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The Kumaraswamy Inverse Weibull distribution has the ability to model failure rates that have unimodal shapes
and are quite common in reliability and biological studies. The three-parameter Kumaraswamy Inverse Weibull
distribution with decreasing and unimodal failure rate is introduced. We provide a comprehensive treatment
of the mathematical properties of the Kumaraswany Inverse Weibull distribution and derive expressions for its
moment generating function and the r-th generalized moment. Some properties of the model with some graphs
of density and hazard function are discussed. We also discuss a Bayesian approach for this distribution and an
application was made for a real data set.
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1. Introduction

In this paper we propose a new probability distribution to handle the problem of survival data.
Motivated by research developed in recent years, we introduce the Kumaraswany Inverse Weibull
distribution that includes several well known distributions used in survival analysis.

Recently, many authors have proposed new classes of distributions, which are modifications of
distribution functions which provide hazard ratios contemplating various shapes. We can cite for
example the Weibull exponential [6], which has also the hazard rate function with a unimodal form,
(see also [13]). [1] proposed a four-parameter distribution denoted generalized modified Weibull
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(GMW) distribution, [3] introduced and studied the tri-parametric inverse Weibull generalized dis-
tribution that possesses failure rate with unimodal, increasing and decreasing forms. [9] proposed a
distribution with four parameters, called beta generalized half normal distribution.

Underexplored in the literature and rarely used by statisticians, the Kumaraswamy distribution
[8] has a domain in the real interval (0,1). This property turns the Kumaraswamy distribution a
natural candidate to combine with other distributions to produce a more general one. Its cumulative
distribution function (cdf) is given by,

F (x;a,b) = 1− [1− xa]b , (1.1)

and its probability density function (pdf) is given by,

f (x;a,b) = abxa−1 [1− xa]b−1 , 0 < x < 1,

where a > 0 and b > 0. This density can be unimodal, increasing, decreasing or constant.
Recently, [2] proposed to use the Kumaraswamy to generalize other distributions. Considering

that a random variable X has distribution G, they suggest to apply the Kumarasawamy distribution
to G(x). Note that, since 0 < G(x)< 1 for any distribution function G, then evaluating Eq. (1.1) at
G(x) we obtain,

FG(x;a,b) = 1− [1−G(x)a]b. (1.2)

where FG is the cdf of the generalized Kumaraswamy-G distribution. Based on these ideas, we
consider the Inverse Weibull Distribution as a candidate for G, using Eq. (1.2). Then, performing
some adjustments and mathematical manipulations, we obtain the Kumaraswamy inverse Weibull
(Kum-IW) distribution.

The rest of the paper is organized as follows. In Section 2, we develop the Kum-IW distribu-
tion. Section 3 is devoted to describe basic properties of the distribution. Inference procedures via
maximum likelihood and Bayesian approaches are presented in Section 4. Section 5 is devoted to
analyze a real data set and in Section 6 we present some conclusions of this work.

2. Kumaraswamy inverse Weibull distribution

Let T a random variable with inverse Weibull distribution. Then its cdf can be written as,

G(t) = exp
[
−
(α

t

)β
]
, t > 0, (2.1)

where α > 0, β > 0, and its pdf is given by,

g(t) = βαβ t−(β+1) exp
[
−
(α

t

)β
]
.

Inserting the G function of Eq. (2.1) in Eq. (1.2) it follows that,

FG(t;a,b,α,β ) = 1−
{

1− exp
[
−a
(α

t

)β
]}b

. (2.2)

We note that the parameters a and α in (2.2) are not identifiable and we adopt the reparameterization
c = αa1/β so that the Kum-IW cdf is rewritten as,

FG(t;b,c,β ) = 1−
{

1− exp
[
−
(c

t

)β
]}b

, (2.3)
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where b > 0 and c > 0 are the shape and scale paremeters respectively. Accordingly, the Kum-IW
pdf is now given by,

fG(t;b,c,β ) = βbcβ t−(β+1) exp
[
−
(c

t

)β
]{

1− exp
[
−
(c

t

)β
]}b−1

. (2.4)

It can be easily seen that when b = 1 we obtain the pdf of the Inverse Weibull (IW) distrbution given
by,

g(t) = βαβ t−(β+1) exp
[
−
(α

t

)β
]
.

