

Efficient Rotation Pattern in Two - Phase Sampling

A. Bandyopadhyay

Department of Mathematics, Asansol Engineering College, Asansol–713305, India arnabbandyopadhyay4@gmail.com

G. N Singh

Department of Applied Mathematics, Indian School of Mines, Dhanbad-826004, India gnsingh_ism@yahoo.com

Received 12 September 2015

Accepted 17 May 2016

Abstract

The present investigation is an attempt to estimate the population mean on current occasion in two-phase successive (rotation) sampling over two occasions. Utilizing information on two auxiliary variables one chain-type estimator has been proposed to estimate the population mean on the current occasion. Properties of the proposed estimator have been studied and its optimum replacement strategy is discussed. The proposed estimator has been compared with sample mean estimator when there is no matching and the natural optimum estimator, which is a linear combination of the means of the matched and unmatched portions of the sample on the current occasion. Results are demonstrated through empirical studies which are followed by suitable recommendations.

Key Words: Two-phase; Successive sampling; Auxiliary variables; Chain - type; Exponential; Regression; Bias; Mean square error; Optimum replacement policy.

2000 Mathematics Subject Classification: 62D05

1. Introduction

There are many problems of social, demographic, industrial and agricultural surveys in which the various characters opt to change over time with respect to different parameters. Hence, a survey carried out on a single occasion will provide information about the characteristics of the surveyed population for the given occasion only, and cannot, of itself, give any information on (a) the nature or rate of change of the characteristics over different occasions, and (b) the average value of the characteristics over all occasions or for the most recent occasion. To meet these requirements, the same population is sampled repeatedly and the study variable is measured on each occasion, so that the development over time can be followed. For example, data on price of goods are collected monthly to determine the consumer price index and political opinion surveys are conducted at regular intervals to know the voters preference, etc.

Theory of successive sampling appears to have started with the work of Jessen (1942). In successive sampling, it is common practice to use the information collected on a previous occasion as auxiliary variable to improve the precision of the estimates at current occasion. Information on the character under study from

the sampled units on the preceding occasions can be utilized as auxiliary variable. Sen (1971) developed estimators for the population mean on the current occasion using information on two auxiliary variables available on previous occasion. Sen (1973) extended his work for several auxiliary variables. In many situations, information on an auxiliary variable may be readily available on the first as well as on the second occasion, for example, tonnage (or seat capacity) of each vehicle or ship is known in survey sampling of transportation, number of polluting industries and vehicles are known in environmental survey. Utilizing the auxiliary information on both the occasions, Feng and Zou (1997) and Biradar and Singh (2001), Singh (2005), Singh and Vishwakarma (2007), Singh and Priyanka (2008), Singh and Karna (2009) and Singh and Homa (2013) have proposed chain-type ratio and difference estimators, respectively, for estimating the population mean at second (current) occasion in two occasions successive sampling.

It is worth to be mentioned that all the above recent works are based on the assumption that the population means of the auxiliary variables are known, which may not often be the case. In such practical situations, it is more generously advisable to go for two-phase successive sampling. Two-phase sampling is a well-tested scheme to provide the estimates of unknown population parameters related to the auxiliary variables in first-phase sample. Motivated with this argument and utilizing the information on two auxiliary variables, we have proposed one chain-type estimator under two-phase sampling to estimate the population mean at the second (current) occasion in two occasion successive sampling. The performances of proposed estimator have been demonstrated empirically.

