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Abstract—Nonlinear model simplification is an important part 
of many applications, such as flow control, optimization and 
statistical analysis. In this article, we summarize the 
POD-DEIM method to solve the nonlinear system of the truss 
frame .And use an example of a clamped beam to illustrate the 
DEIM specific simplification process with images which can 
intuitively observe the image of the specific selection process. 
The application of the method to the truss frame to verify the 
correctness of the study. The results show that POD-DEIM is 
able to approximate fully nonlinear behavior of geometrically 
nonlinear finite element models with good accuracy. 
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I. INTRODUCTION 

The invention of the computer opened a new field of 
research in physics and engineering. One of the 
developments is the Finite Element Method .A lot of dofs 
makes the finite element problem solved expensive. In order 
to make the finite element analysis (FEA) cheaper, a model 
order reduction (MOR) technique has been developed. This 
is done by writing a displacement field with a set of reduced 
coordinates[2].For linear problems, this can reduce the 
amount of computations required. However, the number of 
computations for nonlinear problems can not be reduced in 
the same way. This paper focuses on a special type of 
nonlinear problem, geometric nonlinear problem. In general, 
the internal forces of such systems include linear and 
non-linear contributions. Although the linear contribution 
can be reduced by using the reduced coordinates, the 
evaluation of the nonlinear term needs to know the full order 
shift field. This creates a bottleneck in the calculation of time. 
The solution to the bottleneck of the nonlinear term is found 
in the Discrete Empirical Interpolation (DEIM)[1,3]. In fact, 
the POD-DEIM reduction is reduced to the approximation of 
the nonlinear part of the internal force, which requires only a 
few components (dofs) of the nonlinear internal force 
vector[5,6]. 

II. MODEL-ORDER REDUCTION BY THE POD–DEIM 

METHOD 

A. Nonlinear Dynamic Systems 

Many scientific modeling and engineering design issues 
involve partial differential equations (PDEs) that must be 
solved for time t and spatial variable x. Assume that the 
problem is written as: 


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Where the linear )),(( txyL and non-linear )),(( txyF parts of 
equation can be written as separate. Ideally, the analytical solution 
of (1) can be found. Discretising the spatial variable x yields: 
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The constant matrix A represents the part of the equation that 
is linear in y(t).It is assumed that 

F(y(t)),a scalar valued nonlinear function in y(t). These 
gradients are found by calculating the derivative (Jacobian) of the 
discretised function with respect to y:   
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where in case of point-to-point functions the matrices A and JF 
are diagonal. Jacobian JF then looks like:  
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Here, the projection matrix Vk is introduced to project the 
discrete spatial domain into the subspace  , nk   of  lower 
dimension. Then get a reduced system: 
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And corresponding Jacobian: 
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The use of Galerkin projection does not provide a solution to 
the problem of having to compute the nonlinear force and its 
Jacobian. The DEIM algorithm aims to overcome these two 
bottlenecks. 
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B. Discrete Empirical Interpolation Method  

DEIM is applicable to nonlinear functions as well as to 
its partial derivatives. The main idea behind this 
DEIM-approach is to compute the nonlinear term only at m 
carefully selected locations, with nm  , and interpolate 
elsewhere. The nonlinear equation (2) spans into a subspace 

nnRF  , and the orthogonal basis of the subspace is 
expressed as: 
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In most algorithms the basis vectors ui are ordered in 
such a way that the first basis vector ui denotes the most 
meaningful one, and the others follow by order of decreasing 
importance. So the reduced set of base vectors would 
be  mm uuU ,...,1 .Suppose that the same assumption holds 

for the function  

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Here we use simplified  tf instead of it .The system (9) 
needs to be solved for the unknown ci. This done by 
introducing a boolean matrix P that selects the m rows that 
are necessary to make the system invertible: 
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Using this yet to be determined matrix(9), the basis 
interpolation of (8) can be made invertible and thus solvable 
for  tc : 
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So the  tf  can be described as:   
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Where D is referred to as the DEIM-matrix. The exact 
shape of D is still unknown, but due to the selection by P, 
only m components of the right side f(t) are needed. Our 
primary interest is how P can be found. This matrix results 
from the DEIM-algorithm, which will be explained next. 

DEIM will select for each column in P an index that will be unity. 

Algorithm: DEIM 

Input:   nm

ii Ru 1
 linearly independent 

Output:   mT
m N  ....,1，  
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3:  for 2i  to m do 
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8:  end for 

The inputs to algorithm are the m basis vectors of the basis U 
that were found by POD. The output is an array   that contains 
the index for the unity components in boolean matrix P. Matrix P 
can thus be constructed from  . 

Lines 1-2 are meant to initialize the algorithm. For line 3 on, 
the iterative procedure is started. On line 4, the interpolation 
constants in c  are solved for. If CU  is subtracted from 

iu (line 5), the residual r will always be nonzero. Lines 6 

prevents the algorithm from stalling. To conclude the explanation, 
the remaining steps of line 7 are pointed out. The first operation is 
the updating of U with the new basis vector iu , which will be 

needed for the next iteration. The last operation on line 7 appends 
the newly found index i  to the array of index. When the 

for-loop ends, this array will be returned as an output. 