Finally, the corresponding survival and hazard functions are respectively given by,

SG(t;b,c,β ) =
{

1− exp
[
−
(c

t

)β
]}b

and hG(t;b,c,β ) =
βbcβ t−(β+1) exp

[
−
( c

t

)β
]

1− exp
[
−
( c

t

)β
] .

while the quantile function, Q(u), of the Kum-IW distribution is given by,

Q(u) = F−1(u;b,c,β ) = c(− log(1− (1−u)
1
b ))−

1
β

2.1. Some special classes of the Kum-IW

The following well known and new distributions are special sub-classes of the Kum-IW distribution.

• Kumaraswamy inverse Rayleigh distribution (Kum-IR)
If β = 2, the Kum-IW distribution reduces to the Kumaraswamy inverse Rayleigh dis-

tribution (Kum-IR). Then, with β = 2 the density function of Kum-IW is expressed by:

FG(t;b,c) = 1−
{

1− exp
[
−
(c

t

)2
]}b

,

where b > 0 is the shape parameter, and c > 0 is the scale parameter. Hence, the KiR
distribution has two parameters, and its pdf is given by

fG(t;b,c) = 2bc2t−3 exp
[
−
(c

t

)2
]{

1− exp
[
−
(c

t

)2
]}b−1

.

The corresponding survival and hazard functions are given respectively by,

SG(t;b,c) =
{

1− exp
[
−
(c

t

)2
]}b

and hG(t;b,c) =
2bc2t−3 exp

[
−
( c

t

)2
]

1− exp
[
−
( c

t

)2
] .

• Inverse Rayleigh distribution (IR)
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If β = 2 and b= 1, the Kum-IW distribution reduces to the inverse Rayleigh distribution
(Kum-IR). Then, with β = 2 and b = 1 the density function of Kum-IW is expressed by:

G(t) = exp
[
−
(α

t

)2
]
, t > 0,

where α > 0, and its pdf is

g(t) = 2α2t−3 exp
[
−
(α

t

)2
]
.

• Kumaraswamy inverse Exponential distribution (Kum-IE)
If β = 1, the Kum-IW distribution reduces to the Kumaraswamy inverse Exponential

distribution (Kum-IE). Then, with β = 1 the density function of Kum-IW is expressed by:

FG(t;b,c) = 1−
{

1− exp
[
−
(c

t

)]}b
,

where b > 0 is the shape parameter, and c > 0 is the scale parameter. Hence, the KIE
distribution has two parameters, and its pdf is given by

fG(t;b,c) = bct−2 exp
[
−
(c

t

)]{
1− exp

[
−
(c

t

)]}b−1
.

The corresponding survival and hazard functions are respectively

SG(t;b,c) =
{

1− exp
[
−
(c

t

)]}b
and hG(t;b,c) =

bct−2 exp
[
−
( c

t

)]
1− exp

[
−
( c

t

)] .

• Inverse Exponential distribution (IE)
If β = 1 and b = 1, the Kum-IW distribution reduces to the Inverse Exponential dis-

tribution (IE). Then, with β = 1 and b = 1 the density function of Kum-IW is expressed
by:

G(t) = exp
[
−
(

λ
t

)]
, t > 0,

where λ > 0 and its pdf is

g(t) = λ t−2 exp
[
−
(

λ
t

)]
.

3. Basic Properties

In this section we describe in detail some properties like expansions, moments, mean deviations,
Bonferroni and Lorenz curves, order statistics and entropies which might be useful in any applica-
tion of the distribution.
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Fig. 1. Kumaraswamy inverse Weibull density functions.
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Fig. 2. Kumaraswamy inverse Weibull survival functions.

3.1. Expansions for the distribution and density functions

We now give simple expansions for the cdf of the Kumaraswamy Inverse Weibull distribution. If
|x|< 1 and ψ > 0 is a non-integer real number, we have

(1− x)ψ =
∞

∑
i=0

(−1)i (ψ!)xi. (3.1)
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Fig. 3. Kumaraswamy inverse Weibull hazard functions.

If ψ is a positive integer, the series stops at i = ψ . Using expansion in Eq. (3.1) it follows that,

f (t;b,c,β ) = βbcβ t−(β+1)
∞

∑
i=0

(−1)i Γ(b)
(i!)Γ(b− i)

exp
[
−
(c

t

)β
(i+1)

]
. (3.2)

and

F (t;b,c,β ) = 1−
∞

∑
i=0

(−1)i Γ(b+1)
(i!)Γ(b+1− i)

exp
[
−
(

i
c
t

)β
]
.

