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Abstract  

 The present investigation is an attempt to estimate the population mean on current occasion in two-phase 
successive (rotation) sampling over two occasions. Utilizing information on two auxiliary variables one chain-type 
estimator has been proposed to estimate the population mean on the current occasion. Properties of the proposed 
estimator have been studied and its optimum replacement strategy is discussed. The proposed estimator has been 
compared with sample mean estimator when there is no matching and the natural optimum estimator, which is a 
linear combination of the means of the matched and unmatched portions of the sample on the current occasion. 
Results are demonstrated through empirical studies which are followed by suitable recommendations.  

Key Words: Two-phase; Successive sampling; Auxiliary variables; Chain - type; Exponential; Regression; Bias; 
Mean square error; Optimum replacement policy. 
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1. Introduction 

 There are many problems of social, demographic, industrial and agricultural surveys in which the various 
characters opt to change over time with respect to different parameters. Hence, a survey carried out on a 
single occasion will provide information about the characteristics of the surveyed population for the given 
occasion only, and cannot, of itself, give any information on (a) the nature or rate of change of the 
characteristics over different occasions, and (b) the average value of the characteristics over all occasions or 
for the most recent occasion. To meet these requirements, the same population is sampled repeatedly and the 
study variable is measured on each occasion, so that the development over time can be followed. For 
example, data on price of goods are collected monthly to determine the consumer price index and political 
opinion surveys are conducted at regular intervals to know the voters preference, etc. 
 Theory of successive sampling appears to have started with the work of Jessen (1942). In successive 
sampling, it is common practice to use the information collected on a previous occasion as auxiliary variable 
to improve the precision of the estimates at current occasion. Information on the character under study from 
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the sampled units on the preceding occasions can be utilized as auxiliary variable. Sen (1971) developed 
estimators for the population mean on the current occasion using information on two auxiliary variables 
available on previous occasion. Sen (1973) extended his work for several auxiliary variables. In many 
situations, information on an auxiliary variable may be readily available on the first as well as on the second 
occasion, for example, tonnage (or seat capacity) of each vehicle or ship is known in survey sampling of 
transportation, number of polluting industries and vehicles are known in environmental survey. Utilizing the 
auxiliary information on both the occasions, Feng and Zou (1997) and Biradar and Singh (2001), Singh 
(2005), Singh and Vishwakarma (2007), Singh and Priyanka (2008), Singh and Karna (2009) and Singh and 
Homa (2013) have proposed chain-type ratio and difference estimators, respectively, for estimating the 
population mean at second (current) occasion in two occasions successive sampling.  
 It is worth to be mentioned that all the above recent works are based on the assumption that the population 
means of the auxiliary variables are known, which may not often be the case. In such practical situations, it is 
more generously advisable to go for two-phase successive sampling. Two-phase sampling is a well-tested 
scheme to provide the estimates of unknown population parameters related to the auxiliary variables in first-
phase sample. Motivated with this argument and utilizing the information on two auxiliary variables, we have 
proposed one chain-type estimator under two-phase sampling to estimate the population mean at the second 
(current) occasion in two occasion successive sampling. The performances of proposed estimator have been 
demonstrated empirically.  

2. Formulation of the Estimator 

Consider a finite population 1 2 NU = (U , U , . . ., U ) of N units which has been sampled over two occasions. 
The character under study is denoted by x(y) on the first (second) occasion respectively. Assume that the 
information on the auxiliary variables z and w (stable over occasions) are readily available on both the 
occasions and are positively correlated to x and y on the first and second occasions respectively.  We also 
assume that the population mean of the auxiliary variable z is unknown while population mean of the 
auxiliary variable w be known. Let a sample of size n  is selected by simple random sample without 
replacement (SRSWOR) scheme on the first occasion from the above population U  and a random sub-
sample from the sample selected on the first occasion of m = nλ units is retained (matched) for its use on the 
second (current) occasion. Once again following SRSWOR scheme, a fresh preliminary (first-phase) sample 
of size u′  is drawn from the non-sampled units of the population and a second-phase sample of size 
u = (n - m) = nμ (u =  pu )′ is drawn from the first-phase (preliminary) sample. It is obvious that the sample 
size on the second occasion is also n. λ and μ ( λ + μ = 1) are the fractions of the matched and fresh samples 
respectively, on the second (current) occasion and p is a real scalar with  0  p  1.≤ ≤   
Hence onwards, we use the following notations:  
X, Y, Z and W : Population means of the variables x, y, z and w respectively. 