2. Formulation of the Estimator

Consider a finite population $U = (U_1, U_2, ..., U_N)$ of N units which has been sampled over two occasions. The character under study is denoted by x(y) on the first (second) occasion respectively. Assume that the information on the auxiliary variables z and w (stable over occasions) are readily available on both the occasions and are positively correlated to x and y on the first and second occasions respectively. We also assume that the population mean of the auxiliary variable z is unknown while population mean of the auxiliary variable w be known. Let a sample of size n is selected by simple random sample without replacement (SRSWOR) scheme on the first occasion from the above population U and a random subsample from the sample selected on the first occasion of $m = n\lambda$ units is retained (matched) for its use on the second (current) occasion. Once again following SRSWOR scheme, a fresh preliminary (first-phase) sample of size u' is drawn from the non-sampled units of the population and a second-phase sample of size $u = (n - m) = n\mu (u = pu')$ is drawn from the first-phase (preliminary) sample. It is obvious that the sample size on the second occasion is also n. λ and μ ($\lambda + \mu = 1$) are the fractions of the matched and fresh samples respectively, on the second (current) occasion and p is a real scalar with $0 \le p \le 1$.

 \overline{X} , \overline{Y} , \overline{Z} and \overline{W} : Population means of the variables x, y, z and w respectively.

 $\overline{x}_n, \overline{x}_m, \overline{y}_n, \overline{y}_u, \overline{y}_n, \overline{z}_u, \overline{z}_n, \overline{z}_u, \overline{z}_m, \overline{w}_u, \overline{w}_m$: Sample means of the respective variables based on the sample size shown in subscripts.

 $\rho_{yx}, \rho_{yz}, \rho_{xz}, \rho_{xw}, \rho_{zw}$: Correlation coefficients between the variables shown in subscripts.

 $S_x^2 = (N - 1)^{-1} \sum_{i=1}^{N} (x_i - \overline{X})^2$: Population mean square of the variable x.

 $S_{y_{z}}^{2}$, S_{z}^{2} , S_{w}^{2} : Population mean squares of the variables y, z and w respectively.

 $s_z^2(m)$, $s_w^2(m)$, $s_w^2(u)$: Sample mean squares of the respective variables shown in subscripts and based on the sample sizes indicated in the braces.

 S_{vw} , S_{vz} : Population covariance between the variables shown in subscripts.

 $s_{yw}(u)$, $s_{yw}(m)$, $s_{yz}(m)$: Sample covariance between the variables shown in subscripts and based on the sample of size m.

 C_y : Coefficient of variation of the study variable y.

 $b_{yw}(u)$, $b_{yz}(m)$, $b_{yw}(m)$: Sample regression coefficients between the variables shown in subscripts and based on the sample sizes indicated in the braces.

To estimate the population mean \overline{Y} on the second (current) occasion, two different estimators are considered. One estimator T_u is based on sample of size $u = n\mu$ drawn afresh on the second occasion and the second estimator T_m is based on the sample of size $m(=n\lambda)$ common with both the occasions.

Since, information on the variables y, z and w are available at sample level and the population mean of z is unknown, we define following two-phase chain ratio and regression type estimator T_{μ} as

$$\Gamma_{u} = \overline{y}_{u}^{*} \frac{\overline{z}_{u'}}{\overline{z}_{u}}$$
⁽¹⁾

where $\overline{y}_{u}^{*} = \overline{y}_{u} + b_{yw}(u) (\overline{W} - \overline{w}_{u}).$

In follow up standard practice of utilizing the information of previous occasion as auxiliary variable for improving the precision of estimates at the current occasion and motivated with the estimation procedures suggested by Singh and Vishwakarma (2007) which discussed exponential type structure for estimating population mean, we propose following chain exponential and regression type estimator based on the sample of size m (= $n\lambda$) common with both the occasions as:

$$\Gamma_{\rm m} = \overline{y}_{\rm m}^{*} \exp\left(\frac{\overline{x}_{\rm n} - \overline{x}_{\rm m}}{\overline{x}_{\rm n} + \overline{x}_{\rm m}}\right),\tag{2}$$

where $\overline{y}_{m}^{*} = \overline{y}_{m} + b_{yz}(m) (\overline{z}_{n} - \overline{z}_{m}) + b_{yw}(m) (\overline{W} - \overline{w}_{m})$

Combining the estimators T_u and T_m we have the final estimator of \overline{Y} as

$$T = \psi T_{u} + (1 - \psi) T_{m}$$
(3)

where ψ is an unknown real constant to be determined so as to make the estimator T more precise.

