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Abstract 

In this paper we have tried to present an alternative approach for two discrete distributions such as Binomial and 
Multinomial with a new concept of sampling having a more general form apart from the traditional methods of 
sampling. The existing distributions may be obtained as a special case of our newly suggested technique. The basic 
distributional properties of the proposed distributions are also been examined including the limiting form of the 
proposed Binomial distribution to normal distribution.  

Keywords: Generalized Binomial Distribution, Generalized Multinomial Distribution, Sampling Methods, 
Distributional Properties, Arithmetic Progression, Limiting Form. 
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1. Introduction 

The discrete distributions are widely used in the diversified field and among them the distribution like 
Binomial, Multinomial, Poisson and Geometric are the most commonly used discrete distributions. The other 
discrete distributions include uniform or rectangular, hypergeometric, negative binomial, power series etc. 
The truncated and censored forms of the different discrete distributions are used as probability distribution in 
statistics literature and in real life problems. The binomial distribution was first studied in connection with the 
games of pure chance but it is not limited within that area only, where the Multinomial distribution is 
considered as the generalization of the binomial distribution. The number of mutually exclusive outcomes 
from a single trial are 𝑘 in multinomial distribution compared to two outcomes namely success or failure of 
Binomial distribution. 

The usual binomial distribution is the discrete probability distribution of the number of successes 0 to n 
resulted from n independent Bernoulli trails each of which yields success with probability p and failure with 

Journal of Statistical Theory and Applications, Vol. 16, No. 2 (June 2017) 269–283
___________________________________________________________________________________________________________

269

Received 4 April 2015

Accepted 18 September 2016

Copyright © 2017, the Authors. Published by Atlantis Press.
This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/).



 
 

probability q. One of the important assumptions regarding binomial variate representing the number of 
success is that it can take only values in the sequence of 0,1,2,⋯ ,𝑛. But in real world, the successes of 
binomial may not occur in the usual way rather it may occur in a different sequence such as (i) 0,2,4,⋯ ,2𝑛, 
(ii) 2,4,⋯ ,2𝑛, (iii) 0,3,6⋯ ,3𝑛, (iv) 3,6,9,⋯ ,3𝑛 and so on. 
    In cases (ii) and (iv), truncated distribution is the better option to find the probability of number of success. 
In truncated distribution, it is assumed that the truncated values of the random variable have certain 
probabilities. If it is considered that there is no existence of the truncated values, the truncated distribution 
cannot provide the probability due to mathematical cumbersome. In the remaining cases, Binomial and 
truncated Binomial are completely helpless. In this context, we have suggested an alternative approach of 
Binomial and Multinomial distribution having generalized sequence of the values of the random variables. 
For convenience the distributions are defined as relatively generalized distribution. The number of successes 
of the proposed distributions is represented by the arithmetic progression 𝑎 + 𝑛𝑛, where, 𝑎 is non-negative 
integer and termed as minimum number of success, 𝑛 is positive integer representing the concentration of 
success and 𝑛 is a non-negative integer indicating the total number of trails.       

To justify the sequence with real life situation, let us consider an example of number of defective shoes. It 
is well known that the shoes are produced pair wise. That is, if we make 𝑛 attempts to identify the number of 
defective shoes, then it is usual that the number of defective shoes would occur pair wise. In this context, the 
number success in the form 0,2,4,⋯ ,2𝑛 is justified. If it is known that the minimum number of defective 
items in 𝑛 attempts are 𝑎, then these occurrences are not chance outcome and may be regarded as constant 
and then we are interested to find the probability of chance outcome taking form 𝑎,𝑎 + 2,𝑎 + 4,⋯ ,2𝑛, where 
𝑎 > 0 and 𝑛 is non-negative integer. That is, number of defective shoes larger than a. The other possible 
sequences are also justifiable in this way by real life examples.   

One may confuse the proposed form of the distribution with the usual truncated distribution. The major 
difference is that in our form the probability exists only for the possible number of success shown in the 
sequence. In the example discussed above, the defective number of shoes take the values 0,2,4,⋯ ,2𝑛. This 
indicates that there is no existence of the number of defective item(s) of the form 1,3,5,⋯ and thus no 
probabilities. On the other hand, in truncated distribution, there is existence of the number of success which is 
truncated and also they have the probabilities. 

A number of authors published their work under the heading of generalized binomial distribution but they 
were different in terms of the key concept of our present work. Altham1 showed two generalizations of the 
binomial distribution when the random variables are identically distributed but not independent and assumed 
to have symmetric joint distribution with no second or higher order “interactions”. Two generalizations are 
obtained depending on whether the “interaction” for discrete variables is “multiplicative” or “additive”. The 
distribution has a new parameter 𝜃 > 0 which controls the shape of the distribution and flexible to allow for 
both over or under-disperse than traditional Binomial distribution. Whereas, the beta-binomial distribution 
allows only for over-disperse distribution than the corresponding Binomial distribution (Johnson, Kemp and 
Kotz2). Dwass3 have provided a unified approach to a family of discrete distributions that includes the 
hypergeometric, Binomial, and Polya distributions by considering the simple sample scheme where after each 
drawing there is a “replacement” whose magnitude is a fixed real number. Paul4 derived a new three 
parameter distribution, a generalization of the binomial, the beta-binomial and correlated beta-binomial 
distribution. Further a modification on beta-correlated binomial distribution was proposed by Raul5. In the 
generalization of the probability distribution, Panaretos and Xekalaki6 developed cluster binomial and 
multinomial model and their probability distributions. In his study, Madsen7 discussed that in many cases 
binomial distribution fails to apply because of more variability in the data than that can be explained by the 
distribution. He pointed out a characterization of sequences of exchangeable Bernoulli random variables 
which can be used to develop models which is more fluxion than the traditional binomial distribution. His 
study exhibited sufficient conditions which will yield such models and show how existing models can be 
combined to generate further models.  
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A generalization of the binomial distribution is introduced by Drezner and Farnum8 that allow the 
dependence between trials, non-constant probabilities of success from trial to trial and which contains usual 
binomial distribution as special case. A new departure in the generalization was carried out by Fu and 
Sproule9 by adopting the assumption that the underlying Bernoulli trials take on the values 𝛼 or 𝛽 where 
𝛼 <  𝛽, rather than the conventional values 0 or 1. This rendered a four parameter binomial distribution of 
the form 𝐵(𝑛,𝑝,𝛼,𝛽). In a recent work, Altham and Hankin10 introduced two generalizations of multinomial 
and Binomial distributions which arise from the multiplicative Binomial distribution of Altham1. The forms of 
the generalized distributions are of exponential family form and termed as “multivariate multinomial 
distribution” and “multivariate multiplicative binomial distribution”. Like the Altham’s generalized 
distribution, both the distribution has an additional shape parameter 𝜃 which corresponds usual distribution if 
it takes value 1 and over and under-disperse for greater and less than 1 respectively.                      

2. New Approach of Binomial Distribution  

In the traditional Binomial sampling each time we draw a sample having either a success or a failure, we 
continue this method up to n trials and we may have number of successes starting from 0 and may ended up to 
n, but in real world, the success of Binomial distribution may not occur in the usual sequences rather it may 
happend as 
  

i) 0,2,4,⋯ ,2𝑛 
ii) 2,4,⋯ ,2𝑛 
iii) 0,3,6⋯ ,3𝑛 
iv) 3,6,9,⋯ ,3𝑛  

 
and so on. 