n m n u m u n u m u mx , x , y , y , y , z , z , z , z , w , w′ : Sample means of the respective variables based on the sample size 
shown in subscripts. 

yx yz xz yw, xw zwρ , ρ , ρ , ρ ρ , ρ :  Correlation coefficients between the variables shown in subscripts.  

( )
N

-12 2
x i

i = 1
S = N - 1 (x -X)∑ : Population mean square of the variable x.       

2 2 2
y, z wS  S ,  S : Population mean squares of the variables y, z and w respectively.          
2 2 2
z w ws (m), s (m),  s (u):  Sample mean squares of the respective variables shown in subscripts and based on the 

sample sizes indicated in the braces. 
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yw yzS , S  : Population covariance between the variables shown in subscripts. 

yw yw yzs (u), s (m), s (m): Sample covariance between the variables shown in subscripts and based on the sample 
of size m.  

yC : Coefficient of variation of the study variable y.  

yw yz ywb (u), b (m), b (m): Sample regression coefficients between the variables shown in subscripts and based 
on the sample sizes indicated in the braces. 

 To estimate the population mean Y on the second (current) occasion, two different estimators are 
considered. One estimator uT  is based on sample of size u = nμ  drawn afresh on the second occasion and the 
second estimator mT is based on the sample of size m(= nλ) common with both the occasions.  
Since, information on the variables y, z and w are available at sample level and the population mean of z is 
unknown, we define following two-phase chain ratio and regression type estimator   uT   as 

             

* u
u u

u

zT = y
z

′                                             (1) 

where ( )*
u u yw uy = y + b (u) W - w .         

In follow up standard practice of utilizing the information of previous occasion as auxiliary variable for 
improving the precision of estimates at the current occasion and motivated with the estimation procedures 
suggested by Singh and Vishwakarma (2007) which discussed exponential type structure for estimating 
population mean, we propose following chain exponential and regression type estimator based on the sample 
of size m (= nλ)  common with both the occasions as: 

              

* n m
m m

n m

x - xT = y exp ,
x + x

 
 
 

                                (2) 

where ( ) ( )*
m m yz n m yw my = y + b (m) z - z + b (m) W - w


   

Combining the estimators uT  and mT we have the final estimator of Y  as 

                  ( )u mT= ψT + 1- ψ  T                                      (3) 
where ψ  is an unknown real constant to be determined  so as to make the estimator T more precise.   

3. Bias and Mean Square Error of the Proposed Estimator T 

It can be found that uT and mT  are the chain-type ratio, exponential and regression type estimators and they 
are biased for Y.  Therefore, the resulting estimator T  defined in (3) is also a biased estimator of Y.  The bias 
( )B . and mean square error ( )M .  of the estimator T  up to the first-order of approximations are derived under 

large sample approximations as given below:  
( ) ( ) ( ) ( ) ( )u 1 m 2 n 3 m 4 u 5y = Y 1 + e ,       y = Y 1 + e ,      x = X 1 + e ,      x = X 1 + e ,       z = Z 1 + e ,  

( ) ( ) ( ) ( ) ( )n 6 m 7 u 8 n 9 m 10z =Z 1 + e ,       z =Z 1 + e ,       w =W 1 + e ,      w =W 1 + e ,      w =W 1+e  

( ) ( ) ( ) ( )2 2 2 2
yz yz 11 z z 12 yw yw 13 w w 14s (m)= S 1 + e , s (m) = S 1 + e , s (m)=S 1 + e ,  s (m)= S 1 + e ,  

( ) ( ) ( )2 2
u 15 yw yw 16 w w 17z =Z 1 + e ,  s (u) = S 1 + e ,  s (u) = S 1 + e .′  