3. Bias and Mean Square Error of the Proposed Estimator T

It can be found that T_u and T_m are the chain-type ratio, exponential and regression type estimators and they are biased for \overline{Y} . Therefore, the resulting estimator T defined in (3) is also a biased estimator of \overline{Y} . The bias B(.) and mean square error M(.) of the estimator T up to the first-order of approximations are derived under large sample approximations as given below:

$$\begin{split} &\overline{y}_{u} = \overline{Y} \big(1 + e_{1} \big), \quad \overline{y}_{m} = \overline{Y} \big(1 + e_{2} \big), \quad \overline{x}_{n} = \overline{X} \big(1 + e_{3} \big), \quad \overline{x}_{m} = \overline{X} \big(1 + e_{4} \big), \quad \overline{z}_{u} = \overline{Z} \big(1 + e_{5} \big), \\ &\overline{z}_{n} = \overline{Z} \big(1 + e_{6} \big), \quad \overline{z}_{m} = \overline{Z} \big(1 + e_{7} \big), \quad w_{u} = \overline{W} \big(1 + e_{8} \big), \quad \overline{w}_{n} = \overline{W} \big(1 + e_{9} \big), \quad \overline{w}_{m} = \overline{W} \big(1 + e_{10} \big) \\ &s_{yz}(m) = S_{yz} \big(1 + e_{11} \big), s_{z}^{2}(m) = S_{z}^{2} \big(1 + e_{12} \big), s_{yw}(m) = S_{yw} \big(1 + e_{13} \big), \ s_{w}^{2}(m) = S_{w}^{2} \big(1 + e_{14} \big), \\ &\overline{z}_{u'} = \overline{Z} \big(1 + e_{15} \big), \ s_{yw}(u) = S_{yw} \big(1 + e_{16} \big), \ s_{w}^{2}(u) = S_{w}^{2} \big(1 + e_{17} \big). \\ & \text{Such that } E(e_{k}) = 0 \text{ and } |e_{k}| < 1, \ \forall \ k = 1, 2, 3, \ldots, 17. \end{split}$$

Under the above transformations T_u and T_m take the following forms:

$$T_{u} = \left\{ \overline{Y} (1 + e_{1}) - \beta_{yw} \overline{W} e_{8} (1 + e_{16}) (1 + e_{17})^{-1} \right\} (1 + e_{15}) (1 + e_{5})^{-1}$$
(4)

$$T_{m} = \left\{ \overline{Y} (1+e_{2}) + \beta_{yz} \overline{Z} (e_{6} - e_{7}) (1+e_{11}) (1+e_{12})^{-1} - \beta_{yw} \overline{W} e_{10} (1+e_{13}) (1+e_{14})^{-1} \right\}$$

$$\left\{ (e_{3} - e_{4}) (\dots - e_{3} + e_{4})^{-1} \right\}$$
(5)

$$\times \exp\left\{\frac{\left(\frac{e_3 - e_4}{2}\right)}{2}\left(1 + \frac{e_3 + e_4}{2}\right)\right\}$$

Thus, we have the following theorems.

Theorem 3.1. Bias of the estimator T to the first order of approximations is obtained as

$$B(T) = \psi B(T_u) + (1 - \psi) B(T_m)$$
(6)

where

$$B(T_{u}) = \left(\frac{1}{u} - \frac{1}{u'}\right) \left\{ \overline{Y}(1 - \rho_{yz}) + \overline{W}\beta_{yw}\rho_{zw} \right\} C_{y}^{2} + \frac{1}{u} \beta_{yw} \left(\frac{\mu_{0,0,0,3}}{S_{w}^{2}} - \frac{\mu_{0,1,0,2}}{S_{yw}}\right)$$
(7)