These indicate that the number of success may follow an arithmetic progression 𝑎 + 𝑛𝑛, where, 𝑎 is a 
non-negative integer representing the minimum number of success, 𝑛 is a positive integer representing the 
concentration of success occurring and 𝑛 is a non-negative integer indicating  the total number of trails.       

 
Definition 2.1. A random variable X is said to have a relatively general binomial distribution if it has the 
following probability mass function 
 

𝑃(𝑥;𝑎, 𝑛,𝑛,𝑝) =
�𝑎 + 𝑛𝑛

𝑥 �𝑝𝑥𝑞𝑎+𝑛𝑛−𝑥

∑ �𝑎 + 𝑛𝑛
𝑥 �𝑝𝑥𝑞𝑎+𝑛𝑛−𝑥𝑎+𝑛𝑛

𝑥=𝑎

           ;  𝑥 = 𝑎,𝑎 + 𝑛,𝑎 + 2𝑛,⋯ ,𝑎 + 𝑛𝑛                              (2.1) 

                            = 1
𝑘
�𝑎 + 𝑛𝑛

𝑥 �𝑝𝑥𝑞𝑎+𝑛𝑛−𝑥                    
 
where, a ≥ 0 is the minimum number of success, d > 0 is the concentration of occurrence of success, 𝑛 is a 
predefined finite number of non-negative integer represents the number of trials  and p is the probability of 
success such that 𝑝 + 𝑞 = 1 and 𝑘 = ∑ �𝑎 + 𝑛𝑛

𝑥 �𝑝𝑥𝑞𝑎+𝑛𝑛−𝑥𝑎+𝑛𝑛
𝑥=𝑎  is a constant. The probability mass 

function  𝑃(𝑥;𝑎,𝑛,𝑛,𝑝) stands for probability of getting x success out of maximum of 𝑎 + 𝑛𝑛 successes in n 
trials. 
 
Theorem 2.1. Show that the probability mass function of generalized binomial distribution is a probability 
function. 
 
Theorem 2.2. Show the relationship between generalized binomial distribution with parameter 𝑎 ≥ 0,𝑛 > 0, 
𝑛 ≥ 0 and p and usual binomial distribution with parameter 𝑛 ≥ 0 and p.    
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It can be easily shown that the probability mass function of generalized binomial distribution reduces to the 
probability mass function usual binomial distribution when 𝑎 = 0.  
 
Theorem 2.3 Show that the moment generating function of generalized binomial distribution is  
 

𝑀𝑋(𝑡) =
∑ �𝑎 + 𝑛𝑛

𝑥 � (𝑝𝑒𝑡)𝑥𝑞𝑎+𝑛𝑛−𝑥𝑎+𝑛𝑛
𝑥=𝑎

∑ �𝑎 + 𝑛𝑛
𝑥 �𝑝𝑥𝑞𝑎+𝑛𝑛−𝑥𝑎+𝑛𝑛

𝑥=𝑎

                                                                                                               (2.2) 

 
Theorem 2.4. The mean and variance of generalized binomial distribution are (𝑎 + 𝑛𝑛)𝑝 and (𝑎 + 𝑛𝑛)𝑝𝑞 
respectively. 
 
Theorem 2.5. If X follows the generalized binomial distribution then find the 3rd and 4th raw and central 
moments of X respectively are 
 
𝜇3′ = (𝑎 + 𝑛𝑛)3𝑝3 − 3(𝑎 + 𝑛𝑛)2𝑝3 + 2(𝑎 + 𝑛𝑛)𝑝3 + 3(𝑎 + 𝑛𝑛)2𝑝2 − 3(𝑎 + 𝑛𝑛)𝑝2

+ (𝑎 + 𝑛𝑛)𝑝                                                                                                                                         (2.4) 
𝜇4′ = (𝑎 + 𝑛𝑛)4𝑝4 − 6(𝑎 + 𝑛𝑛)3𝑝4 + 11(𝑎 + 𝑛𝑛)2𝑝4 − 6(𝑎 + 𝑛𝑛)𝑝4 + 6(𝑎 + 𝑛𝑛)3𝑝3 − 18(𝑎 + 𝑛𝑛)2𝑝3

+ 12(𝑎 + 𝑛𝑛)𝑝3 + 7(𝑎 + 𝑛𝑛)2𝑝2 − 7(𝑎 + 𝑛𝑛)𝑝2
+ (𝑎 + 𝑛𝑛)𝑝                                                                                                                                         (2.5) 

𝜇3 = (𝑎 + 𝑛𝑛)𝑝𝑞(1 − 2𝑝)                                                                                                                                             (2.6) 
𝜇4 = (𝑎 + 𝑛𝑛)𝑝𝑞�1 + 3�(𝑎 + 𝑛𝑛) − 2�𝑝𝑞�                                                                                                              (2.7) 
 
Still the special case for 3rd and 4th raw and central moments holds for 𝑎 = 0 and 𝑛 = 1 and turned to the 
form of usual Binomial distributions.    
 
Theorem 2.6. The measures and coefficient of skewness and kurtosis of generalized binomial distribution 
are: 

Skewness 

Measures of Skewness (𝛽1) =
(1− 2𝑝)2

(𝑎 + 𝑛𝑛)𝑝𝑞
                                                                                                             (2.8) 

 

Coefficient of Skewness (𝛾1) = �𝛽1 =
1 − 2𝑝

�(𝑎 + 𝑛𝑛)𝑝𝑞
                                                                                          (2.9) 

 
From coefficient of skewness, the following conclusion can be drawn and still surprising that the nature of 
skew depends only on 𝑝 only and which is similar to the usual binomial distribution as: 

i) The distribution is positively skewed if 𝑝 < 1
2
. 

ii) On the other hand, the distribution is negatively skewed if 𝑝 > 1
2
. 

iii) And the distribution is symmetric if 𝑝 = 1
2
. 

Kurtosis 

Measures of kurtosis (𝛽2) = 3 +
(1 − 6𝑝𝑞)

(𝑎 + 𝑛𝑛)𝑝𝑞
                                                                                                     (2.10) 
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Coefficient of kurtosis (𝛾2) = 𝛽2 − 3 =
(1 − 6𝑝𝑞)

(𝑎 + 𝑛𝑛)𝑝𝑞
                                                                                         (2.11) 

 
These equations tell us that the generalized distribution is  

i) Mesokurtic if = 1
6
 . 

ii) Platykurtic 𝑝𝑞 > 1
6
  and 

iii) Leptokurtic if 𝑝𝑞 < 1
6
. 

 
Theorem 2.7 Show that the maximum likelihood estimate of the parameter 𝑝 is 𝑥

𝑎+𝑛𝑛
, where 𝑥 is the total 

number of success from maximum of 𝑎 + 𝑛𝑛 success in 𝑛 trials. 
 
Theorem 2.8. The MLE estimator of number of trial of the distribution is 𝑛� = 1

𝑛
�∑ 𝑥𝑖𝑛

𝑖=1
𝑝�

− 𝑎�. 
 