III. USE THE ICON DISPLAY DEIM ALGORITHM HOW TO WORK 

The DEIM-algorithm described in the previous section can be 
visualized with a series of plotted basis vectors ui, the 
approximation Uc of ui, and the residual r. Suppose that a beam is 
clamped between two vertical walls, and a vertical load is exerted 
at the middle. The beam is discretized in 10 elements of equal 
length(figure 1).All segments have the same mass, for each 
segment equally divided among two nodes. A second 
simplification is that only shear (vertical) forces are considered. 
Since both ends are clamped in the walls, a total of 9 Degrees Of 
freedom remain. It is assumed that these shear forces 
  19Rqf are a nonlinear function of the vertical deflections q. 
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FIGURE I.  THE CLAMPED-CLAMPED BEAM 

The external force g(t) is applied to the beam at t=0 (step 
load).The beam will start oscillating, generating 
time-varying shear forces at each of the nodes. Suppose that 
for each time increment a snapshot is taken of the shear 
forces. Hence, if there are N time steps, a N9 snapshot 
matrix Fs can be made. The columns of this snapshot matrix 

span a subspace 9RF  .A basis can be calculated for 
F by means of a Singular Value Decomposition. 

 VUFS   

The matrix U contains the basis vectors 91,...,uu that 

belong to the subspace F . Matrix  contains a diagonal 
with singular values, indicating the order of decreasing 
dominance of basis vectors ui. Using the force eigenmodes 
derived from POD, any possible shear force within subspace 
F can be written as a superposition of these eigenmodes: 

    tUctf   

This superposition of force modes can be truncated, 
considering a smaller number of modes m than the total of 
9.However, if 9m , the matrix mRU  9

m  becomes 
rectangular. This brings back the problem of selecting m 
rows in um described in the previous section. The process of 
selecting the m rows is visualised by Figure 2 (a) and 
(b) ,which shows pilots of basis vectors iu ,interpolations 

cU  and their Ucui r  for 6 iterations of algorithm 

DEIM. Step 1 of DEIM initialises algorithm DEIM (lines 
1-2).In step 2, UcPuP TT 2 is solved for c, such that Uc  
equals u2 in component 7.In step 3,the interpolation process 
uses the newly obtained point to make an approximation 
of 3u ,now using two interpolation points 5 and 7.Hence a 

maximum in r can always be found, which ensures that the 

process will never stop before all required m iteration steps 
are carried out. The remaining steps will obtain more and 
more interpolation points. After step 5, all linearly 
independent indices have been selected .This explains why 
the interpolation exactly fits u6. The calculations done in 
step 6 are obsolete, because 5 iterations already represent the 
full order system. 

IV. APPLY THE ALGORITHM TO TRUSS FRAME  

One of the more simple types of finite elements is the bar 
element (sometimes called truss element), of which several 
descriptions (both linear and nonlinear) exist. The truss 
frame is shown in Figure 3. The frame consists of 14 nodes, 
connected by a total of 20 bar elements. The structure is 
loaded at the top end on the right side (node 7). 

 
(a) 

 
(b) 

Legend:     iu ------- Uc  ------ r  

。: newly selected DEIM index 
* : previously selected DEIM index 

FIGURE II.  (A)DEIM STEPS 1-3. (B)DEIM STEPS 4-6 

 
FIGURE III.  THE TRUSS FRAME MADE FROM GEOMETRICALLY 

NONLINEAR BAR ELEMENTS 

     
(a)                          (b) 

FIGURE IV.  (A) DEFORMED SHAPE FOR THE TRUSS FRAME UNDER 
STATIC LOADING (B) SINGULAR VALUES CORRESPONDING TO 

THE BASIS 

The first step is to do a static loading to verify that the 
structure is indeed showing nonlinear behavior (Figure 4a).The 
dynamic response is solved for a ramp load at the tip of the truss 
at node 14. After 1/3rd of the time steps, the load reaches its 
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maximum amplitude, at which the load level is maintained 
throughout the remaining time steps. Again, the difference 
between the linearized and the full order nonlinear system is 
apparent, (Figure 5). 

 
FIGURE V.  THE DISPLACEMENT RESPONSE FOR NODE 7 OF THE 

TRUSS FRAME 

Note that the full system of equations is of the size 
q , 20f R .This is since there are 14 nodes that each have 2 
dofs. Nodes 1 and 8 are constrained. So the remaining 

2022-214  dofs are free. The snapshots obtained for 
the nonlinear part of the internal forces yield a matrix of 
basis vectors 2020RU .The corresponding singular 
values show a distribution (Figure 4b) that indicates that 
much of the nonlinear internal force dynamics is contained 
in the subspace spanned by the first four basis vectors. The 
first four singular values have a total sum of 2.8011e9.The 
sum of all singular values 2.8098e9.So the proportion 
reached 99.8 % contained in the subspace spanned by the 
basis vectors  414 ...u uU  .This determined the number of 
dofs to be selected for testing the POD-DEIM reduction. The 
POD-DEIM reduction has been tested with 1, 2, 3 and 4 dofs. 
The results for the displacements are given in Figure 6.As 
can be seen, the responses for 2, 3 and 4 dofs are able to 
approximate the full 20-dof system with reasonable accuracy 
during the first 1/3rd of the total time. The 4-dof system is 
able to track the original response. The results obtained for 
the geometrically nonlinear truss frame show that the 
application of DEIM to a POD-reduced system can provide 
good results. Through the calculation can be obtained when 
in the steady state the error shown in Table 1. 

