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Abstract—A delay differential equation model of paddy 
ecosystem was put forward to reveal the interaction among rice, 
weeds and inorganic fertilizer on the system. The results show 
that, the system exists a rice and weed extinction equilibrium, 
and it also exists a rice extinction or weed extinction equilibrium. 
Their stable and unstable conditions are obtained.  Moreover, 
Hopf bifurcations occur at the rice extinction or weed extinction 
equilibrium as the delay crosses some critical values. According 
to the conditions, some measures to increase rice yield were 
recommended.  
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I.  INTRODUCTION 

As is well know, there are a lot of components in the paddy 
ecosystem, such as rice, weed, insect, microorganism, 
inorganic fertilizer, light intensity, moisture. The interaction of 
the components is a complex nonlinear relationship, and it also 
is a process of their survival, evolution and adaptation in the 
environment. At present, the research on paddy ecosystem is 
mainly concentrated in the field experiment and data analysis 
[1–3].  

In order to describe quantitatively the change of material 
and energy in the paddy ecosystem, we need construct a 
dynamics model to reflect their conversion characteristics. 
Using this mathematical model, we can predict the yield of rice, 
we also can analyze the evolution law of soil fertility. But there 
are still not the matured mathematical models such as those in 
the forest and marine ecosystems [4-7]. 

The main purpose of this paper is to establish a differential 
equation model for the interaction among the main components 
of a paddy ecosystem, and to analyze the existence and stability 
of the system’s equailibria. 

II. THE MODELING OF A PADDY ECOSYSTEM  

We only consider three main components of paddy 
ecosystem: rice, weed and inorganic fertilizer. The growth of 
rice and weeds are affected by soil fertility, light and other 
factors. There is natural death for the rice and weed.  The 
inorganic fertilizer in soil partly comes from fertilization and 
partly comes from organic fertilizer such as decaying leaves of 
rice and weed, which can are transformed to inorganic fertilizer 
after some time by microbial. Natural loss also reduces the 
content of inorganic fertilizers in soil. 

According to the interaction relationship, a dynamic model 
of composite farming paddy ecosystem is established as 
follows, 
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where r(t) denotes the rice biomass per unit area at time t, p(t) 
denotes the weed biomass per unit area at time t, and u(t) 
denotes the inorganic fertilizer content  per unit area at time t. 
In system (1), we assume that the uptake of inorganic fertilizer 
by rice and weed follows the mass action law. 

On the right hand side of the first two equations in system 
(1), the c1s1ur and c2s2up represent rice and weed growth rate, 
respectively, and the d1r   and d2p are the mortality of rice and 
weed. The rice and weed growth rates are affected by light 
intensity I and inorganic fertilizer u. The parameters si are a 
light effects (i=1,2).  

On the right hand side of the third equation in system (1), 
the first term represents artificial fertilizer rate. The second and 
the third terms are inorganic fertilizers transformed from dead 
rice and weeds at t-τ time. The fourth and the fifth terms are the 
consumption of inorganic fertilizer by the growth of rice and 
weed. The last item indicates the loss of inorganic fertilizer in 
paddy field. 

According to the actual requirements, the parameters in 
system (1) are non negative, and satisfy the following 
conditions 0<ci≤1, b≥0 and di>0. 

For the sake of convenience, we introduce the following 
notations, 
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where θ1 is called the relative mortality of rice, θ2  is called the 
relative mortality of weed. 

III. THE EXISTENCE AND STABILITY OF EQUILIBRIA  

An equilibrium (r*,p*,u*) of system (1) satisfies the 
following equations, 
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We make a coordinate transformation x=r–r*, y=p–p*, z=u–
u*, then system (1) can be converted to 
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So the characteristic equation of the linearized system of (1) 
is 
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From F1(r*,p*,u*)=0, we have r*(c1s1u*–d1)=0. Therefore, 
we obtain 

* *
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From F2(r*,p*,u*)=0, we have p*(c2s2u*–d2)=0. Therefore, 
we know  

* *
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Thus we can calculate the equilibria of system (1) in three 
cases as follows. 

Case (I), r*=0 and p*=0. At this case, we have the following 
conclusion of the existence and stability of equilibrium. 

Theorem 1. There exists a paddy and weed extinction 
equilibrium of system (1), given by 
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asymptotically stable. Otherwise, If b/d3>min{θ1, θ2}, the 
equilibrium  (r1

*, p1
*, u1

*)   is unstable. 