Because the integrals involved in the computation of moments, Bonferroni and Lorenz curves, reli-
ability, Shannon and Rényi entropies and other inferential results do not have analytical solutions,
these expansions are necessary.

3.2. A general formula for the moments of the Kum-IW

We hardly need to emphasize the need and importance of the moments in any statistical analyses,
especially in applied work. Some of the most important features and characteristics of a distribution
can be studied using their moments (e.g. tendency, dispersion, skewness and kurtosis). If the random
variable T follows the Kum-IW distribution, its k-th moment about zero is given by,

E
(

tk
)
=

∫ ∞

0
tkβbcβ t−(β+1) exp

[
−
(c

t

)β
][

1− exp
[
−
(c

t

)β
]]b−1

dt

= bck
∞

∑
r=0

(−1)r Γ(b)
Γ(b− r)r!

(r+1)
k
β −1 Γ

(
1− k

β

)
.

The moment generating function M(z) of T for |z|< 1 is,

Mt (z) =

{
n

∑
k=0

zk

k!
bck

∞

∑
r=0

(−1)r Γ(b)
Γ(b− r)r!

(r+1)
k
β −1 Γ

(
1− k

β

)}
.
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Hence, for |z|< 1, the cumulative generating function of T is

K (z) = log

[
n

∑
k=0

∞

∑
r=0

[
zk

k!
bck (−1)r Γ(b)

Γ(b− r)r!
(r+1)

k
β −1 Γ

(
1− k

β

)]]
.

We note that it was necessary to use the expansions previously presented for the results of this
section.

3.3. Mean deviations

The amount of scattering in a population may be measured by all the absolute values of the devia-
tions from the mean or the median. If X is a random variable with Kum-IW distribution with mean
µ = E[X ] and median M, then the average deviation from the average and the average deviation to
the median are defined respectively by,

δ1(X) =
∫ ∞

0
|x−µ| f (x)dx and δ2(X) =

∫ ∞

0
|x−M| f (x)dx.

Using the density of extended Kum-IW and given that,

∫ ∞

µ
x f (x)dx = bc

∞

∑
r=0

(−1)rΓ(b)
Γ(b− r)r!

(
1

1+ r

) 1
β −1

γ

(
β −1

β
,

cβ

µβ (1+ r)

)
,

where γ(a,x) is the lower incomplete Gamma function, it follows that

δ1(X) = 2µF(µ)−2µ +2bc
∞

∑
r=0

(−1)rΓ(b)
Γ(b− r)r!

(
1

1+ r

) 1
β −1

γ

(
β −1

β
,

cβ

µβ (1+ r)

)
and

δ2(X) = 2µF(µ)−2µ +2bc
∞

∑
r=0

(−1)rΓ(b)
Γ(b− r)r!

(
1

1+ r

) 1
β −1

γ

(
β −1

β
,

cβ

Mβ (1+ r)

)
.

3.4. Bonferroni and Lorenz curves

Bonferroni and Lorenz curves are widely applied not only in economics to study income and
poverty, but also in other fields such as reliability, demography, insurance and medicine.
Let then µ = E(X) e q = F−1(p;θ), where F−1(.) is the inverse function of the cumulative function
of a random variable X. Bonferroni and Lorenz curves are defined by,

B(p) =
1

pµ

∫ q

0
x f (x)dx and L(p) =

1
µ

∫ q

0
x f (x)dx.

Then, using the expanded density,

∫ q

0
x f (x)dx = bc

∞

∑
r=0

(−1)rΓ(b)
Γ(b− r)r!

(
1

1+ r

) 1
β −1

Γ

(
β −1

β
,

cβ

qβ (1+ r)

)
,

where Γ(a,x) is the upper incomplete gamma function. Therefore, we have,
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• the Bonferroni curve which is given by:

B(p) =
bc
pµ

∞

∑
r=0

(−1)rΓ(b)
Γ(b− r)r!

(
1

1+ r

) 1
β −1

Γ

(
β −1

β
,

cβ

qβ (1+ r)

)
;

• the Lorenz curve which is given by:

L(p) =
bc
µ

∞

∑
r=0

(−1)rΓ(b)
Γ(b− r)r!

(
1

1+ r

) 1
β −1

Γ

(
β −1

β
,

cβ

qβ (1+ r)

)
.

