1), the likelihood function for x = x1,x2, ...,xm becomes as

L(θ ;x) = A2m
θ

m

[
m

∏
i=1

xi

]
exp

{
−θ

m

∑
i=1

(Ri +1)x2
i

}
, (2.3)

where A is defined in (2.2), Therefore without the additive constant, the llikelihood function of the
observed data can be written as

L(θ ;x) = θ
m exp{−θw} , (2.4)
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where

w =W (xi) =
m

∑
i=1

(Ri +1)x2
i . (2.5)

The log-llikelihood function can be written as

`(θ ;x) = m log(θ)−θw. (2.6)

Thus, the corresponding likelihood equation for the parameter θ becomes

∂`(θ ;x)
∂θ

=
m
θ
−w = 0. (2.7)

It follows, the ML estimate of θ is

θ̂ML =
m
w
. (2.8)

where w is as given in (2.5).

3. Bayesian estimation

The Bayesian approach provides the possibility for incorporating prior information about the rele-
vant parameters. To this end the parameter θ , is considered as a random variable, having some spec-
ified distribution. Here we consider the following gamma conjugate prior density for the parameter
θ

π(θ) =
ba

Γ(a)
θ

a−1 exp{−bθ} ,θ > 0, (3.1)

where a > 0 and b > 0. From (2.4) and (3.1), the posterior density of θ given x can be obtain as

π
∗(θ |x) = (b+w)(m+a)

Γ(m+a)
θ

m+a−1 exp{−θ (b+w)} ,θ > 0. (3.2)

Under the squared error loss function, the Bayes estimate of θ is given by

θ̂BS (a,b) =
m+a
b+w

(3.3)

Also, based on LINEX loss function, the Bayes estimate of θ can be shown to be

θ̂BL (a,b) =−
(m+a)

k
ln
(

b+w
b+ k+w

)
. (3.4)

For more details about the LINEX loss function, see for example, Calabria and Pulcini [5], Soliman
et al. [16] and El-Sagheer [6].
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4. E-Bayesian estimation

According to Han [8], the prior parameters a and b should be selected to guarantee that π (θ) is a
decreasing function of θ . The derivative of π(θ) with respect to θ is

dπ (θ)

dθ
=

ba

Γ(a)
θ

a−2 exp{−bθ} [(a−1)−bθ ] , (4.1)

since a > 0, b > 0, and θ > 0, it follows 0 < a < 1, b > 0 due to dπ(θ)
dθ

< 0 and therefore π(θ) is a
decreasing function of θ . Assuming that a and b are independent with bivariate density function

π (a,b) = π1 (a)π2 (b) . (4.2)

Then, the E-Bayesian estimate of θ (expectation of the Bayesian estimate of θ ) can be written as

θ̂E−B = E (θ |x) =
∫ ∫

θ̂B (a,b)π (a,b)dadb, (4.3)

where θ̂B (a,b) is the Bayes estimate of θ under squared error and LINEX loss functions, given by
(3.3) and (3.4) respectively. For more details, see Han [9] or Jaheen and Okasha [10].

4.1. E-Bayesian estimation using squared error loss function

E-Bayesian estimation based on three different distributions of the hyperparameters a and b is
obtained in this subsection, to investigate the influence of different prior distributions on the E-
Bayesian estimation of θ . The following distributions of a and b may be used

π1 (a,b) =
2(c−b)

c2 , 0 < a < 1, 0 < b < c

π2 (a,b) =
1
c
, 0 < a < 1, 0 < b < c

π3 (a,b) =
2b
c2 , 0 < a < 1, 0 < b < c


. (4.4)

For π1 (a,b), the E-Bayesian estimate of θ is obtained from (3.3), (4.3) and (4.4) as

θ̂E−BS1 =
∫ ∫

θ̂BS (a,b)π1 (a,b)dbda

=
2
c2

∫ 1

0

∫ c

0

(
m+a
b+w

)
(c−b)dbda

=
2
(
m+ 1

2

)
c2

[
(c+w) ln

(
1+

c
w

)
− c
]
. (4.5)

Similarly, the E-Bayesian estimates of θ using π2 (a,b) and π3 (a,b) are computed and given,
respectively, by

θ̂E−BS2 =
m+ 1

2
c

ln
(

1+
c
w

)
, (4.6)

and

θ̂E−BS3 =
2
(
m+ 1

2

)
c2

[
c−w ln

(
1+

c
w

)]
. (4.7)
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where w is as given in (2.5).