Proof. Substituting r*=0 and p*=0 into F3(r*,p*,u*)=0, we 
have u*= b/d3. Therefore, there exists a paddy and weed 
extinction equilibrium (r1

*, p1
*, u1

*)=(0,0, b/d3) of system (1). 
At the equilibrium (r1

*, p1
*, u1

*)  , the characteristic equation of 
the linearized system  is as follows from (4) 
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It has three eigenvalues λ1= –d3<0, λ2=c1s1(b/d3–θ1), and 
λ3=c2s2(b/d3–θ2) . 

If b/d3<min{θ1, θ2}, the eigenvalues λ2 < 0 and λ3 < 0. 
Therefore, the equilibrium (r1

*, p1
*, u1

*) of system (1) is locally 
asymptotically stable. 

If b/d3>min{θ1, θ2}, at least one of the eigenvalues  λ2 and 
λ3 is positive. Therefore, the equilibrium (r1

*, p1
*, u1

*) is 
unstable under this condition. 

Case (II), p*=0 and u*=θ1. From F3(r*,p*,u*)=0 , we have 
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Therefore, we obtain the conclusion of the existences and 
stability of equilibrium at the case (II). 

Theorem 2. If b/d3 > θ1, then system (1) has a equilibrium 
(r2

*, p2
*, u2

*), where  
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Furthermore, (I)if θ1 > θ2, then the equilibrium  (r2
*, p2

*, u2
*) 

is unstable.  

(II) If θ1 < θ2 and 
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then the equilibrium   (r2
*, p2

*, u2
*)    is locally asymptotically 

stable for τ ≥ 0. 

(III) If θ1 < θ2 and 
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then there exists a positive number τ0, when  0 ≤ τ < τ0, the 
equilibrium   (r2

*, p2
*, u2

*)  is locally asymptotically stable; 
when τ >τ0, the equilibrium   (r2

*, p2
*, u2

*)  is unstable, and a 
Hopf bifurcation  emerges at τ =τ0. 

Proof. Obviously, r2
* is positive if b/d3 > θ1. Therefore, 

there exists a weed extinct equilibrium (r2
*, p2

*, u2
*). 

We consider the stability of the equilibrium (r2
*, p2

*, u2
*). 

From (4), the characteristic equation of the linearized system is 
as follows 
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It has one real eigenvalue λ1=c2s2(θ1–θ2). And its other 
eigenvalues are the roots of the following equation 
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(I) Obviously, if θ1 > θ2, the eigenvalue λ1> 0. It indicates 
that the equilibrium (r2

*, p2
*, u2

*) is unstable. 

(II) If θ1 < θ2, then the real eigenvalue λ1< 0. If the time 
delay τ = 0, then the two roots of (7) are 
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Obviously, the real parts of λ2,3 are less than zero. Therefore, 
when τ = 0, the equilibrium (r2

*, p2
*, u2

*) is locally 
asymptotically stable if θ1 < θ2.  

Next we consider the case τ > 0. Assume equation (7) has a 
imaginary root λ=iξ (ξ>0).  Substituting it into (7) gives 
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Separating its real and imaginary parts yields 
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Based on sin2τξ + cos2τξ = 1, one has  
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From (5), we have 
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Obviously, if (s1r2
*+d3)2 – 2c1s1
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*θ1 ≥ 0, then there is not 

any real number ξ such that (9) holds. Otherwise, if (s1r2
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So, there also is not any real number ξ to make (9) hold. 
Therefore, the real parts of any roots of (7) must be negative 
for any τ > 0. It shows that the equilibrium (r2

*, p2
*, u2

*) is 
locally asymptotically stable for any τ ≥ 0. 

(III) If condition (6) holds, we have 
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Therefore, there exist two positive real number ξ- and ξ+   
such that (9) holds, where one might as well assume ξ- ≤ ξ+. 
Thus, 
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From (8), it is easy to know that cosτ-ξ- >0. Noticed that 
sinτ-ξ- <0, so 
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If cosτ+ξ+ >0, and noticed that sinτ+ξ+ <0, then we have 
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If cosτ+ξ+ <0, and sinτ+ξ+ <0, then we have 
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Next, we verify the transversal condition. Taking the 
derivative of λ with respect to τ  in (7), we have 
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Thus, the transversal condition is satisfied, hence a Hopf 
bifurcation occurs at τ=τ0. 