Such that k kE(e ) = 0 and |e | < 1,  k = 1, 2, 3, . . ., 17.∀  
Under the above transformations uT and mT  take the following forms: 

Journal of Statistical Theory and Applications, Vol. 16, No. 2 (June 2017) 261–268
___________________________________________________________________________________________________________

263



 

 
 

    
( ) ( )( ){ }( )( )-1 -1

u 1 yw 8 16 17 15 5T = Y 1+ e - β We 1 + e 1 + e 1 + e 1 + e                                (4) 

   

( ) ( )( )( ) ( )( ){ }
( )

-1 -1
m 2 yz 6 7 11 12 yw 10 13 14

-1
3 4 3 4

T = Y 1+ e + β Z e  - e 1+e 1+e  - β We 1+ e 1+ e

e  - e e  + e          ×exp 1 + 
2 2

   
  

   
                       

(5) 

Thus, we have the following theorems. 

Theorem 3.1.  Bias of the estimator T  to the first order of approximations is obtained as 

                                                       
( ) ( ) ( ) ( )u mB T = ψB T  + 1- ψ B T                (6)

 
where     

          
( ) ( ){ } 0, 0, 0, 3 0, 1, 0, 22

u yz yw zw y yw 2
w yw

μ μ1 1 1B T =  - Y 1 - ρ  + Wβ ρ C  +   β  - 
u u u S S

  
    ′                        

(7)
  

and                                                                          

                   

( ) 0,0,3,0 0,1,2,02
m yx yz yz yw yw y yz 2

z yz

0,0,0,3 0,1,0,2
yw 2

w yw

μ μ1 1 3 1 1 1B T =  -  - Yρ + β Zρ  + β Wρ C  + β  - 
m n 8 2 2 2 S S

μ μ1                 - β  - .
m S S

      
             

 
  
 

        (8)
 

where
  ( ) ( ) ( ) ( )q r s t

q, r, s, tμ = E x - X y - Y z - Z w - W ; q  0, r 0, s 0, t 0 are integers.  ≥ ≥ ≥ ≥    

 
Proof. The bias of the estimator T   is given by

                                             ( ) ( ) ( ) ( )u mB T = E T- Y  = ψ E T -Y  + 1-ψ E T -Y                               (9) 

                                ( ) ( ) ( )u m= ψB T  + 1- ψ B T  
where   
            ( ) ( )u uB T = E T - Y and ( ) ( )m mB T = E T - Y .  

Using the expressions of the estimators uT and mT derived in equations (4)-(5) and taking expectations after 
expanding the terms binomially up to -1o(n ) , we have the expression of bias of the estimator T  as given in 
equation (6).  

Theorem 3.2. Mean square error of the estimator T  to the first order of approximations is obtained as   
            ( ) ( ) ( ) ( )22

u mM T = ψ M T + 1- ψ M T                                       (10) 

where   

                 ( ) ( ) ( )2 2 2
u yw y yz yw zw y

1 1 1M T = 1 - ρ S  +  - 1 - 2ρ  + 2ρ ρ S ,
u u u

 
 ′ 

                         (11) 
and  

         
( ) 2 2

m yw yx yz yw zw y
1 1 1 1 1M T =  -   ρ  +  -  - ρ + 2ρ ρ ρ S .
m n m n 4

   
   

   
                        (12) 
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Proof. It is clear that mean square error of T  is given by 
                 ( ) ( ) ( ) ( ) 22

u mM T E T-Y E ψ T -Y + 1- ψ  T -Y    = =                            
(13) 

                                     ( ) ( ) ( ) ( ) ( )( )22
u m u m= ψ M T + 1- ψ M T + 2ψ 1- ψ E T -Y T -Y 

   

where  
              ( ) 2

u uM T = E T - Y    and ( ) 2

m mM T = E T - Y   .
 