and

$$B(T_{m}) = \left(\frac{1}{m} - \frac{1}{n}\right) \left\{ \left(\frac{3}{8} - \frac{1}{2}\overline{Y}\rho_{yx} + \frac{1}{2}\beta_{yz}\overline{Z}\rho_{yz} + \frac{1}{2}\beta_{yw}\overline{W}\rho_{yw}\right)C_{y}^{2} + \beta_{yz}\left(\frac{\mu_{0,0,3,0}}{S_{z}^{2}} - \frac{\mu_{0,1,2,0}}{S_{yz}}\right) \right\} - \frac{1}{m}\beta_{yw}\left(\frac{\mu_{0,0,0,3}}{S_{w}^{2}} - \frac{\mu_{0,1,0,2}}{S_{yw}}\right).$$

$$(8)$$

where $\mu_{q,r,s,t} = E\left[\left(x - \overline{X}\right)^{q}\left(y - \overline{Y}\right)^{r}\left(z - \overline{Z}\right)^{s}\left(w - \overline{W}\right)^{t}\right]; q \ge 0, r \ge 0, s \ge 0, t \ge 0$ are integers. **Proof.** The bias of the estimator T is given by

$$B(T) = E[T - \overline{Y}] = \psi E(T_u - \overline{Y}) + (1 - \psi) E(T_m - \overline{Y})$$

$$= \psi B(T_u) + (1 - \psi) B(T_m)$$
(9)

where

$$B(T_u) = E(T_u - \overline{Y}) \text{ and } B(T_m) = E(T_m - \overline{Y})$$

Using the expressions of the estimators T_u and T_m derived in equations (4)-(5) and taking expectations after expanding the terms binomially up to $o(n^{-1})$, we have the expression of bias of the estimator T as given in equation (6).

Theorem 3.2. Mean square error of the estimator T to the first order of approximations is obtained as $M(T) = \psi^{2}M(T_{u}) + (1 - \psi)^{2}M(T_{m})$ (10)

where

$$M(T_{u}) = \frac{1}{u} (1 - \rho_{yw}^{2}) S_{y}^{2} + (\frac{1}{u} - \frac{1}{u'}) (1 - 2\rho_{yz} + 2\rho_{yw}\rho_{zw}) S_{y}^{2}, \qquad (11)$$

$$M(T_{m}) = \left\{ \frac{1}{m} - \frac{1}{n} \rho_{yw}^{2} + \left(\frac{1}{m} - \frac{1}{n} \right) \left(\frac{1}{4} - \rho_{yx} + 2\rho_{yz}\rho_{yw}\rho_{zw} \right) \right\} S_{y}^{2}.$$
 (12)

Proof. It is clear that mean square error of T is given by

$$M(T) = E[T-\overline{Y}]^{2} = E[\psi(T_{u}-\overline{Y}) + (1-\psi) (T_{m}-\overline{Y})]^{2}$$

$$= \psi^{2}M(T_{u}) + (1-\psi)^{2}M(T_{m}) + 2\psi(1-\psi)E[(T_{u}-\overline{Y})(T_{m}-\overline{Y})]$$
(13)

where

$$M(T_u) = E[T_u - \overline{Y}]^2$$
 and $M(T_m) = E[T_m - \overline{Y}]^2$.

Using the expressions given in equations (4)-(5) and taking expectations up to $o(n^{-1})$, we have obtained the expression of mean square error of the estimator T as given in equation (10).

It should be noted that the estimators T_u and T_m are based on two non-overlapping samples of size u and m respectively. Therefore, their covariance type terms i.e. $E\left[\left(T_u - \overline{Y}\right)\left(T_m - \overline{Y}\right)\right]$ is of order N⁻¹, hence for large population size, it is ignored.

Remark 3.1. The above results are derived under the following assumptions:

(i) Population size is sufficiently large (i.e. $N \rightarrow \infty$), therefore finite population corrections (f. p. c) are ignored.