Theorem 2.9. Necessary conditions to derive the generalized Poisson distribution from generalized binomial 
distribution. 
 
Generalized Poisson distribution can be derived from the generalized binomial distribution under the 
following assumptions: 

i) p, the probability of success in a Bernoulli trail is very small. i.e. 𝑝 → 0. 
ii) n, the number of trails is very large. i.e. 𝑛 → ∞. 
iii) (𝑎 + 𝑛𝑛)𝑝 = 𝜆 is finite constant, that is average number of success is finite. Under this condition, we 

have 
      (𝑎 + 𝑛𝑛)𝑝 = 𝜆   ∴ 𝑝 = 𝜆

(𝑎+𝑛𝑛)  and 𝑞 = 1 − 𝜆
(𝑎+𝑛𝑛)   

 
Theorem 2.10 Normal distribution as a limiting form of generalized binomial distribution.  

3. New Approach of Multinomial Distribution  

Under the sampling scheme described in Section 2, consider the situation where one of the 𝑘 mutually 
exclusive outcomes is possible from a single trial other than only success or failure. More specifically, if the 𝑘 
outcomes are denoted by 𝑒1, 𝑒2, 𝑒2,⋯ , 𝑒𝑘 and the number of occurrences of the respective outcomes are 
denoted by 𝑥1,𝑥2,⋯ , 𝑥𝑘 such that ∑ 𝑥𝑖 = 𝑎 + 𝑛𝑛𝑘

𝑖=1 , where 𝑎 is non-negative integer and termed as 
minimum number of success, 𝑛 is positive integer representing the concentration of success and 𝑛 is a non-
negative integer indicating the total number of trails, then our suggested general form of Binomial as well as 
traditional Multinomial distribution cannot provide the probability that the event 𝑒1 occurred 𝑥1 times, the 
event 𝑒2 occurred 𝑥2 times and so on the event 𝑒𝑘 occurred 𝑥𝑘 times. To overcome this situation, we have 
suggested the new approach of Multinomial distribution and termed as relatively more general Multinomial or 
generalized Multinomial distribution. In this section we would present only the definition of the suggested 
distribution and statement of the theorems that we have derived for our present work to keep the paper size 
standard and other reason is that the derivations are very much similar to the suggested Binomial distribution. 
 
Definition 3.1. k discrete random variable 𝑋1,𝑋2,⋯ ,𝑋𝑘 is said to have a generalized multinomial distribution 
if it has the following probability mass function 
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𝑃(𝑥1,𝑥2,⋯ , 𝑥𝑘;𝑎,𝑛,𝑛,𝑝1,𝑝2,⋯ ,𝑝𝑘) =

1
𝑥1! 𝑥2!⋯𝑥𝑘!𝑝1

𝑥1𝑝2
𝑥2 ⋯𝑝𝑘

𝑥𝑘

∑ 1
𝑥1!𝑥2!⋯𝑥𝑘!𝑝1

𝑥1𝑝2
𝑥2 ⋯𝑝𝑘

𝑥𝑘𝑎+𝑛𝑛
𝑥1,𝑥2,⋯,𝑥𝑘=𝑎

                                                     

                                                                   =

(𝑎 + 𝑛𝑛)!
𝑥1! 𝑥2!⋯𝑥𝑘!𝑝1

𝑥1𝑝2
𝑥2 ⋯𝑝𝑘

𝑥𝑘

∑ (𝑎 + 𝑛𝑛)!
𝑥1! 𝑥2!⋯𝑥𝑘!𝑝1

𝑥1𝑝2
𝑥2 ⋯𝑝𝑘

𝑥𝑘𝑎+𝑛𝑛
𝑥1,𝑥2,⋯,𝑥𝑘=𝑎

                                            (3.1) 

 
where, 𝑎 ≥ 0,𝑛 > 0, 𝑛 ≥ 0 and 𝑝1,𝑝2,⋯ ,𝑝𝑘 such that ∑ 𝑝𝑖𝑘

𝑖=1 = 1, are the parameters of the distribution. 
and ∑ 𝑥𝑖 = 𝑎 + 𝑛𝑛𝑘

𝑖=1 .  
 

The defined function is a probability mass function as it holds the conditions of the probability function 
and easily reduces to traditional Multinomial distribution if 𝑎 = 0 and 𝑛 = 1 and thus may be said that the 
traditional Multinomial distribution is a special case of the suggested Multinomial distribution.  
 
Theorem 3.1. Generalized Binomial distribution is a special case of generalized Multinomial distribution.    
 
Theorem 3.2. The moment generating function of generalized Multinomial distribution is  
 

𝑀𝑋1,𝑋2,⋯,𝑋𝑘(𝑡1, 𝑡2,⋯ , 𝑡𝑘) =
∑ (𝑎 + 𝑛𝑛)!

∏ 𝑥𝑖!𝑘
𝑖=1

∏ (𝑝𝑖𝑒𝑡𝑖)𝑥𝑖𝑘
𝑖=1

𝑎+𝑛𝑛
𝑥1,𝑥2,⋯,𝑥𝑘=𝑎

∑ (𝑎 + 𝑛𝑛)!
∏ 𝑥𝑖!𝑘
𝑖=1

∏ 𝑝𝑖𝑥𝑖𝑘
𝑖=1

𝑎+𝑛𝑛
𝑥1,𝑥2,⋯,𝑥𝑘=𝑎

                                                                     (3.3) 

  
and the mean and the variance of 𝑋𝑖 (𝑖 = 1,2,⋯ ,𝑘) respectively are 
 
𝐸(𝑋𝑖) =  𝜇1𝑖

′ = (𝑎 + 𝑛𝑛)𝑝𝑖                                                                                                                                            (3.4) 
 𝑉(𝑋𝑖) = (𝑎 + 𝑛𝑛)𝑝𝑖(1 − 𝑝𝑖)                                                                                                                                        (3.5) 
 
Theorem 3.3. The 3rd and 4th raw and central moments of generalized Multinomial distribution are  
 
𝜇3𝑖
′ = (𝑎 + 𝑛𝑛)3𝑝𝑖3 − 3(𝑎 + 𝑛𝑛)2𝑝𝑖3 + 2(𝑎 + 𝑛𝑛)𝑝𝑖3 + 3(𝑎 + 𝑛𝑛)2𝑝𝑖2 − 3(𝑎 + 𝑛𝑛)𝑝𝑖2 + (𝑎 +
𝑛𝑛)𝑝𝑖                                                                                                                                                                                   (3.6)  
𝜇4𝑖
′ = (𝑎 + 𝑛𝑛)4𝑝𝑖4 − 6(𝑎 + 𝑛𝑛)3𝑝𝑖4 + 11(𝑎 + 𝑛𝑛)2𝑝𝑖4 − 6(𝑎 + 𝑛𝑛)𝑝𝑖4 + 6(𝑎 + 𝑛𝑛)3𝑝𝑖3  

− 18(𝑎 + 𝑛𝑛)2𝑝𝑖3 + 12(𝑎 + 𝑛𝑛)𝑝𝑖3 + 7(𝑎 + 𝑛𝑛)2𝑝𝑖2 − 7(𝑎 + 𝑛𝑛)𝑝𝑖2
+ (𝑎 + 𝑛𝑛)𝑝𝑖                                                                                                                                       (3.7) 

𝜇3𝑖 = (𝑎 + 𝑛𝑛)𝑝𝑖(1 − 𝑝𝑖)(1 − 2𝑝𝑖)                                                                                                                            (3.8) 
 
and  
 
𝜇4 = (𝑎 + 𝑛𝑛)𝑝𝑖(1 − 𝑝𝑖)�1 + 3�(𝑎 + 𝑛𝑛) − 2�𝑝𝑖(1 − 𝑝𝑖)�                                                                                 (3.9) 
 

In all the moments if we put 𝑎 = 0 and 𝑛 = 1 then these reduces to the form of moments of traditional 
Multinomial distribution which again justifies that the traditional Multinomial distribution is a special case of 
our suggested generalized Multinomial distribution.  
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Theorem 3.4. Karl Pearson’s measures and coefficients of skewness and kurtosis of generalized multinomial 
distribution. 
 
