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Abstract. In this paper, the R-function theory(RFT) is applied to solve the free vibration of slip 
clamped trapezoidal shallow spherical shell on Winkler foundation. Firstly the fundamental solution 
of the biharmonic operator, the boundary equation and the R-function are used to construct the 
quasi-Green’s function. Then the model governing differential equation of the problem is reduced to 
the Fredholm integral equation of the second kind by Green’s formula. The singularity of the kernel of 
the integral equation is overcome by choosing a suitable form of the normalized boundary equation by 
the R-function. A numerical example shows that this method is an effective numerical method.  

Introduction 
In the paper, the R-function theory proposed by Rvachev[1] are utilized. The free vibration of slip 
clamped trapezoidal shallow spherical shell on Winkler foundation is studied. A quasi-Green function 
is established by using the fundamental solution and the boundary equation of the problem. This 
function satisfies the homogeneous boundary condition of the problem, but it does not satisfy the 
fundamental differential equation. The key point of establishing the quasi-Green function consists in 
describing the boundary of the problem by normalized equation 0=ω  and the domain of the problem 
by inequality 0>ω . There are multiple choices for the normalized boundary equation. Based on a 
suitably chosen form of the normalized boundary equation, a new normalized boundary equation can 
be established such that the singularity of the kernel of the integral equation is overcome. For any 
complicated area, a normalized boundary equation can always be found according to the R-function 
theory. Thus, the problem can always be reduced to the Fredholm integral equation of the second kind 
without singularity. Using the present method, Li and Yuan solved successfully the free vibration of 
clamped thin plates[2], the simply-supported thin plate[3,4] and shallow spherical shells[5,6]. For the 
first time, the proposed R-function theory method is applied to study the free vibration problem of slip 
clamped trapezoidal shallow spherical shell on Winkler foundation. The numerical example 
demonstrates the efficiency and the feasibility of the R-function theory method.  

Fundamental equations 
The governing differential equations of the free problem of slip clamped trapezoidal shallow 
spherical shell on Winkler foundation [7] can be expressed as follow 
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24 )( xx ∂∂+∂∂=∇  is the biharmonic operator, ϕ  is the stress function, w  is the radial 
deflection of the shell, R  is the radius of curvature of the shell, ),( 21 xx=x , Ω  is the domain of the 
trapezoid of shallow spherical shells in Cartesian coordinates, t  is time; and ))1(12( 23 ν−= EhD  is the 
flexural rigidity of the shell, in which h  is the thickness of the shell, and E  and ν  are Young’s 
modulus and Poisson’s ratio, respectively. 
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The slip clamped boundary conditions can be written as 
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22 xx ∂∂+∂∂=∇  is the Laplace operator, and Ω∂=Γ  is the boundary of the domain Ω . 
Making use of Eqs.(1) and (3), we can easily obtain 

RwEh /2 =∇ ϕ .                                                                                                                                   (4) 
Substituting Eq.(4) into Eq.(2) yields  
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The model governing differential equation can be obtained as follow 
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where W  is the model function. 

Integral equations 
Let 0=ω  be the normalized boundary equation of the first-order on the boundary Γ , i.e.[1] 

 
0)( =xω , 1=∇ω ,   Γ∈x  and 0)( >xω ,    Ω∈x .                                                                       (9) 

 
The quasi-Green function can be established as follows:  
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in which ),( 21 xx=x  and ),( 21 ξξ=ξ . Obviously, the quasi-Green function ),( ξxG  satisfies the 
following condition 
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In order to reduce the boundary value problems Eq.(7) and Eq.(8) into an integral equation, the 

following Green’s formula of sets of function )(4 ΩC , i.e., U , )(4 ΓΩ∈ UCV , is applied 
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Replacing U  and V  in Eq.(10) by w  and Green quasifunction G , noticing that rr ln)8/1( 2π  is 

the fundamental solution[6] of the biharmonic operator, and using Eqs. (7), (8) and (13), we can easily 
obtain 
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Substituting Eq.(11) into Eq.(16), we can obtain the expression of ),( ξxK  in detail. 
),( ξxK  in Eq.(16) appears discontinuous only if 01 =R , i.e., both ξx =  and 0=ω  come into 

existence. Actually, when ξx = , Eq.(16) can be reduced to 
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To make the kernel of the integral equation )(),( Ω∂Ω∈ UCK ξx , A normalized boundary equation 

will be constructed to ensure the continuity of ),( ξxK  in the following. It can be easily testified that 
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where 00 =ω  is the normalized equation of the boundary Γ , i.e., 0ω  satisfies Eq.(9). Obviously, 
equation ω  is also a normalized boundary equation of the first-order. 

Based on a suitably chosen normalized boundary equation 00 =ω , a new normalized boundary 
equation 0=ω  can be constructed by using Eq.(18), which ensure the continuity of the integral kernel 

),( ξxK  everywhere in the integral domain. 
In order to obtain numerical results of the boundary problem, the integral equation (15) can be 

discretized into the homogeneous linear algebraic equation. The determinant of the matrix of 
coefficients of homogeneous linear algebraic equations Eq.(15) must be equal to zero. So, the natural 
frequency ω  or )2/( πω=f  can be obtained by solving the equation. 

Numerical example 
A slip clamped trapezoidal shallow spherical shell is shown in Fig.1, and we set == ea 1.2, 

== db 1.0, and =c 1.1. The following reference parameters are used: the radius of curvature of the 
shell R =3, the thickness of the shell h =0.1, Poisson’s ratio 3.0=ν , Young’s modulus E = 9103× , 
the elastic foundation coefficient 7102 ×=k ,and mass density per unit area m =780. According to the 
theory of R-function[1], a normalized boundary equation of the first rank 00 =ω  can be constructed 
from the following equation:   
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ω , and 

cxxc /)( 221 −=ω . 01 =ω , 02 =ω  and 03 =ω  denote various parts of the boundary of trapezoidal 

shallow spherical shell, respectively. Numerical results by the R-function theory(RFT) and ANSYS 

finite-element method (FEM) are shown in Table 1 for comparison. Numerical results by 11×11 

trapezoidal integral domain of the R-function theory(RFT) show fine agreement with the FEM 

solution by 200×200. It shows the advantages and efficiency of the present method. 
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Tab.1 Natural frequency f of slip clamped trapezoidal shallow spherical shell 

R  

The mode rank 

1  2  3 

RFT FEM RFT FEM RFT FEM 

3 73.784 73.634 88.759 89.203 117.739 118.69 
5 68.930 68.773 84.766 85.235 114.76 115.73 
7 67.531 67.372 83.633 84.108 113.92 114.91 

Conclusions 
In the present paper, the R-function theory is applied to study the free vibration of slip clamped 
trapezoidal shallow spherical shell on Winkler foundation. Compared with ANSYS finite element 
solution, it shows good agreement. R-function theory can also be used to effectively solve various 
boundary value problems in engineering by constructing a trial function that satisfies the boundary 
conditions and by combining with the method of weighted residuals such as the variational method 
and the spline-approximation [7-8]. 
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Fig.1 Slip clamped shallow spherical shell 
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Fig.2 Division of trapezoidal integral domain 
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