(ii) Since (y, x) are the same variables over first and second (current) occasion respectively. So we have considered " $\rho_{yz} = \rho_{xz}$ " and " $\rho_{yw} = \rho_{xw}$ ". These are intuitive assumptions, which are also considered by Cochran (1977) and Feng and Zou (1997).

(iii) Considering the stability nature (Reddy 1978) of the coefficient of variation and following the work of Cochran (1977) and Feng and Zou (1997), the coefficients of variation of y, x, z and w are taken to be approximately equal.

4. Minimum Mean Square Error of the Proposed Estimator

Since, mean square error of the estimator T derived in equation (10) is a function of unknown constant ψ , therefore, it could be minimized with respect to ψ and subsequently optimum value of ψ is derived as

$$\psi_{\text{opt}} = \frac{M(T_{\text{m}})}{M(T_{\text{u}}) + M(T_{\text{m}})}$$
(14)

Substituting the value of ψ_{opt} in equation (10), we get the optimum mean square error of the estimator T as

$$M(T)_{opt} = \frac{M(T_u).M(T_m)}{M(T_u) + M(T_m)}$$
(15)

Again, substituting the findings from equations (11) and (12) in equations (14) and (15), we have the optimum values of ψ and M(T) as

$$\psi_{\rm opt} = \frac{\mu \left\{ \mu \left(A + \rho_{\rm yw}^2 \right) + \left(1 - \rho_{\rm yw}^2 \right) \right\}}{\mu^2 \left(A + \rho_{\rm yw}^2 \right) + \mu \left(1 - \rho_{\rm yw}^2 - A' \right) + A'}$$
(16)

and

$$M(T)_{opt} = \frac{S_y^2}{n} \frac{A' \left\{ \mu_3 \left(A + \rho_{yw}^2 \right) + \left(1 - \rho_{yw}^2 \right) \right\}}{\mu^2 \left(A + \rho_{yw}^2 \right) + \mu \left(1 - \rho_{yw}^2 - A' \right) + A'}$$
(17)

where

$$A = \frac{1}{4} - \rho_{yx} + 2\rho_{yz}\rho_{yw}\rho_{zw} \text{ and } A' = (1 - \rho_{yw}^2) + (1 - p)(1 - 2\rho_{yz} + 2\rho_{yw}\rho_{zw})$$

5. Optimum Replacement Strategy for the estimator T

To determine the optimum values of μ (fraction of samples to be taken afresh at second occasion) so that population mean \overline{Y} may be estimated with maximum precision, we minimize the mean square error of the estimator T given in equations (17) with respect to μ which result in quadratic equations in μ as The respective equations in μ are obtained as:

$$\mu^{2} \left(A + \rho_{yw}^{2} \right)^{2} + 2\mu \left(A + \rho_{yw}^{2} \right) \left(1 - \rho_{yw}^{2} \right) + \left(1 - \rho_{yw}^{2} \right)^{2} - A' \left(A + 1 \right) = 0$$
(18)

Solving equation (18), we get solutions of μ say $\hat{\mu}$. While choosing the values of $\hat{\mu}$, it should be remembered that $0 \le \hat{\mu} \le 1$ and if two such admissible values of $\hat{\mu}$ are obtained, the lowest one will be the chosen, as this indicate to have same mean square error by replacing only the lowest fraction of total sample size which reduces the cost of survey. All others values of $\hat{\mu}$ are inadmissible. Substituting admissible values of $\hat{\mu}$ say $\mu^{(0)}$ into the equations (17), we have the optimum value of the mean square error of the proposed estimator T as

$$M(T^{(o)}) = \frac{S_{y}^{2}}{n} \frac{A' \left\{ \mu^{(o)} \left(A + \rho_{yw}^{2} \right) + \left(1 - \rho_{yw}^{2} \right) \right\}}{\mu^{(o)2} \left(A + \rho_{yw}^{2} \right) + \mu^{(o)} \left(1 - \rho_{yw}^{2} - A' \right) + A'}.$$
(19)