4.2. E-Bayesian estimation using LINEX loss function

Based on the LINEX loss function, the E-Bayesian estimation of θ is computed for the three dif-
ferent distributions of the hyperparameters a and b given by (4.4). For π1 (a,b), the E-Bayesian
estimate of θ is obtained from (3.4), (4.3) and (4.4) as

θ̂E−BL1 =
∫ ∫

θ̂BL (a,b)π1 (a,b)dadb

=
2
c2

∫ 1

0

∫ c

0

(
−(m+a)

k

)
ln
(

b+w
b+ k+w

)
(c−b)dbda

=
m+ 1

2
c2k

[
c2 ln

(
1+

k
c+w

)
−
(
2cw+w2) ln

(
1+

c
w

)
+
(
(k+w)2 +2c(k+w)

)
ln
(

1+
c

k+w

)
− ck

]
. (4.8)

Similarly, the E-Bayesian estimates of θ based on π2 (a,b) and π3 (a,b) are computed and given,
respectively, by

θ̂E−BL2 =
m+ 1

2
c2k

[
c2 ln

(
1+

k
c+w

)
− cw ln

(
1+

c
w

)
+c(k+w) ln

(
1+

c
k+w

)]
, (4.9)

and

θ̂E−BL3 =
m+ 1

2
c2k

[
c2 ln

(
1+

k
c+w

)
+w2 ln

(
1+

c
w

)
−(k+w)2 ln

(
1+

c
k+w

)
+ ck

]
. (4.10)

5. Properties of E-Bayesian estimation for θ

This section discuss the relations between θ̂E−BSl (l = 1,2,3) in Equations (4.5), (4.6) and (4.7),
also, the relations between θ̂E−BLl (l = 1,2,3) in Equations (4.8), (4.9) and (4.10), respectively.

Theorem 5.1. . For E-Bayesian estimator of parameter θ , under squared error loss function,(
θ̂E−BSl , l = 1,2,3

)
when 0 < c < w, we have

(i) θ̂E−BS3 < θ̂E−BS2 < θ̂E−BS1.

(ii) lim
w−→∞

θ̂E−BS1 = lim
w−→∞

θ̂E−BS2 = lim
w−→∞

θ̂E−BS3.
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Proof. (i) From (4.5), (4.6) and (4.7) we have

θ̂E−BS1− θ̂E−BS2 = θ̂E−BS2− θ̂E−BS3 =
2
(
m+ 1

2

)
c2

[
c+2w

2
ln
(

1+
c
w

)
− c
]

(5.1)

For −1 < x < 1, we have: ln(1+ x) = ∑
∞
i=1 (−1)i−1 xi

i = x− x2

2 + x3

3 −
x4

4 + · · ·
Let, x = c

w , when 0 < c < w and 0 < c
w < 1, we get :

[
c+2w

2
ln
(

1+
c
w

)
− c
]
= c

[
c2

w2

(
1
3
− 1

4

)
+

c3

w3

(
1
4
− 1

6

)
+

c4

w4

(
1
5
− 1

8

)
+ · · ·

]
= c

[
1
12

c2

w2 +
2
24

c3

w3 +
3
40

c4

w4 + · · ·
]
. (5.2)

According to (5.1) and (5.2), we have
θ̂E−BS1− θ̂E−BS2 = θ̂E−BS2− θ̂E−BS3 > 0. That is θ̂E−BS3 < θ̂E−BS2 < θ̂E−BS1.

(ii) From (5.1) and (5.2) we get

lim
w−→∞

(
θ̂E−BS1− θ̂E−BS2

)
= lim

w−→∞

(
θ̂E−BS2− θ̂E−BS3

)
= lim

w−→∞
=

2
(
m+ 1

2

)
c

[
1

12
c2

w2 +
2

24
c3

w3 +
3
40

c4

w4 + · · ·
]

= 0. (5.3)

That is, lim
w−→∞

θ̂E−BS1 = lim
w−→∞

θ̂E−BS2 = lim
w−→∞

θ̂E−BS3. Thus, the proof is complete.

Theorem 5.2. For E-Bayesian estimator of parameter θ , under LINEX loss function, (θ̂E−BLl , l =
1,2,3) when 0 < c < w, we have

(i) θ̂E−BL1 < θ̂E−BL2 < θ̂E−BL3.

(ii) lim
w−→∞

θ̂E−BL1 = lim
w−→∞

θ̂E−BL2 = lim
w−→∞

θ̂E−BL3.