Using the expressions given in equations (4)-(5) and taking expectations up to -1o(n ), we have obtained the 
expression of mean square error of the estimator T as given in equation (10).  
 It should be noted that the estimators uT  and mT are based on two non-overlapping samples of size u and 

m respectively. Therefore, their covariance type terms i.e. ( )( )u mE T - Y T - Y 
  is of order -1N ,  hence for 

large population size, it is ignored.  

Remark 3.1. The above results are derived under the following assumptions: 
(i) Population size is sufficiently large (i.e. N →∞ ), therefore finite population corrections  (f. p. c) are 
ignored.  
(ii) Since ( )y, x are the same variables over first and second (current) occasion respectively. So we have 
considered yz xz"ρ = ρ "  and yw xw"ρ = ρ ".  These are intuitive assumptions, which are also considered by Cochran 
(1977) and Feng and Zou (1997). 
(iii) Considering the stability nature (Reddy 1978) of the coefficient of variation and following the work of 
Cochran (1977) and Feng and Zou (1997), the coefficients of variation of y, x, z and w are taken to be 
approximately equal. 

4. Minimum Mean Square Error of the Proposed Estimator  

Since, mean square error of the estimator T   derived in equation (10) is a function of unknown constant ψ,   
therefore, it could be minimized with respect to ψ  and subsequently optimum value of  ψ  is derived as 

 

( )
( ) ( )

m
opt

u m

M T
ψ = 

M T + M T
  (14) 

 Substituting the value of optψ  in equation (10), we get the optimum mean square error of the estimator T as  

 
( ) ( ) ( )

( ) ( )
u m

opt
u m

M T .M T
M T = 

M T + M T
  (15)

 Again, substituting the findings from equations (11) and (12) in equations (14) and (15), we have the 
optimum values of ψ  and ( )M T as  

 

( ) ( ){ }
( ) ( )

2 2
yw yw

opt 2 2 2
yw yw

μ μ A+ ρ + 1 - ρ
ψ = 

μ A + ρ  + μ 1 - ρ  - A  + A′ ′
 (16)  

and 

 
( )

( ) ( ){ }
( ) ( )

2 22
3 yw ywy

opt 2 2 2
yw yw

A μ A+ ρ + 1 - ρS
M T =  

n μ A + ρ  + μ 1 - ρ  - A  + A

′

′ ′
  (17) 
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where   

  
yx yz yw zw

1A=  - ρ  + 2ρ ρ ρ
4

  and  ( ) ( )( )2
yw yz yw zwA  = 1 - ρ  + 1 - p 1 - 2ρ  + 2ρ ρ′ . 

5. Optimum Replacement Strategy for the estimator T 

To determine the optimum values of μ (fraction of samples to be taken afresh at second occasion) so that 
population mean Y  may be estimated with maximum precision, we minimize the mean square error of the 
estimator T given in equations (17) with respect to μ which result in quadratic equations in μ as  The 
respective equations in μ  are obtained as: 

          ( ) ( )( ) ( ) ( )2 22 2 2 2 2
yw yw yw ywμ A+ ρ + 2μ A + ρ 1 - ρ  + 1 - ρ  - A A + 1  = 0′                    (18) 

 Solving equation (18), we get solutions of μ  say μ̂.  While choosing the values of μ̂ , it should be 
remembered that  ˆ0  μ 1≤ ≤  and if two such admissible values of μ̂  are obtained, the lowest one will be the 
chosen, as this indicate to have same mean square error by replacing only the  lowest fraction of total sample 
size which reduces the cost of survey. All others values of μ̂  are inadmissible. Substituting admissible values 

of μ̂  say (o)μ  into the equations (17), we have the optimum value of the mean square error of the proposed 
estimator T as  

       
( ) ( ) ( ){ }

( ) ( )
(o) 2 22

yw ywy(o)
(o)2 2 (o) 2

yw yw

A μ A+ ρ + 1 - ρS
M T =  .

n μ A + ρ  + μ 1 - ρ  - A  + A

′

′ ′
                         (19) 