6. Efficiency Comparisons

The percent relative efficiencies of T with respect to (i) \overline{y}_n , when there is no matching and (ii) $\hat{\overline{Y}} = \phi^* \overline{y}_u + (1 - \phi^*) \overline{y}'_m$, when no auxiliary information was used at any occasion, where $\overline{y}'_m = \overline{y}_m + \beta_{yx}(\overline{x}_n - \overline{x}_m)$, have been obtained for different choices of correlation coefficients ρ_{yx} , ρ_{yz} , ρ_{yw} and ρ_{zw} . Since \overline{y}_n and $\hat{\overline{Y}}$ are unbiased estimators of \overline{Y} , following on the line of Sukhatme et al. (1984), the variance of \overline{y}_n and the optimum variance of $\hat{\overline{Y}}$ for large N (i.e., N $\rightarrow \infty$) are, respectively, given by

$$V(\overline{y}_n) = \frac{S_y^2}{n}$$
(20)

and

$$V(\hat{\bar{Y}})_{opt} = \left[1 + \sqrt{\left(1 - \rho_{yx}^2\right)}\right] \frac{S_y^2}{2n}.$$
(21)

For different choices of different choices of ρ_{yx} , ρ_{yz} , ρ_{yw} and ρ_{zw} and p = 0.8, Table 1 show the optimum (admissible) values of μ and percent relative efficiencies of $E^{(1)}$ and $E^{(2)}$ of the proposed estimator T with respect to the estimators \overline{y}_n and $\overline{\overline{Y}}$ respectively, where

$$E^{(1)} = \frac{V(\overline{y}_{n})}{M(T^{(o)})} \times 100 \quad \text{and} \quad E^{(2)} = \frac{V(Y)_{opt}}{M(T^{(o)})} \times 100.$$
(22)