Measure of Skewness: 

𝛽1𝑖 =
(1 − 2𝑝𝑖)2

(𝑎 + 𝑛𝑛)𝑝𝑖(1 − 𝑝𝑖)
                                                                                                                                           (3.10) 

 
 Coefficient of Skewness: 

𝛾1𝑖 = �𝛽1𝑖 =
1 − 2𝑝𝑖

�(𝑎 + 𝑛𝑛)𝑝𝑖(1 − 𝑝𝑖)
                                                                                                                         (3.11) 

 
Measure of Kurtosis: 

𝛽2𝑖 = 3 +
{1− 6𝑝𝑖(1 − 𝑝𝑖)}

(𝑎 + 𝑛𝑛)𝑝𝑖(1 − 𝑝𝑖)
                                                                                                                                   (3.12) 

 
Coefficient of Kurtosis 
 

𝛾2𝑖 = 𝛽2𝑖 − 3 =
{1− 6𝑝𝑖(1 − 𝑝𝑖)}

(𝑎 + 𝑛𝑛)𝑝𝑖(1 − 𝑝𝑖)
                                                                                                                        (3.13) 

 
The conclusion from the measures and coefficient of skewness and kurtosis of the generalized 

Multinomial distribution can be drawn in the same way as drawn in the generalized Binomial distribution 
depending on the values of 𝑝𝑖. 
 
Theorem 3.5. The maximum likelihood estimator of the parameters of generalized multinomial distribution is 
𝑝𝚤� = 𝑥𝑖

(𝑎+𝑛𝑛) , where 𝑥𝑖 is the number of success comprising (𝑎 + 𝑛𝑛 − 𝑥𝑖) is the total number of failure 
subject to condition that maximum number of success is 𝑎 + 𝑛𝑛. 

4. Discussion and Conclusion 

We have suggested relatively more general form of two discrete distributions such as Binomial and 
Multinomial for the different sampling scheme which is described above and termed as generalized 
distribution. It is evident from the generalized distribution that if sampling is drawn in the usual manner, then 
our suggested distributions reduces to the traditional form and thus it may conclude that the traditional 
Binomial and Multinomial distribution are the special cases of our proposed generalized Binomial and 
Multinomial distribution. Like the traditional distributions, all of the distributional properties including 
limiting theorems of the suggested distributions have derived. The truncated cases of the traditional 
distribution can be address more accurately by our new approach of the distributions. In general, the new 
approach of the distributions are providing more access and broaden the scope from the theoretical point of 
view as well as from the standpoint of real world problem solving. Generalized sequence of the number of 
success of the proposed distributions may be considered as an added advantage in the distribution theory. 
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Appendix 

Proof of Theorem 2.1. We know, the probability mass function of the suggested generalized binomial 
distribution is  
 

𝑃(𝑥;𝑎, 𝑛,𝑛,𝑝) =
�𝑎 + 𝑛𝑛

𝑥 �𝑝𝑥𝑞𝑎+𝑛𝑛−𝑥

∑ �𝑎 + 𝑛𝑛
𝑥 �𝑝𝑥𝑞𝑎+𝑛𝑛−𝑥𝑎+𝑛𝑛

𝑥=𝑎

  ;  𝑥 = 𝑎,𝑎 + 𝑛,𝑎 + 2𝑛,⋯ ,𝑎 + 𝑛𝑛                                       (2.1) 

 
It is clear from the function that 𝑃(𝑥; 𝑎,𝑛,𝑛,𝑝) ≥ 0 for all values of X with different values of a, d, n and p.  
 
Again, 
 

� 𝑃(𝑥;𝑎,𝑛,𝑛,𝑝)
𝑎+𝑛𝑛

𝑥=𝑎

 

= �
�𝑎 + 𝑛𝑛

𝑥 �𝑝𝑥𝑞𝑎+𝑛𝑛−𝑥

∑ �𝑎 + 𝑛𝑛
𝑥 �𝑝𝑥𝑞𝑎+𝑛𝑛−𝑥𝑎+𝑛𝑛

𝑥=𝑎

𝑎+𝑛𝑛

𝑥=𝑎

 

=
1

∑ �𝑎 + 𝑛𝑛
𝑥 �𝑝𝑥𝑞𝑎+𝑛𝑛−𝑥𝑎+𝑛𝑛

𝑥=𝑎

� �𝑎 + 𝑛𝑛
𝑥 �𝑝𝑥𝑞𝑎+𝑛𝑛−𝑥

𝑎+𝑛𝑛

𝑥=𝑎

 

= 1 
 

As 𝑃(𝑥; 𝑎,𝑛,𝑛,𝑝) ≥ 0 and ∑ 𝑃(𝑥;𝑎,𝑛,𝑛,𝑝)𝑎+𝑛𝑛
𝑥=𝑎 = 1, so we may conclude that 𝑃(𝑥; 𝑎,𝑛,𝑛,𝑝) is a 

probability function.  
 
Proof of Theorem 2.3. According to the definition of moment generating function, 
 

𝑀𝑋(𝑡) = 𝐸(𝑒𝑡𝑋) = � 𝑒𝑡𝑋𝑃(𝑥;𝑎,𝑛,𝑛,𝑝)
𝑎+𝑛𝑛

𝑥=𝑎

 

=> 𝑀𝑋(𝑡) = � 𝑒𝑡𝑋
𝑎+𝑛𝑛

𝑥=𝑎

1
𝑘
�𝑎 + 𝑛𝑛

𝑥 �𝑝𝑥𝑞𝑎+𝑛𝑛−𝑥 
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=> 𝑀𝑋(𝑡) =
1
𝑘
� �𝑎 + 𝑛𝑛

𝑥 � (𝑝𝑒𝑡)𝑥𝑞𝑎+𝑛𝑛−𝑥
𝑎+𝑛𝑛

𝑥=𝑎

 

∴  𝑀𝑋(𝑡) =
∑ �𝑎 + 𝑛𝑛

𝑥 � (𝑝𝑒𝑡)𝑥𝑞𝑎+𝑛𝑛−𝑥𝑎+𝑛𝑛
𝑥=𝑎

∑ �𝑎 + 𝑛𝑛
𝑥 �𝑝𝑥𝑞𝑎+𝑛𝑛−𝑥𝑎+𝑛𝑛

𝑥=𝑎

                                                                                                           (2.2) 

 
This is the moment generating function of generalized binomial distribution. 
 