3.5. Order statistics and Shannon entropy

Let T1:n ≤ T2:n ≤ ·· · ≤ Tn:n be the order statistics obtained from the Kum-IW distribution. The
random variable Tr:n, for r = 1, . . . ,n, denotes the r-th order statistic in a sample of size n. The pdf
of Tr:n written as,

fr:n(t) =Cr:nF(t)r−1 [1−F(t)]n−r f (t), t > 0,

where f (t) and F(t) are given by Eq. (2.4) and (2.3) and Cr:n = n!/[(r−1)!(n− r)!].
The k-th moment µ(k)

r:n of the rth order statistic is

µ(k)
r:n = E(T k

r:n) = tkCr:n

∞∫
0

[F(t)]r−1 [1−F(t)]n−r f (t)dt,

for k = 1,2, . . ., and 1 ≤ r ≤ n. Hence,

µ(k)
r:n =Cr:n

∫ 1

0
jn−r (1− j)n−1 d j.

and we obtain an expression for the moment given by,

E(T k
r:n) =Cr:nbcβ

∞

∑
j=0

∞

∑
i=0

(−1)i+ j Γ(bn−br+b j+b)
i! j!Γ(r− j)Γ(bn−br+b− i)

(i+1)
k
β −1 Γ

(
1− k

β

)
.

The Shannon entropy of a random variable T is defined as a measure of the quantity of infor-
mation. A certain message has more quantity of information the greater degree of uncertainty and
is defined mathematically by E{− log[ f (t)]}, where f (t) is the fdp of T . In particular, for a random
variable T which follows the Kum-IW distribution we have,

E {− log[ f (t)]} = − log
(

βbcβ
)
+b(β +1) log(c)

∞

∑
r=0

(−1)r Γ(b)
Γ(b− r)r!

1
(r+1)

−

1
β

∞

∑
r=0

(−1)r Γ(b)
Γ(b− r)r!

1
(r+1)

[γ − log(r+1)]+ cβ−1
∞

∑
r=0

(−1)r Γ(b)
Γ(b− r)r!

(r+1)
1
β −1 Γ

(
1− 1

β

)
+

(b+1)b
∞

∑
r=0

∞

∑
i=0

(−1)i+r Γ(b)Γ(b+1)
i!r!Γ(b− r)Γ(b+1− j)

( j+1)2 , j >−1 (3.3)

where γ =−
∫ ∞

0 log( j)exp{− j}d j is the approximate value of the Euler’s constant.
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3.6. Rényi entropy

The entropy of a random variable X with density function (3.2) measuring the uncertainty of the
variation. The Rényi entropy is given by,

Ir (ρ) =
1

1−ρ
log
{∫

f (x)ρ dx
}
.

where ρ > 0 and ρ ̸= 1.
In information theory, Rényi entropy generalizes the Shannon entropy. This form of entropy

is important especially in ecology and statistics, where it can be used as an index of diversity. In
quantum information, it can be used as a measure of entanglement. If X is a random variable and
follows the Kum-IW distribution, then the Rényi entropy is given by

Ir (ρ) =
1

1−ρ
log

{
β ρ−1bc1−ρ

∞

∑
i=0

(−1)i Γ(ρb−ρ +1)
(i!)Γ(ρb−ρ +1− i)

(r+ i)
1
β −ρ

(
1+ 1

β

)
Γ
(

ρ
β
+ρ − 1

β

)}
.

4. Inference for Censored Data

4.1. Maximum likelihood estimation

Let Ti be a random variable with Kum-IW distribution with parameter vector θ = (b,c,β ). The data
in survival analysis and reliability studies are generally censored. A very simple random censoring
mechanism that is often realistic is one in which each individual i is assumed to have a lifetime Ti

and a censoring time Ci, where Ti and Ci are independent random variables. Suppose the data set
consists of n independent observations ti = min(Ti,Ci) for i = 1, · · · ,n. The distribution of Ci does
not depend on any of the unknown parameters of Ti. Parametric inference for such data are usually
based on likelihood methods and their asymptotic theory. The censored log-likelihood l(θ) for the
model parameters is

ℓ(θ) = r log
(

βbcβ
)
− cβ ∑

i∈F

(
1
ti

)β
− (β +1)∑

i∈F
log(ti)+(b−1)∑

i∈F
log

[
1− exp

[
−
(

c
ti

)β
]]

+

b ∑
i∈C

log

[
1− exp

[
−
(

c
ti

)β
]]

, (4.1)

where F = [1,r] and C = [r+1,n]; still, C represents the censored data and F represents the failure
data.