$\rho_{\rm yx}$		0.3								
ρ _{yz}		0.5			0.7			0.9		
$\rho_{\rm yw}$	ρ_{zw}	μ ⁽⁰⁾	E ⁽¹⁾	E ⁽²⁾	μ ⁽⁰⁾	E ⁽¹⁾	E ⁽²⁾	μ ⁽⁰⁾	E ⁽¹⁾	E ⁽²⁾
	0.5	0.5487	118.4985	115.7694	0.4455	122.9630	120.1312	0.3594	127.6532	124.7133
0.6	0.7	0.5646	111.2579	108.6955	0.4656	114.4612	111.8252	0.3859	117.9620	115.2453
	0.9	0.5757	104.8251	102.4110	0.4790	107.0070	104.5426	0.4030	109.5171	106.9948
	0.5	0.5180	132.1281	129.0851	0.4258	138.0797	134.8996	0.3457	144.9118	141.5745
0.7	0.7	0.5358	121.9305	119.1224	0.4458	125.9785	123.0771	0.3708	130.8197	127.8068
	0.9	0.5488	113.1433	110.5375	0.4597	115.7440	113.0784	0.3876	119.0599	116.3179
	0.5	0.4827	154.5666	151.0069	0.3957	164.0741	160.2954	0.3171	176.1539	172.0970
0.8	0.7	0.5035	139.0897	135.8865	0.4184	145.2270	141.8823	0.3449	153.2425	149.7132
	0.9	0.5193	126.3475	123.4376	0.3957	164.0741	160.2954	0.3642	135.3639	132.2464
0.9	0.5	0.4378	196.4361	191.9121	0.3802	181.1432	176.9714	0.2662	247.4658	241.7666
	0.7	0.4645	169.1720	165.2759	0.4018	155.4822	151.9014	0.3044	198.6894	194.1135
	0.9	0.4848	148.4859	145.0662	0.4018	155.4822	151.9014	0.3306	165.8929	162.0724
$\rho_{\rm yx}$		0.5								
$\rho_{\rm yz}$		0.5		0.7		0.9				
$\rho_{\rm yw}$	$\rho_{\rm zw}$	μ ⁽⁰⁾	E ⁽¹⁾	E ⁽²⁾	$\mu^{(o)}$	E ⁽¹⁾	E ⁽²⁾	μ ⁽⁰⁾	E ⁽¹⁾	E ⁽²⁾
	0.5	0.6178	124.0747	115.7633	0.4754	128.7259	120.1029	0.3689	133.2168	124.2929
0.6	0.7	0.6270	115.9613	108.1933	0.4971	119.2366	111.2493	0.4017	122.5553	114.3456
	0.9	0.6320	108.8527	101.5610	0.5093	111.0223	103.5853	0.4203	113.3400	105.7476
	0.5	0.5688	138.5016	129.2237	0.4530	144.5393	134.8570	0.3590	151.2145	141.0851
0.7	0.7	0.5831	127.1487	118.6314	0.4731	131.1499	122.3646	0.3868	135.8008	126.7039
	0.9	0.5925	117.4936	109.6230	0.4857	119.9679	111.9316	0.4039	123.0670	114.8231
	0.5	0.5232	162.2710	151.4009	0.4202	171.8709	160.3577	0.3310	183.9146	171.5946
0.8	0.7	0.5418	145.1570	135.4334	0.4423	151.1863	141.0587	0.3601	159.0415	148.3878
	0.9	0.5549	131.2401	122.4487	0.4573	134.8183	125.7872	0.3791	139.8265	130.4599
0.9	0.5	0.4716	206.7612	192.9108	0.3719	227.5361	212.2941	0.2791	258.8554	241.5154
	0.7	0.4966	176.8126	164.9684	0.4013	188.7437	176.1002	0.3181	206.3583	192.5349
	0.9	0.5149	154.3512	144.0116	0.4216	161.1117	150.3192	0.3440	171.3672	159.8877
$\rho_{\rm yx}$		0.7								
$\rho_{\rm yz}$		0.5			0.7			0.9		
$\rho_{\rm yw}$	$\rho_{\rm zw}$	μ ⁽⁰⁾	E ⁽¹⁾	E ⁽²⁾	μ ⁽⁰⁾	E ⁽¹⁾	E ⁽²⁾	μ ⁽⁰⁾	E ⁽¹⁾	E ⁽²⁾
	0.5	0.7797	130.0016	111.4206	0.5217	135.6129	116.2299	0.3749	139.7798	119.8012
0.6	0.7	0.7433	120.9888	103.6960	0.5426	124.7848	106.9495	0.4203	127.8775	109.6001
	0.9	0.7243	113.1568	*	0.5506	115.5945	*	0.4413	117.6887	100.8676
	0.5	0.6535	145.8406	124.9958	0.4904	152.2245	130.4672	0.3737	158.6321	135.9591
0.7	0.7	0.6545	133.0258	114.0127	0.5091	137.1349	117.5344	0.4059	141.5283	121.2999
	0.9	0.6541	122.3177	104.8350	0.5187	124.7584	106.9269	0.4232	127.5873	109.3515
0.0	0.5	0.5811	171.3503	146.8594	0.4518	181.1250	155.2370	0.3474	193.0193	165.4314
0.8	0.7	0.5935	152.1158	130.3741	0.4722	158.0624	135.4708	0.3779	165.6724	141.9931
0.0	0.9	0.6013	136.7424	117.1980	0.4847	140.1146	120.0882	0.5317	149.6742	128.2814
0.9	0.5	0.5164	219.0699	187.7586	0.3990	240.3195	205.9710	0.4909	300.3734	257.4415
	0.7	0.5376	185.6534	159.1182	0.4267	197.5022	169.2735	0.5361	236.9157	203.0537
	0.9	0.5522	160.9918	137.9814	0.4450	167.4598	143.5250	0.5430	192.2132	164.7404

Table 1. Optimum values of μ and percent relative efficiencies of T with respect \overline{y}_n and $\hat{\overline{Y}}$.

Note: * indicates no gain.

7. Conclusions

The following conclusions can be read-out from the Table 1.