Proof. (i) From (4.8), (4.9) and (4.10) we have

θ̂E−BL1− θ̂E−BL2 = θ̂E−BL2− θ̂E−BL3 =
m+ 1

2
c2k

[(
(k+w)2 + c(k+w)

)
ln
(

1+
c

k+w

)
−
(
cw+w2) ln

(
1+

c
w

)
− ck

]
. (5.4)
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For −1 < x < 1, we have: ln(1+ x) = ∑
∞
i=1 (−1)i−1 xi

i = x− x2

2 + x3

3 −
x4

4 + · · ·
Let, x = c

w , when 0 < c < w and 0 < c
w < 1, we get :

1
c2

[(
(k+w)2 + c(k+w)

)
ln
(

1+
c

k+w

)
−
(
cw+w2) ln

(
1+

c
w

)
− ck

]
=

(k+w)2 + c(k+w)
c2

[
c

k+w
− 1

2
c2

(k+w)2 +
1
3

c3

(k+w)3 −
1
4

c4

(k+w)4 + · · ·

]

−cw+w2

c2

[
c
w
− 1

2
c2

w2 +
1
3

c3

w3 −
1
4

c4

w4 +
1
5

c5

w5 + · · ·
]
− k

c

=

[(
1
3
− 1

2

)
c

k+w
+

(
1
3
− 1

4

)
c2

(k+w)2 +

(
1
5
− 1

4

)
c3

(k+w)3 + · · ·

]

−
[(

1
3
− 1

2

)
c
w
+

(
1
3
− 1

4

)
c2

w2 +

(
1
5
− 1

4

)
c3

w3 + · · ·
]
. (5.5)

According to (5.4) and (5.5), we have:
θ̂E−BL1− θ̂E−BL2 = θ̂E−BL2− θ̂E−BL3 < 0. That is θ̂E−BL1 < θ̂E−BL2 < θ̂E−BL3.

(ii) From (5.4) and (5.5) we get

lim
w−→∞

(
θ̂E−BL1− θ̂E−BL2

)
= lim

w−→∞

(
θ̂E−BL2− θ̂E−BL3

)
=

m+ 1
2

k
lim

w−→∞

[(
1
3
− 1

2

)
c

k+w
+

(
1
3
− 1

4

)
c2

(k+w)2 + · · ·

]

−
m+ 1

2
k

lim
w−→∞

[(
1
3
− 1

2

)
c
w
+

(
1
3
− 1

4

)
c2

w2 + · · ·
]

= 0. (5.6)

That is, lim
w−→∞

θ̂E−BL1 = lim
w−→∞

θ̂E−BL2 = lim
w−→∞

θ̂E−BL3. Thus, the proof is complete.

6. Monte Carlo simulation study

We perform Monte Carlo simulation to compare th performaces of the different estimators for dif-
ferent sampling schemes. Monte Carlo simulations were performed utilizing 10000 progressively
type-II censored samples for each simulations. The mean squared error (MSE) is used to com-
pear the estimators, where MSE = 1

10000 ∑
10000
i=1 (ϕ− ϕ̂i)

2 and ϕ̂ is the estimator of ϕ . The samples
were generated by using the algorithm described in Balakrishnan and Sandhu [4] using θ = 0.7683
with different chooses of n,m. We compute the maximum likelihood estimate θ̂ML and Bayes esti-
mates θ̂BS , θ̂BL, respectively using (2.8), (3.3) and (3.4). Also, we compute E-Bayesian estimates
θ̂E−BS1, θ̂E−BS2, θ̂E−BS3, θ̂E−BL1, θ̂E−BL2, θ̂E−BL3 of parameter θ , respectively using, (4.5)-(4.10).
Our computational results for the MSEs are computed where the values of the parameters used are
a = 0.7329, b = 1.5642 and c = 3, k = 2. All the computions are performed with a Pentium IV
processor using Mathematica 8. We assume that the number of items put on a life test is equal to
n. Using a progressive type-II censoring scheme, only m observations are obtained from the test. In
our study we have used three different censoring schemes (C.S), namely:
Scheme I: R1 = n−m,Ri = 0 for i 6= 1.
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Scheme II: R m+1
2

= n−m,Ri = 0 for i 6= m+1
2 ; if m odd, and R m

2
= n−m,Ri = 0 for i 6= m

2 ; if m even.
Scheme III: Rm = n−m,Ri = 0 for i 6= m.

The computational results are displayed in Table 1.