6. Efficiency Comparisons  

The percent relative efficiencies of T with respect to (i) ny , when there is no matching and (ii) 
* *

u mŶ= φ y +(1- φ )y ,′  when no auxiliary information was used at any occasion, where m m yx n my = y + β (x - x ),′  

have  been  obtained for different choices of correlation coefficients yxρ , yzρ , ywρ  and zwρ .  Since ny and Ŷ  

are unbiased estimators of Y,  following on the line of Sukhatme et al. (1984), the variance of ny and the 

optimum variance of Ŷ  for large N (i.e., N →∞ ) are, respectively, given by  

                                             
2
y

n
S

V(y )= 
n

                                                (20) 

and              ( )
2
y2

opt yx
SˆV(Y) = 1+ 1- ρ
2n

 
  

.                                    (21) 

For different choices of different choices of yxρ , yzρ , ywρ  and zwρ and p = 0.8, Table 1 show the optimum 

(admissible) values of  μ  and percent relative efficiencies of  (1)E  and  (2)E  of  the proposed estimator T  

with   respect   to  the estimators ny  and Ŷ  respectively, where  

                                         

(1) n
(o)

V(y )E = ×100
M(T )

   and   
( )

opt(2)
(o)

ˆV(Y)
E = ×100

M T
.                               (22)   
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Table  1.  Optimum values of  μ  and percent relative efficiencies of  T  with respect ny and Ŷ.  

yxρ  0.3 

yzρ  0.5 0.7 0.9 

ywρ  
zwρ  (o)μ  (1)E  (2)E  (o)μ  (1)E  (2)E  (o)μ  (1)E  (2)E  

 
0.6 

0.5 0.5487 118.4985 115.7694 0.4455 122.9630 120.1312 0.3594 127.6532 124.7133 
0.7 0.5646 111.2579 108.6955 0.4656 114.4612 111.8252 0.3859 117.9620 115.2453 
0.9 0.5757 104.8251 102.4110 0.4790 107.0070 104.5426 0.4030 109.5171 106.9948 

 
0.7 

0.5 
0.7 
0.9 

0.5180 132.1281 129.0851 0.4258 138.0797 134.8996 0.3457 144.9118 141.5745 
0.5358 121.9305 119.1224 0.4458 125.9785 123.0771 0.3708 130.8197 127.8068 
0.5488 113.1433 110.5375 0.4597 115.7440 113.0784 0.3876 119.0599 116.3179 

 
0.8 

0.5 
0.7 
0.9 

0.4827 154.5666 151.0069 0.3957 164.0741 160.2954 0.3171 176.1539 172.0970 
0.5035 139.0897 135.8865 0.4184 145.2270 141.8823 0.3449 153.2425 149.7132 
0.5193 126.3475 123.4376 0.3957 164.0741 160.2954 0.3642 135.3639 132.2464 

0.9 0.5 0.4378 196.4361 191.9121 0.3802 181.1432 176.9714 0.2662 247.4658 241.7666 
0.7 0.4645 169.1720 165.2759 0.4018 155.4822 151.9014 0.3044 198.6894 194.1135 
0.9 0.4848 148.4859 145.0662 0.4018 155.4822 151.9014 0.3306 165.8929 162.0724 

yxρ  0.5
 

yzρ  0.5 0.7 0.9 

ywρ  zwρ  (o)μ  (1)E  (2)E  (o)μ  (1)E  (2)E  (o)μ  (1)E  (2)E  

 
0.6 

0.5 0.6178 124.0747 115.7633 0.4754 128.7259 120.1029 0.3689 133.2168 124.2929 
0.7 0.6270 115.9613 108.1933 0.4971 119.2366 111.2493 0.4017 122.5553 114.3456 
0.9 0.6320 108.8527 101.5610 0.5093 111.0223 103.5853 0.4203 113.3400 105.7476 

 
0.7 

0.5 
0.7 
0.9 

0.5688 138.5016 129.2237 0.4530 144.5393 134.8570 0.3590 151.2145 141.0851 
0.5831 127.1487 118.6314 0.4731 131.1499 122.3646 0.3868 135.8008 126.7039 
0.5925 117.4936 109.6230 0.4857 119.9679 111.9316 0.4039 123.0670 114.8231 