Proof of Theorem 2.4. The mean of the distribution can be calculated from its moment generating function 
by differentiating it with respect to t and equating 𝑡 = 0. That is    
 

𝐸(𝑋) = 𝜇1′ =
𝑛
𝑛𝑡

[𝑀𝑋(𝑡)]�
𝑡=0

 

                    = �
∑ �𝑎 + 𝑛𝑛

𝑥 �𝑥(𝑝𝑒𝑡)𝑥−1(𝑝𝑒𝑡)𝑞𝑎+𝑛𝑛−𝑥𝑎+𝑛𝑛
𝑥=𝑎

∑ �𝑎 + 𝑛𝑛
𝑥 �𝑝𝑥𝑞𝑎+𝑛𝑛−𝑥𝑎+𝑛𝑛

𝑥=𝑎

��

𝑡=0

 

                    = �
∑ 𝑥 �𝑎 + 𝑛𝑛

𝑥 � (𝑝𝑒𝑡)𝑥𝑞𝑎+𝑛𝑛−𝑥𝑎+𝑛𝑛
𝑥=𝑎

∑ �𝑎 + 𝑛𝑛
𝑥 �𝑝𝑥𝑞𝑎+𝑛𝑛−𝑥𝑎+𝑛𝑛

𝑥=𝑎

��

𝑡=0

 

                    =
∑ 𝑥 �𝑎 + 𝑛𝑛

𝑥 �𝑝𝑥𝑞𝑎+𝑛𝑛−𝑥𝑎+𝑛𝑛
𝑥=𝑎

∑ �𝑎 + 𝑛𝑛
𝑥 �𝑝𝑥𝑞𝑎+𝑛𝑛−𝑥𝑎+𝑛𝑛

𝑥=𝑎

 

                    =
∑ 𝑥 (𝑎 + 𝑛𝑛)(𝑎 + 𝑛𝑛 − 1)!

𝑥(𝑥 − 1)! �𝑎 + 𝑛𝑛 − 1 − (𝑥 − 1)�!
𝑝𝑝𝑥−1𝑞𝑎+𝑛𝑛−1−(𝑥−1)𝑎+𝑛𝑛

𝑥=𝑎

∑ �𝑎 + 𝑛𝑛
𝑥 �𝑝𝑥𝑞𝑎+𝑛𝑛−𝑥𝑎+𝑛𝑛

𝑥=𝑎

 

                    =
(𝑎 + 𝑛𝑛)𝑝 �∑ (𝑎 + 𝑛𝑛 − 1)!

(𝑥 − 1)! �𝑎 + 𝑛𝑛 − 1 − (𝑥 − 1)�!
𝑝𝑥−1𝑞𝑎+𝑛𝑛−1−(𝑥−1)𝑎+𝑛𝑛−1

𝑥−1=𝑎−1 �

∑ �𝑎 + 𝑛𝑛
𝑥 �𝑝𝑥𝑞𝑎+𝑛𝑛−𝑥𝑎+𝑛𝑛

𝑥=𝑎

 

                    =
(𝑎 + 𝑛𝑛)𝑝 �∑ �𝑎 + 𝑛𝑛 − 1

𝑥 − 1 � 𝑝𝑥−1𝑞𝑎+𝑛𝑛−1−(𝑥−1)𝑎+𝑛𝑛−1
𝑥−1=𝑎−1 �

∑ �𝑎 + 𝑛𝑛
𝑥 �𝑝𝑥𝑞𝑎+𝑛𝑛−𝑥𝑎+𝑛𝑛

𝑥=𝑎

 

                    =
(𝑎 + 𝑛𝑛)𝑝 �∑ �𝑎 + 𝑛𝑛

𝑥 �𝑝𝑥𝑞𝑎+𝑛𝑛−𝑥𝑎+𝑛𝑛
𝑥=𝑎 �

∑ �𝑎 + 𝑛𝑛
𝑥 �𝑝𝑥𝑞𝑎+𝑛𝑛−𝑥𝑎+𝑛𝑛

𝑥=𝑎

 

                    = (𝑎 + 𝑛𝑛)𝑝 
 
 ∴ 𝐸(𝑋) =  𝜇1′ = (𝑎 + 𝑛𝑛)𝑝                                                                                                                                           (2.3) 
 
which is the mean of the distribution. 

Similarly, it can be found that the variance of the distribution is (𝑎 + 𝑛𝑛)𝑝𝑞. If we substitute 𝑎 = 0 and 
𝑛 = 1 in mean and variance of the generalized distribution then it reduces to mean and variance of usual 
distribution which holds the property that usual distribution is special case of the generalized distribution.    
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Proof of Theorem 2.7. We know, the probability mass function of binomial distribution itself is a likelihood 
function. Therefore, the like function of generalized binomial distribution is  
 

𝐿 =
�𝑎 + 𝑛𝑛

𝑥 �𝑝𝑥𝑞𝑎+𝑛𝑛−𝑥

∑ �𝑎 + 𝑛𝑛
𝑥 �𝑝𝑥𝑞𝑎+𝑛𝑛−𝑥𝑎+𝑛𝑛

𝑥=𝑎

=
1
𝑘
�𝑎 + 𝑛𝑛

𝑥 �𝑝𝑥𝑞𝑎+𝑛𝑛−𝑥                                                                               (2.12) 

 
where, 𝑥 is the total number of success from maximum of 𝑎 + 𝑛𝑛 success in 𝑛 trials. 
  
Taking logarithm in both sides, we have 
 

𝑙𝑛𝐿 = 𝑙𝑛 �
1
𝑘
�𝑎 + 𝑛𝑛

𝑥 �𝑝𝑥𝑞𝑎+𝑛𝑛−𝑥� 

=> 𝑙𝑛𝐿 = −𝑙𝑛𝑘 + 𝑙𝑛 �𝑎 + 𝑛𝑛
𝑥 � + 𝑥𝑙𝑥𝑥𝑝 + (𝑎 + 𝑛𝑛 − 𝑥)𝑙𝑛(1 − 𝑝)                                                               (2.13) 

 
Differentiating equation (2.13) with respect to 𝑝 and equating to zero, we get 
 
𝛿
𝛿𝑝

(𝑙𝑛𝐿) =
𝑥
�̂�

+
𝑎 + 𝑛𝑛 − 𝑥

1 − �̂�
(−1) = 0 

                 =>
𝑥
�̂�
−
𝑎 + 𝑛𝑛 − 𝑥

1 − �̂�
= 0 

                 =>
𝑥 − �̂�𝑥 − (𝑎 + 𝑛𝑛)�̂� − �̂�𝑥

�̂�(1 − �̂�) = 0 

                 => 𝑥 − (𝑎 + 𝑛𝑛)�̂� = 0 
                 => (𝑎 + 𝑛𝑛)�̂� = 𝑥 
                 => �̂� =

𝑥
𝑎 + 𝑛𝑛

                                                                                                                                            (2.14) 
 

Hence, the maximum likelihood estimate of the parameter 𝑝 is 𝑥
𝑎+𝑛𝑛

, where 𝑥 is the total number of 
success from maximum of 𝑎 + 𝑛𝑛 success in 𝑛 trials.  
 