Table 1. MSE for different estimates of the parameters θ .

n,m C.S θ̂ML θ̂BS θ̂E−BS1 θ̂E−BS2 θ̂E−BS3 θ̂BL θ̂E−BL1 θ̂E−BL2 θ̂E−BL3

20,10 I 0.0701 0.0694 0.0647 0.0651 0.0663 0.0637 0.0625 0.0618 0.0611
II 0.0713 0.0699 0.0656 0.0664 0.0672 0.0645 0.0628 0.0623 0.0614
III 0.0722 0.0712 0.0662 0.0671 0.0684 0.0656 0.0633 0.0629 0.0625

20,15 I 0.0685 0.0660 0.0612 0.0625 0.0634 0.0609 0.0595 0.0583 0.0577
II 0.0691 0.0667 0.0623 0.0631 0.0642 0.0617 0.0600 0.0594 0.0579
III 0.0705 0.0674 0.0635 0.0644 0.0663 0.0625 0.0609 0.0601 0.0586

30,20 I 0.0523 0.0509 0.0499 0.0502 0.0506 0.0492 0.0476 0.0468 0.0453
II 0.0539 0.0519 0.0506 0.0513 0.0527 0.0497 0.0483 0.0477 0.0460
III 0.0555 0.0537 0.0517 0.0522 0.0533 0.0506 0.0491 0.0484 0.0468

30,25 I 0.0410 0.0398 0.0375 0.0382 0.0395 0.0356 0.0341 0.0337 0.0326
II 0.0423 0.0415 0.0388 0.0393 0.0402 0.0364 0.0357 0.0340 0.0331
III 0.0440 0.0427 0.0395 0.0407 0.0411 0.0376 0.0369 0.0348 0.0340

40,30 I 0.0374 0.0293 0.0269 0.0273 0.0284 0.0258 0.0239 0.0231 0.0223
II 0.0385 0.0299 0.0275 0.0283 0.0291 0.0266 0.0247 0.0236 0.0217
III 0.0398 0.0305 0.0281 0.0290 0.0299 0.0273 0.0255 0.0243 0.0228

40,35 I 0.0222 0.0188 0.0174 0.0179 0.0185 0.0164 0.0159 0.0152 0.0147
II 0.0241 0.0196 0.0180 0.0186 0.0194 0.0171 0.0165 0.0159 0.0155
III 0.0273 0.0211 0.0192 0.0198 0.0206 0.0185 0.0174 0.0167 0.0161

50,40 I 0.0115 0.0090 0.0076 0.0082 0.0088 0.0069 0.0061 0.0056 0.0043
II 0.0122 0.0096 0.0083 0.0088 0.0094 0.0075 0.0068 0.0061 0.0052
III 0.0137 0.0110 0.0099 0.0103 0.0107 0.0092 0.0077 0.0068 0.0060

50,45 I 0.0053 0.0044 0.0030 0.0035 0.0039 0.0028 0.0023 0.0021 0.0019
II 0.0064 0.0058 0.0039 0.0044 0.0053 0.0035 0.0030 0.0026 0.0023
II 0.0073 0.0064 0.0047 0.0053 0.0061 0.0043 0.0036 0.0031 0.0028

7. Concluding remarks

In this article, we considered the maximum likelihood, Bayesian and E-Bayesian estimates for the
parameter of Rayleigh distribution RD(θ) , using progressive type-II censored scheme. Based on
the results shown in Table1, we observe the following:

(i) Bayesian and E-Bayesian estimators perform much better than the maximum likelihood estima-
tor in terms of MSEs.

(ii) The MSE of the E-Bayesian estimates of θ less than the MSE of the Bayesian estimates, so
E-Bayesian estimators perform better than the Bayesian estimator.

(iii) The MSE of E-Bayesian estimates under LINEX loss function less than the MSE of E-Bayesian
estimates under squared error loss function, so E-Bayesian estimators under LINEX loss
function perform better than the E-Bayesian estimator squared error loss function.
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(iv) It is immediate to note that MSE of maximum likelihood, Bayesian and E-Bayesian estimates
decrease when n and m increases.

(v) From Table1, comparing the Schemes I and Schemes III, it is clear that the MSEs of the MLEs
and Bayes estimators for parameter θ are greater for the censoring Schemes III than the
censoring Schemes I. This may not be very surprising, because the expected duration of the
experiments is greater for censoring Schemes I than for the censoring Schemes III. Thus the
data obtained by the censoring Schemes I would be expected to provide more information
about the unknown parameter than the data obtained by censoring scheme Schemes III.
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