 
0.8 

0.5 
0.7 
0.9 

0.5232 162.2710 151.4009 0.4202 171.8709 160.3577 0.3310 183.9146 171.5946 
0.5418 145.1570 135.4334 0.4423 151.1863 141.0587 0.3601 159.0415 148.3878 
0.5549 131.2401 122.4487 0.4573 134.8183 125.7872 0.3791 139.8265 130.4599 

0.9 0.5 0.4716 206.7612 192.9108 0.3719 227.5361 212.2941 0.2791 258.8554 241.5154 
0.7 0.4966 176.8126 164.9684 0.4013 188.7437 176.1002 0.3181 206.3583 192.5349 
0.9 0.5149 154.3512 144.0116 0.4216 161.1117 150.3192 0.3440 171.3672 159.8877 

yxρ  0.7
 

yzρ  0.5 0.7 0.9 

ywρ  
zwρ  (o)μ  (1)E  (2)E  (o)μ  (1)E  (2)E  (o)μ  (1)E  (2)E  

 
0.6 

0.5 0.7797 130.0016 111.4206 0.5217 135.6129 116.2299 0.3749 139.7798 119.8012 
0.7 0.7433 120.9888 103.6960 0.5426 124.7848 106.9495 0.4203 127.8775 109.6001 
0.9 0.7243 113.1568 * 0.5506 115.5945 * 0.4413 117.6887 100.8676 

 
0.7 

0.5 
0.7 
0.9 

0.6535 145.8406 124.9958 0.4904 152.2245 130.4672 0.3737 158.6321 135.9591 
0.6545 133.0258 114.0127 0.5091 137.1349 117.5344 0.4059 141.5283 121.2999 
0.6541 122.3177 104.8350 0.5187 124.7584 106.9269 0.4232 127.5873 109.3515 

 
0.8 

0.5 
0.7 
0.9 

0.5811 171.3503 146.8594 0.4518 181.1250 155.2370 0.3474 193.0193 165.4314 
0.5935 152.1158 130.3741 0.4722 158.0624 135.4708 0.3779 165.6724 141.9931 
0.6013 136.7424 117.1980 0.4847 140.1146 120.0882 0.5317 149.6742 128.2814 

0.9 0.5 0.5164 219.0699 187.7586 0.3990 240.3195 205.9710 0.4909 300.3734 257.4415 
0.7 0.5376 185.6534 159.1182 0.4267 197.5022 169.2735 0.5361 236.9157 203.0537 
0.9 0.5522 160.9918 137.9814 0.4450 167.4598 143.5250 0.5430 192.2132 164.7404 

Note: * indicates no gain. 
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7. Conclusions 

The following conclusions can be read-out from the Table 1.  
(a) For fixed values of yxρ , zwρ and yzρ , , the values of (1)E  and (2)E are increasing while the values of (o)μ  is 
decreasing with increasing choices of ywρ , except when  yxρ  = 0.7 and yzρ = 0.9. This behaviour is highly 
desirable, since, it concludes that if highly correlated auxiliary variable is available, it pays in terms of 
enhance precision of estimates as well as reduces the cost of survey.   
(b) For the fixed values of values of zwρ , ywρ  and yxρ , the values of (1)E  and (2)E are increasing while the 

values of (o)μ  is decreasing with increasing choices of yzρ .  This pattern is also highly desirable  as explained 
in (a).   
(c) For fixed values of zwρ , ywρ  and yzρ ,  the values (o)μ  and (1)E are increasing while the values of  (2)E are 

decreasing with the increasing trends of yxρ . This behavior indicates that more the value of yxρ  more the 
fraction of fresh sample is required at current occasion.   
(d)  The minimum value of (o)μ  is 0.2662, which indicates that only 26.62 percent of the total sample size is 
to be replaced at the second (current) occasion for the corresponding choices of correlations.  
 From the above analysis, we may conclude that the proposed estimator is highly rewarding in terms of 
precision as well as in reducing the cost of the surveys. This is an agreement with the principle of 
optimization of sample survey. Hence, the proposed estimators may be recommended to the survey 
statisticians for their real life applications. 
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