Alternative Proof. The likelihood function of generalized binomial distribution can be written as 
 

𝐿 = ��𝑎 + 𝑛
𝑥1

� 𝑝𝑥1𝑞𝑎+𝑛−𝑥1� �� 𝑛𝑥2
� 𝑝𝑥2𝑞𝑛−𝑥2� �� 𝑛𝑥3

�𝑝𝑥3𝑞𝑛−𝑥3�⋯ �� 𝑛𝑥𝑛
�𝑝𝑥𝑛𝑞𝑛−𝑥𝑛� 

=> 𝐿 = 𝑝∑ 𝑥𝑖𝑛
𝑖=1 𝑞𝑎+𝑛𝑛−∑ 𝑥𝑖𝑛

𝑖=1 ��𝑎 + 𝑛
𝑥1

� � 𝑛𝑥2
� � 𝑛𝑥3

�⋯� 𝑛𝑥𝑛
�� 

=> 𝐿 = 𝐶.𝑝∑ 𝑥𝑖𝑛
𝑖=1 (1− 𝑝)𝑎+𝑛𝑛−∑ 𝑥𝑖𝑛

𝑖=1                                                                                                                      (2.15) 
 

where,𝐶 = �𝑎 + 𝑛
𝑥1

� � 𝑛𝑥2
� � 𝑛𝑥3

�⋯� 𝑛𝑥𝑛
�  is a constant. 

 
Taking logarithm in both sides, we have 
 
𝑙𝑛𝐿 = 𝑙𝑛�𝐶.𝑝∑ 𝑥𝑖𝑛

𝑖=1 (1− 𝑝)𝑎+𝑛𝑛−∑ 𝑥𝑖𝑛
𝑖=1 � 
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       = 𝑙𝑛𝐶 + �𝑥𝑖

𝑛

𝑖=1

𝑙𝑛𝑝 + �𝑎 + 𝑛𝑛 −�𝑥𝑖

𝑛

𝑖=1

� 𝑙𝑛(1 − 𝑝)                                                                                      (2.16) 

 
Differentiating equation (2.16) with respect to 𝑝 and equating to zero, we get 
 
𝛿
𝛿𝑝

(𝑙𝑛𝐿) =
∑ 𝑥𝑖𝑛
𝑖=1
�̂�

+
(𝑎 + 𝑛𝑛 − ∑ 𝑥𝑖𝑛

𝑖=1 )
1 − �̂�

(−1) = 0 

=>
∑ 𝑥𝑖𝑛
𝑖=1 − �̂� ∑ 𝑥𝑖𝑛

𝑖=1 − (𝑎 + 𝑛𝑛)�̂� + �̂� ∑ 𝑥𝑖𝑛
𝑖=1

�̂�(1 − �̂�) = 0 

=> �𝑥𝑖

𝑛

𝑖=1

− (𝑎 + 𝑛𝑛)�̂� = 0 

=> (𝑎 + 𝑛𝑛)�̂� = �𝑥𝑖

𝑛

𝑖=1

 

=> �̂� =
∑ 𝑥𝑖𝑛
𝑖=1

𝑎 + 𝑛𝑛
                                                                                                                                                             (2.17) 

 
where, ∑ 𝑥𝑖𝑛

𝑖=1 = 𝑥 is the total number of success out of maximum of 𝑎 + 𝑛𝑛 success in 𝑛 trials.   
 
Proof of Theorem 2.8. If the probability of success 𝑝 is known from prior knowledge or estimated on the 
basis of observation then we can also estimate the number of trial 𝑛. Let us define 𝑝� is the probability of 
success which is either known or estimated. Therefore, 
 

𝑝� =
∑ 𝑥𝑖𝑛
𝑖=1

𝑎 + 𝑛�𝑛
 

=> 𝑎 + 𝑛�𝑛 =
∑ 𝑥𝑖𝑛
𝑖=1
𝑝�

 

=> 𝑛�𝑛 =
∑ 𝑥𝑖𝑛
𝑖=1
𝑝�

− 𝑎 

=> 𝑛� =
1
𝑛 �

∑ 𝑥𝑖𝑛
𝑖=1
𝑝�

− 𝑎�                                                                                                                                             (2.18) 

 
Again, the value of 𝑎 is the initial number of success or in other words, the number success in first trial. 

Whereas, 𝑛 is the difference between the occurred number of success in successive trials.    
 
Proof of Theorem 2.10. Normal distribution can be derived from the generalized binomial distribution under 
the following conditions:  
 

i) The probability of success p or the probability of failure q are not so small and 
ii)  n, the number of trails is very large i.e. n tends to infinity. 

 
We know, the probability mass function of generalized binomial variate X with parameter a, n, d, and p is  
 

𝑃(𝑥;𝑎, 𝑛,𝑛,𝑝) =
�𝑎 + 𝑛𝑛

𝑥 �𝑝𝑥𝑞𝑎+𝑛𝑛−𝑥

∑ �𝑎 + 𝑛𝑛
𝑥 �𝑝𝑥𝑞𝑎+𝑛𝑛−𝑥𝑎+𝑛𝑛

𝑥=𝑎

  ;  𝑥 = 𝑎,𝑎 + 𝑛,𝑎 + 2𝑛,⋯ ,𝑎 + 𝑛𝑛   

Journal of Statistical Theory and Applications, Vol. 16, No. 2 (June 2017) 269–283
___________________________________________________________________________________________________________

279



 
 

                            =

(𝑎 + 𝑛𝑛)!
𝑥! (𝑎 + 𝑛𝑛 − 𝑥)! 𝑝

𝑥𝑞𝑎+𝑛𝑛−𝑥

∑ (𝑎 + 𝑛𝑛)!
𝑥! (𝑎 + 𝑛𝑛 − 𝑥)!𝑝

𝑥𝑞𝑎+𝑛𝑛−𝑥𝑎+𝑛𝑛
𝑥=𝑎

                                                                                         (2.19) 

 
Now, let us consider the standard normal variate as  
 

𝑧 =
𝑥 − 𝐸(𝑋)

�var(𝑋)
=
𝑥 − (𝑎 + 𝑛𝑛)𝑝

�(𝑎 + 𝑛𝑛)𝑝𝑞
                                                                                                                                (2.20) 

 

When 𝑥 = 𝑎, 𝑧 = 𝑎−(𝑎+𝑛𝑛)𝑝
�(𝑎+𝑛𝑛)𝑝𝑝

= −�(𝑎+𝑛𝑛)𝑝
𝑝

+ 𝑎
�(𝑎+𝑛𝑛)𝑝𝑝

 

and when 𝑥 = 𝑎 + 𝑛𝑛, 𝑧 = 𝑎+𝑛𝑛−(𝑎+𝑛𝑛)𝑝
�(𝑎+𝑛𝑛)𝑝𝑝

= (𝑎+𝑛𝑛)𝑝
�(𝑎+𝑛𝑛)𝑝𝑝

= �(𝑎+𝑛𝑛)𝑝
𝑝

 

 
Thus, in the limit as 𝑛 → ∞ Z takes the values −∞ to  ∞ Hence the distribution of Z will be a continuous 

distribution over the range −∞ to  ∞ with mean zero and variance unity. 
Now, under conditions (i) and (ii), we shall find the limiting form of the (12.1) by applying the Stirling’s 

approximation for factorials. For large n, equation (12.1) can be written as 
 
lim
𝑛→∞

𝑃(𝑥;𝑎,𝑛,𝑛,𝑝) 

= lim
𝑛→∞

(𝑎 + 𝑛𝑛)!
𝑥! (𝑎 + 𝑛𝑛 − 𝑥)!𝑝

𝑥𝑞𝑎+𝑛𝑛−𝑥

∑ (𝑎 + 𝑛𝑛)!
𝑥! (𝑎 + 𝑛𝑛 − 𝑥)!𝑝

𝑥𝑞𝑎+𝑛𝑛−𝑥𝑎+𝑛𝑛
𝑥=𝑎

                                                                                                            (2.21) 

 
Let us first work with numerator only 
 

lim
𝑛→∞

(𝑎 + 𝑛𝑛)!
𝑥! (𝑎 + 𝑛𝑛 − 𝑥)!