(a) For fixed values of ρ_{yx} , ρ_{zw} and ρ_{yz} , the values of $E^{(1)}$ and $E^{(2)}$ are increasing while the values of $\mu^{(o)}$ is decreasing with increasing choices of ρ_{yw} , except when $\rho_{yx} = 0.7$ and $\rho_{yz} = 0.9$. This behaviour is highly desirable, since, it concludes that if highly correlated auxiliary variable is available, it pays in terms of enhance precision of estimates as well as reduces the cost of survey.

(b) For the fixed values of values of ρ_{zw} , ρ_{yw} and ρ_{yx} , the values of $E^{(1)}$ and $E^{(2)}$ are increasing while the values of $\mu^{(0)}$ is decreasing with increasing choices of ρ_{yz} . This pattern is also highly desirable as explained in (a).

(c) For fixed values of ρ_{zw} , ρ_{yw} and ρ_{yz} , the values $\mu^{(o)}$ and $E^{(1)}$ are increasing while the values of $E^{(2)}$ are decreasing with the increasing trends of ρ_{yx} . This behavior indicates that more the value of ρ_{yx} more the

fraction of fresh sample is required at current occasion.

(d) The minimum value of $\mu^{(o)}$ is 0.2662, which indicates that only 26.62 percent of the total sample size is

to be replaced at the second (current) occasion for the corresponding choices of correlations.

From the above analysis, we may conclude that the proposed estimator is highly rewarding in terms of precision as well as in reducing the cost of the surveys. This is an agreement with the principle of optimization of sample survey. Hence, the proposed estimators may be recommended to the survey statisticians for their real life applications.

References

- R. J. Jessen, Statistical investigation of a sample survey for obtaining farm facts, *Iowa Agricultural Experiment Station Road Bulletin No. 304. Iowa, USA* (1942) 1–104.
- [2] A. R. Sen, Successive sampling with two auxiliary variables, Sankhya, B (33) (1971) 371-378.
- [3] A. R. Sen, Theory and application of sampling on repeated occasions with several auxiliary variables, *Biometrics* 29, (1973) 381–385.
- [4] S. Feng and G. Zou, Sample rotation method with auxiliary variable, *Communication in Statistics- Theory and Methods*, 26(6) (1997) 1497–1509.
- [5] R. S. Biradar and H. P. Singh, Successive sampling using auxiliary information on both occasions, *Calcutta Statistical Association Bulletin*, 51 (2001) 243–251.
- [6] G. N. Singh, On the use of chain-type ratio estimator in successive sampling. Statistics in Transition, 7, (2005) 21–26.
- [7] H. P. Singh and G. K. Vishwakarma, A general class of estimators in successive sampling, Metron, LXV (2), (2007) 201-227.
- [8] G. N. Singh and K. Priyanka, Search of good rotation patterns to improve the precision of estimates at current occasion, *Communications in Statistics-Theory and Methods*, 37, (3) (2008) 337–348.
- [9] G. N. Singh J. P. Karna, Estimation of population mean on current occasion in two- occasion successive sampling, *Metron*, LXVII (1), (2009) 87-103.
- [10] G. N. Singh and F. Homa, Effective Rotation Patterns in Successive Sampling Over Two Occasions, *Journal of Statistical Theory* and Practice, 7, (2013) 146–155.
- [11] H. P. Singh and G. K. Vishwakarma, Modified exponential ratio and product estimators for finite population mean in double Sampling. *Austrian Journal of Statistics*, 36, (3) (2007) 217–225.
- [12] W. G. Cochran, Sampling Techniques (John Wiley & Sons, New York, 1977).
- [13] V. N. Reddy, A study on the use of prior knowledge on certain population parameters in estimation, Sankhya, C, 40, (1978) 29– 37.
- [14] P. V. Sukhatme, B. V. Sukhatme and C. Ashok, Sampling theory of surveys with applications, (Third Edition. Ames, IA, Iowa State University Press, 1984).