 

 
FIGURE VI.  RESULTS OBTAINED BY DIRECT APPLICATION OF 

DEIM ON THE EQUATIONS OF MOTION OF THE TRUSS 
FRAME 

TABLE I.  ERROR ANALYSIS 

m 1 2 3 4 
data 0.023 0.795 0.734 0.740 
error  96.8% 0.729% 1.0% 0.05% 

For m = 4 dofs, the POD-DEIM response could accurately 
track both POD-reduced and the unreduced system. This 
POD-DEIM approximation required only information from 4 out 
of 20 components from the nonlinear internal force vector 

120f R , together with 1644   corresponding components 
of the Jacobian matrix. Without the additional reduction of DEIM, 
the POD-reduced system would theoretically have required 
20×20 = 400 components2 to be known from the Jacobian. The 
fact that the responses are accurate and stable while using a much 
smaller number of components implies that the computational 
cost can be reduced. By calculating the time of the calculation 
(Table 2).Through the chart can be seen after the reduction of the 
model calculation time has been greatly improved 

TABLE II.  TIME ANALYSIS 

 Unreduced model Reduced model 
time 151s 43s 

As a validation case, we chose the truss frame which systems 
include linear and non-linear contributions. The reduced-order 
model contains only a few degrees of freedom, but still expresses 
the characteristics of the original system in a very accurate 
way .And the calculation time has been saved. 

V. CONCLUSIONS 

This paper introduces the POD-DEIM algorithm and 
graphically shows the operation of the DEIM algorithm, and 
through the reduction of the truss model, which reduce the 
nonlinear contributions in a truss frame from 20 elements back to 
just 4 elements. It has been shown that DEIM is able to 
approximate fully nonlinear behavior of geometrically nonlinear 
finite element models with good accuracy. 

ACKNOWLEDGMENT 

The project was supported by Zhejiang province higher 
Visiting Scholar project “Model order reduction technology and 
used in MEMS, FX2014080”. And the project was supported by 
“Research on multi-disciplinary Integrated design Optimization 
Method Based on MBSE, LY15E050023” .Also the project was 
supported by “Research and Development of Automatic 
Membrane Filtration Intelligent Agglomeration Operation 
Module, 2016YFF0103203”. 

REFERENCES 
[1] S. Chaturantabut, D.C. Sorensen, Nonlinear model reduction via discrete 

empirical interpolation, SIAM J. Sci. Comput. 32(5) (2010) 2737–2764. 

[2] de Pando M F, Schmid P J, Sipp D. Nonlinear model-order reduction for 
compressible flow solvers using the Discrete Empirical Interpolation 
Method[J]. Journal of Computational Physics, 2016, 324:194-209 

[3] Stanko Z P, Boyce S E, Yeh W. Nonlinear model reduction of unconfined 
groundwater flow using POD and DEIM[J]. Advances in Water Resources, 
2016, 97:130-143. 

[4] S. Chaturantabut, D.C. Sorensen, Application of POD and DEIM on 
dimension reduction of non-linear miscible viscous fingering in porous 
media, Math. Comput. Model. Dyn. Syst. 17(4) (2011) 337–353 

[5] D.A. Knoll, D.E. Keyes, Jacobian-free Newton–Krylov methods: a survey 
of approaches and applications, J. Comput. Phys. 193(2) (2004) 357–397. 

49

Advances in Intelligent Systems Research (AISR), volume 141



[6] Antil H, Heinkenschloss M, Sorensen D C. Application of the 
Discrete Empirical Interpolation Method to Reduced Order Modeling 
of Nonlinear and Parametric Systems[Book Section]. Book Section]. 
Ed.Eds., 2014,Vol. 9(pp 101-136. 

[7] Stefanescu R, Sandu A, Navon I M. Comparison of POD reduced 
order strategies for the nonlinear 2D shallow water equations[J]. 
International Journal for Numerical Methods in Fluids, 2014, 
76(8):497-521. 

[8] Sargsyan S, Brunton S L, Kutz J N. Nonlinear model reduction for 
dynamical systems using sparse sensor locations from learned 
libraries[J]. Physical Review E, 2015, 92(0333043). 

[9] Xiao D, Fang F, Buchan A G,et al. Non-linear model reduction for 
the Navier-Stokes equations using residual DEIM method[J]. Journal 
of Computational Physics, 2014, 263:1-18. 

 

50

Advances in Intelligent Systems Research (AISR), volume 141