𝑝𝑥𝑞𝑎+𝑛𝑛−𝑥 

= lim
𝑛→∞

√2𝜋 𝑒−(𝑎+𝑛𝑛)(𝑎 + 𝑛𝑛)𝑎+𝑛𝑛+
1
2

√2𝜋 𝑒−𝑥𝑥𝑥+
1
2√2𝜋 𝑒−(𝑎+𝑛𝑛−𝑥)(𝑎 + 𝑛𝑛 − 𝑥)𝑎+𝑛𝑛−𝑥+

1
2
𝑝𝑥𝑞𝑎+𝑛𝑛−𝑥 

= lim
𝑛→∞

(𝑎 + 𝑛𝑛)𝑎+𝑛𝑛+
1
2

√2𝜋 𝑥𝑥+
1
2(𝑎 + 𝑛𝑛 − 𝑥)𝑎+𝑛𝑛−𝑥+

1
2
𝑝𝑥𝑞𝑎+𝑛𝑛−𝑥 

= lim
𝑛→∞

{(𝑎 + 𝑛𝑛)𝑝}𝑥+
1
2{(𝑎 + 𝑛𝑛)𝑞}𝑎+𝑛𝑛−𝑥+

1
2

√2𝜋�(𝑎 + 𝑛𝑛)𝑝𝑞 𝑥𝑥+
1
2(𝑎 + 𝑛𝑛 − 𝑥)𝑎+𝑛𝑛−𝑥+

1
2
 

= lim
𝑛→∞

1

√2𝜋�(𝑎 + 𝑛𝑛)𝑝𝑞 
�

(𝑎 + 𝑛𝑛)𝑝
𝑥 �

𝑥+12
�

(𝑎 + 𝑛𝑛)𝑞
(𝑎 + 𝑛𝑛 − 𝑥)�

𝑎+𝑛𝑛−𝑥+12
                                                          (2.22) 

 
We have from equation (2.20)  
 
𝑥 = (𝑎 + 𝑛𝑛)𝑝 + 𝑧�(𝑎 + 𝑛𝑛)𝑝𝑞 
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=>
𝑥

(𝑎 + 𝑛𝑛)𝑝
= 1 + 𝑧�

𝑞
(𝑎 + 𝑛𝑛)𝑝

 

 
and  
 
𝑎 + 𝑛𝑛 − 𝑥
(𝑎 + 𝑛𝑛)𝑝

= 1 − 𝑧�
𝑝

(𝑎 + 𝑛𝑛)𝑞
 

 
Again,  
 
𝑛𝑥
𝑛𝑧

= �(𝑎 + 𝑛𝑛)𝑝𝑞 
 
From equation (2.22) we have  
 

lim
𝑛→∞

(𝑎 + 𝑛𝑛)!
𝑥! (𝑎 + 𝑛𝑛 − 𝑥)!

𝑝𝑥𝑞𝑎+𝑛𝑛−𝑥 

= lim
𝑛→∞

1

√2𝜋�(𝑎 + 𝑛𝑛)𝑝𝑞 
�

(𝑎 + 𝑛𝑛)𝑝
𝑥 �

𝑥+12
�

(𝑎 + 𝑛𝑛)𝑞
(𝑎 + 𝑛𝑛 − 𝑥)�

𝑎+𝑛𝑛−𝑥+12
 

= lim
𝑛→∞

⎩
⎨

⎧ 1

1 + 𝑧�
𝑞

(𝑎 + 𝑛𝑛)𝑝⎭
⎬

⎫
(𝑎+𝑛𝑛)𝑝+𝑧�(𝑎+𝑛𝑛)𝑝𝑝+12

⎩
⎨

⎧ 1

1− 𝑧�
𝑝

(𝑎 + 𝑛𝑛)𝑞⎭
⎬

⎫
𝑎+𝑛𝑛−(𝑎+𝑛𝑛)𝑝−𝑧�(𝑎+𝑛𝑛)𝑝𝑝+12

√2𝜋 
  

= lim
𝑛→∞

⎩
⎨

⎧ 1

1 + 𝑧�
𝑞

(𝑎 + 𝑛𝑛)𝑝⎭
⎬

⎫
(𝑎+𝑛𝑛)𝑝+𝑧�(𝑎+𝑛𝑛)𝑝𝑝+12

⎩
⎨

⎧ 1

1− 𝑧�
𝑝

(𝑎 + 𝑛𝑛)𝑞⎭
⎬

⎫
(𝑎+𝑛𝑛)𝑝−𝑧�(𝑎+𝑛𝑛)𝑝𝑝+12

√2𝜋 
 

= lim
𝑛→∞

1
𝑁

√2𝜋 
                                                                                                                                                                   (2.23) 

 
where,  

𝑁 = �1 + 𝑧�
𝑞

(𝑎 + 𝑛𝑛)𝑝�

(𝑎+𝑛𝑛)𝑝+𝑧�(𝑎+𝑛𝑛)𝑝𝑝+12

�1 − 𝑧�
𝑝

(𝑎 + 𝑛𝑛)𝑞�

(𝑎+𝑛𝑛)𝑝−𝑧�(𝑎+𝑛𝑛)𝑝𝑝+12

 

=> log𝑁 = �(𝑎 + 𝑛𝑛)𝑝 + 𝑧�(𝑎 + 𝑛𝑛)𝑝𝑞 +
1
2�

log�1 + 𝑧�
𝑞

(𝑎 + 𝑛𝑛)𝑝�
 

+ �(𝑎 + 𝑛𝑛)𝑞 − 𝑧�(𝑎 + 𝑛𝑛)𝑝𝑞 +
1
2�

log�1 − 𝑧�
𝑝

(𝑎 + 𝑛𝑛)𝑞�
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=> log𝑁 = �(𝑎 + 𝑛𝑛)𝑝 + 𝑧�(𝑎 + 𝑛𝑛)𝑝𝑞

+
1
2�

log �𝑧�
𝑞

(𝑎 + 𝑛𝑛)𝑝
−
𝑧2

2
𝑞

(𝑎 + 𝑛𝑛)𝑝
+
𝑧3

3 �
𝑞

(𝑎 + 𝑛𝑛)𝑝�
3
2�

+ ⋯� 

+ �(𝑎 + 𝑛𝑛)𝑞 − 𝑍�(𝑎 + 𝑛𝑛)𝑝𝑞 +
1
2�

log �−𝑧�
𝑝

(𝑎 + 𝑛𝑛)𝑞
−
𝑧2

2
𝑝

(𝑎 + 𝑛𝑛)𝑞
−
𝑧
3 �

𝑝
(𝑎 + 𝑛𝑛)𝑞�

3
2�

+⋯� 

 