The maximum likelihood estimate (MLE) θ̂ of θ is obtained by solving the nonlinear likelihood

equations Ub(θ) =
∂ℓ(θ)

∂b = 0, Uc(θ) =
∂ℓ(θ)

∂c = 0 and Uβ (θ) =
∂ℓ(θ)

∂β = 0. These equations cannot
be solved analytically and statistical software can be used to solve the equations numerically.

For interval estimation of b, c and β , and tests of hypotheses on these parameters, we must
obtain the 3×3 observed information matrix J(θ) which is given by,

J(θ) =

 Jbb (θ) Jbc (θ) Jbβ (θ)
Jcb (θ) Jcc (θ) Jcβ (θ)
Jβb (θ) Jβc (θ) Jββ (θ)

 ,
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Under conditions met for parameters obeying the parametric space and not considering the limits
of the same, the asymptotic distribution of

√
n(θ̂ −θ) is N3(0, I(θ)−1),

where I(θ) is the expected information matrix. This asymptotic behavior is valid if I(θ) is replaced
by J(θ̂), the observed information matrix evaluated at θ̂ . The asymptotic multivariate normal dis-
tribution N3(0,J(θ̂)−1) can be used to construct approximate confidence intervals and confidence
regions for the individual parameters and for the hazard and survival functions. The asymptotic nor-
mality is also useful for testing goodness of fit of the three parameters the Kum-IW distribution and
for comparing this distribution with some of its special submodels using one of the two well-known
asymptotically equivalent test statistics - namely, the likelihood ratio (LR) statistic and the Wald
and Rao score statistics.

4.2. Bayesian approach

Following the Bayesian paradigm, we need to complete the model specification by specifying a prior
distribution for the parameters. By Bayes Theorem, the posterior distribution is then proportional to
the product of the likelihood function by the prior density.

Subjetivism is the predominant philosophical foundation in Bayesian inference, although in
practice noninformative prior densities (built on some formal rule) are frequently used ( [7]).
Since the parameters in the Kum-IW distribution are all positive quantities and due to the flexi-
bility generated by the two-parameter Gamma distribution this is adopted as prior distribution. So,
b ∼ Gamma(m,w), c ∼ Gamma(a,s) and β ∼ Gamma(x, l).

Assuming independence among the prior densities, the posterior density is expressed by,

h(θ |t) ∝ bm+n−1ca+nβ−1β x+n−1 exp

[
−wb− sc− lβ − cβ

n

∑
i=1

t−β
i

]
 n

∏
i=1

t−β−1
i

{
1− exp

[
−
(

c
ti

)β
]}b−1

 . (4.2)

This joint density has no known analytical form but we can provide an approximate solution based
on the complete conditional distributions of b, c and β . These are given by the following expres-
sions,

h(b | c,β , t) ∝ bm+n−1 exp

[
−wb− cβ

n

∑
i=1

t−β
i

] n

∏
i=1

t−β−1
i

{
1− exp

[
−
(

c
ti

)β
]}b−1

 ,

h(c | b,β , t) ∝ ca+nβ−1 exp

[
−sc− cβ

n

∑
i=1

t−β
i

] n

∏
i=1

t−β−1
i

{
1− exp

[
−
(

c
ti

)β
]}b−1

 ,

h(β | b,c, t) ∝ β x+n−1 exp

[
−lβ − cβ

n

∑
i=1

t−β
i

] n

∏
i=1

t−β−1
i

{
1− exp

[
−
(

c
ti

)β
]}b−1

 .
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5. Application

In this section, we present estimation results for parameters of the Kum-IW distribution under a
Bayesian approach using a real data set. The commercial production of cattle meat in Brazil, which
usually comes from cattle of the Nelore race, seeks to optimize the process trying to obtain a time for
the cattle to reach the specific weight in the period from the birth until it weans. For a data set with
69 bulls of the Nelore race, the times (in days) until the animals reached the weight of 160kg relative
to the period from birth until it weans were observed. We then compared the classical Kaplan-Meyer
and Bayesian survival functions through two graphic methods.

We used Markov chain Monte Carlo (MCMC) simulation to estimate the parameters θ =

(b,c,β )T of the Kum-IW distribution. Using the expression for the log-likelihood ℓ(θ) and Gamma
priors for the parameters a routine was written for the package Winbugs (see [11]). The results
appear in Table 1 in terms of posterior mean, standard deviation (SD), median and 95% credible
intervals of the three parameter. Figure 4 show the trace plots of simulated parameter values and
estimates of marginal posterior densities.

Table 1. Results of the Bayesian approach to the Kum-IW distribution.

Parameter Mean SD 2.5% Median 97.5%
b 6.656 11.18 0.9829 3.82 29.76
c 177.5 19.18 154.9 172.8 227.5
β 8.231 2.917 3.84 7.812 15.01

One of the methods at our disposal to check if our model is well adjusted to the data consists
of a comparison of the survival function of the proposed parametric model with the Kaplan-Meier
estimator. Another method consists of sketching the survival function of the parametric model ver-
sus the Kaplan-Meier estimate for the survival function, if this curves is close to the straight line
y = x we will have a good adjustment (see Figure 5).

6. Conclusions

We worked out a three parameter lifetime distribution called the Kumaraswamy Inverse Weibull
(Kum-IW) distribution which extends Inverse Weibull distribution proposed and widely used in the
lifetime literature. The model is much more flexible than the inverse Weibull. The Kum-IW distri-
bution could have increasing, decreasing and unimodal hazard rates. We provide a mathematical
overview of this distribution including the densities of the order statistics, Rényi entropy, Shannon
entropy, Bonferroni and Lorenz curves and Mean deviations. Also, we derive an explicit algebraic
formula for the r-th moment, expressions for the order statistics, and the maximum likelihood esti-
mation for the censored data. The performance of the model was analized using real data sets where
the Kum-IW distribution performing very well and the estimation was given by Bayes method.
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Fig. 4. Trace plots of simulated parameter values of the Kumaraswamy inverse Weibull distribution.
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Fig. 5. (a) Comparison between survival functions generated by the Bayesian method and Kaplan-Meier estimator
described by plotting S(t) versus time. (b) Comparison between survival functions generated by the Bayesian method
described by plotting S(t) versus Kaplan-Meier estimate.

Journal of Statistical Theory and Applications, Vol. 16, No. 2 (June 2017) 248–260
___________________________________________________________________________________________________________

259



References
[1] Carrasco, J. F., Ortega, E. M. M., and Cordeiro, G. M. (2008). A generalized modified Weibull distri-

bution for lifetime modeling. Computational Statistics & Data Analysis, 53(2):450 – 462.
[2] Cordeiro, G. M. and de Castro, M. (2011). A new family of generalized distributions. Journal of Statis-

tical Computation and Simulation, 81(7):883–898.
[3] Gusmão, F. R. S., Ortega, E. M. M., and Cordeiro, G. M. (2011). The generalized inverse Weibull

distribution. Statistical Papers, 52:591–619.
[4] Gusmão, F. R. S., Ortega, E. M. M., and Cordeiro, G. M. (2012). Reply to the Letter to the Editor of M.

C. Jones. Statistical Papers, 53:252–254.
[5] Gupta, R.D., Kundu, D. (1999). Generalized exponential distribution. Australian and New Zealand

Journal of Statistics. 41(2):173–188.
[6] Mudholkar, G. S., Srivastava, D. K., and Freimer, M. (1995). The exponentiated Weibull family: A

reanalysis of the bus-motor-failure data. Technometrics, 37(4):436–445.
[7] Kass, R.E., Wasserman, L. (1996). The Selection of Priori Distributions by Formal Rules. Journal of

the American Statistical Association, 91: 1343–1370.
[8] Kumaraswamy, P. (1980). A generalized probability density function for double-bounded random pro-

cesses. Journal of Hydrology, 46(1?2):79 – 88.
[9] Pescim, R. R., Demétrio, C. G. B., Cordeiro, G. M., Ortega, E. M. M., and Urbano, M. R. (2010). The

beta generalized half-normal distribution. Computational Statistics & Data Analysis, 54(4):945–957.
[10] Pollard, W. E. (1986). Bayesian statistics for evaluation research An Introduction. Sage Publications

New Delhi, 241p.
[11] Spiegelhalter, D., Thomas, A., Best, N., Lunn, D. (2007). Winbugs user manual, Version 1.4.3.
[12] R Core Team (2012). R: A Language and Environment for Statistical Computing. R Foundation for

Statistical Computing, Vienna, Austria. ISBN: 3-900051-07-0.
[13] Xie, M. and Lai, C. D. (1996). Reliability analysis using an additive Weibull model with bathtub-shaped

failure rate function. Reliability Engineering & System Safety, 52(1):87 – 93.

Journal of Statistical Theory and Applications, Vol. 16, No. 2 (June 2017) 248–260
___________________________________________________________________________________________________________

260