=> log𝑁 = �𝑧�(𝑎 + 𝑛𝑛)𝑝𝑞 −
𝑧2

2
𝑞 + 𝑧2𝑞 +

𝑧
2

 �
𝑞

(𝑎 + 𝑛𝑛)𝑝
−
𝑧2

4
𝑞

(𝑎 + 𝑛𝑛)𝑝
+ ⋯�

+ �−𝑧�(𝑎 + 𝑛𝑛)𝑝𝑞 −
𝑧2

2
𝑝 + 𝑧2𝑝 −

𝑧
2

 �
𝑝

(𝑎 + 𝑛𝑛)𝑞
−
𝑧2

4
𝑝

(𝑎 + 𝑛𝑛)𝑞
+ ⋯� 

=> log𝑁 =
𝑧

2�(𝑎 + 𝑛𝑛)
��

𝑞
𝑝
− �

𝑝
𝑞
�+

𝑧2

2
−

𝑧2

4(𝑎 + 𝑛𝑛) �
𝑞
𝑝
−
𝑝
𝑞
� + ⋯ 

 

Hence, as limit 𝑛 → ∞, we get log𝑁 = 𝑧2

2
=> 𝑁 = 𝑒

𝑧2

2 . 
 
Now, substituting the value of N in equation (12.5) we have 
 

lim
𝑛→∞

(𝑎 + 𝑛𝑛)!
𝑥! (𝑎 + 𝑛𝑛 − 𝑥)!

𝑝𝑥𝑞𝑎+𝑛𝑛−𝑥 =
1

√2𝜋 
𝑒−

𝑧2
2  

 
 
Putting these value in equation (12.3) we have 
 

lim
𝑛→∞

𝑃(𝑥;𝑎,𝑛,𝑛,𝑝) = 𝑓(𝑧) =

1
√2𝜋 

𝑒−
𝑧2
2

∫ 1
√2𝜋 

𝑒−
𝑧2
2∞

−∞

=
1

√2𝜋 
𝑒−

𝑧2
2         ;  −∞ < 𝑧 < ∞ 

 
which is the probability density function of standard normal variate Z.  
 
If we consider the transformation  𝑧 = 𝑥−(𝑎+𝑛𝑛)𝑝

�(𝑎+𝑛𝑛)𝑝𝑝
 then the probability density function of X will be 

 

𝑓(𝑥) =
1

√2𝜋 �(𝑎 + 𝑛𝑛)𝑝𝑞
𝑒−

1
2�
𝑥−(𝑎+𝑛𝑛)𝑝
(𝑎+𝑛𝑛)𝑝𝑝 �

2

        ;  −∞ < 𝑥 < ∞                                                                      (2.24) 

 
If we denote the mean of X by 𝜇 and variance of X by 𝜎2 then the probability density function become 
 

𝑓(𝑥) =
1

𝜎√2𝜋 
𝑒−

1
2�
𝑥−𝜇
𝜎 �

2
        ;  −∞ < 𝑥 < ∞ 
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Hence, the proof of the theorem.  
 
Proof of Theorem 3.1. The form of the probability mass function of generalized Multinomial distribution is  
 

𝑃(𝑥1,𝑥2,⋯ , 𝑥𝑘;𝑎,𝑛,𝑛,𝑝1,𝑝2,⋯ ,𝑝𝑘) =

1
𝑥1!𝑥2!⋯𝑥𝑘!𝑝1

𝑥1𝑝2
𝑥2 ⋯𝑝𝑘

𝑥𝑘

∑ 1
𝑥1! 𝑥2!⋯𝑥𝑘!𝑝1

𝑥1𝑝2
𝑥2 ⋯𝑝𝑘

𝑥𝑘𝑎+𝑛𝑛
𝑥1,𝑥2,⋯,𝑥𝑘=𝑎

 

 
Considering 𝑘 = 2 such that 𝑥1 + 𝑥2 = 𝑎 + 𝑛𝑛 and 𝑝1 + 𝑝2 = 1, we obtain 
 

𝑃(𝑥1,𝑥2;𝑎,𝑛,𝑛,𝑝1,𝑝2) =

(𝑎 + 𝑛𝑛)!
𝑥1! 𝑥2! 𝑝1

𝑥1𝑝2
𝑥2

∑ (𝑎 + 𝑛𝑛)!
𝑥1! 𝑥2! 𝑝1

𝑥1𝑝2
𝑥2𝑎+𝑛𝑛

𝑥1,𝑥2=𝑎

 

=> 𝑃(𝑥1;𝑎,𝑛,𝑛,𝑝1,𝑝2) =

(𝑎 + 𝑛𝑛)!
𝑥1! (𝑎 + 𝑛𝑛 − 𝑥1)!𝑝1

𝑥1𝑝2
𝑎+𝑛𝑛−𝑥1

∑ (𝑎 + 𝑛𝑛)!
𝑥1! (𝑎 + 𝑛𝑛 − 𝑥1)!𝑝1

𝑥1𝑝2
𝑎+𝑛𝑛−𝑥1𝑎+𝑛𝑛

𝑥1=𝑎

 

 
Letting 𝑥1 = 𝑥, 𝑝1 = 𝑝 and 𝑝2 = 1 − 𝑝1 = 1 − 𝑝 = 𝑞, we have 
 

𝑃(𝑥;𝑎, 𝑛,𝑛,𝑝) =

(𝑎 + 𝑛𝑛)!
𝑥! (𝑎 + 𝑛𝑛 − 𝑥)!𝑝

𝑥𝑞𝑎+𝑛𝑛−𝑥

∑ (𝑎 + 𝑛𝑛)!
𝑥! (𝑎 + 𝑛𝑛 − 𝑥)!𝑝

𝑥𝑞𝑎+𝑛𝑛−𝑥𝑎+𝑛𝑛
𝑥=𝑎

 

=> 𝑃(𝑥; 𝑎,𝑛,𝑛,𝑝) =
�𝑎 + 𝑛𝑛

𝑥 �𝑝𝑥𝑞𝑎+𝑛𝑛−𝑥

∑ �𝑎 + 𝑛𝑛
𝑥 �𝑝𝑥𝑞𝑎+𝑛𝑛−𝑥𝑎+𝑛𝑛

𝑥=𝑎

 

Hence, 
 

𝑃(𝑥;𝑎, 𝑛,𝑛,𝑝) =
�𝑎 + 𝑛𝑛

𝑥 �𝑝𝑥𝑞𝑎+𝑛𝑛−𝑥

∑ �𝑎 + 𝑛𝑛
𝑥 �𝑝𝑥𝑞𝑎+𝑛𝑛−𝑥𝑎+𝑛𝑛

𝑥=𝑎

  ;  𝑥 = 𝑎,𝑎 + 𝑛,𝑎 + 2𝑛,⋯ ,𝑎 + 𝑛𝑛                                       (3.2) 

 
which is the probability mass function of generalized Binomial distribution.  
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