Case (III), p=0 and u=θ1. Similar to case (II), we have the 
following conclusion of the existence and stability of 
equilibrium. 

Theorem 3. If b/d3 > θ2, then system (1) has a equilibrium 
(r3
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*), where  
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Furthermore, (I) if θ1 < θ2, then the equilibrium (r3
*, p3

*, u3
*) 

is unstable.  

(II) If θ1 > θ2 and 
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then the equilibrium  (r3
*, p3

*, u3
*)   is locally asymptotically 

stable for τ ≥ 0. 

(III) If θ1 > θ2 and 
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then there exist a positive number τ0, when 0 ≤ τ < τ0, the 
equilibrium  (r3

*, p3
*, u3

*)   is locally asymptotically stable; 
when τ > τ0, the equilibrium  (r3

*, p3
*, u3

*)  is unstable, and a 
Hopf bifurcation  emerges at τ = τ0. 

IV. EXAMPLES  

According to those discussion in Section III, we give two 
examples to illustrate the correctness of our results.  

Example 1. In system (1), let c1=0.8, c2=0.3, s1=6, s2=2, 
b=5, d1=0.2, d2=0.7, d3=0.2 and τ = 5. Then system (1) has 
three equilibria as follows, the paddy and weed extinct 
equilibrium (0, 0, 25), the paddy extinct equilibrium (0, 2.9184, 
1.1667), and the weed extinct equilibrium ((99.8333, 0, 0.0417). 

By computing, we have b/d3 = 25, θ1 ≈ 0.0417 and 
θ2≈1.1667. So the inequality b/d3 > θ2 > θ1 holds. We can verify 
inequalitie (5) hold. From Theorem 1-3, the equilibria (0, 0, 25) 
and (0, 2.9184, 1.1667) are unstable, and the weed extinction 
equilibrium (99.8333, 0, 0.0417) is asymptotically stable for 
any τ ≥ 0. 

Example 2. In system (1), let c1=0.5, c2=0.3, s1=0.6, s2=0.01, 
b=0.015, d1=0.2, d2=0.99, d3=0.01 and τ = 5. By computing, we 
have b/d3 = 1.5, θ1 ≈0.6667 and θ2≈330. So the inequality θ2 > 
b/d3 > θ1 holds. Then system (1) has two equilibria as follows, 
the paddy and weed extinct equilibrium (0, 0, 1.5), and the 
weed extinct equilibrium (0.0417, 0, 0.6667). 

It is not difficult to verify inequality (6) holds. From (13), 
we obtain τ0≈65.4899. Therefore, by Theorem 2, the equilibria 
(0.0417, 0, 0.6667) is asymptotically stable when 0 ≤ τ < τ0 
(see Fig. 1(A)); when τ > τ0, the equilibrium   (0.0417, 0, 
0.6667)   is unstable, and a Hopf bifurcation emerges at τ = τ0. 
(see Fig. 1(B)).  
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FIGURE I.  TIME RESPONSE CURVES OF EXAMPLE  2, C1=0.5, C2=0.3, 

S1=0.6, S2=0.01, B=0.015, D1=0.2, D2=0.99  AND D3=0.01. (A) Τ=5, 
(B) Τ=65.5 

V. CONCLUSIONS  

We have proposed a differential equation model that 
reflects the interaction among rice, weed and inorganic 
fertilizer in the paddy ecosystem. In this system, a rice and 
weed extinct equilibrium (0, 0, u1

*) always exists, and the 
equilibrium is stable under condition b/d3 < min{θ1, θ2}. 
Otherwise, it is unstable. At this time, if θ1 > θ2, then when 
b/d3 > θ2, system (1) has a rice extinction equilibrium (0, p2

*, 
u2

*), which is asymptotically stable; when b/d3 > θ1, system (1) 
still has a weed extinction equilibrium (r3

*, 0, u3
*), which is 

unstable. If θ1 < θ2, then when b/d3 > θ1, system (1) has a weed 
extinction equilibrium (r3

*, 0, u3
*), which is asymptotically 

stable, when b/d3 > θ2, system (1) still has a rice extinction 
equilibrium (0, p2

*, u2
*), which is unstable. Our results show 

that the existence and stability of equilibrium points are related 
to the relative mortality of rice and weed, θ1 and θ2, and to the 
ratio of fertilizer supply and loss b/d3. The presence of time 
delay τ maybe drive the system to instability. 

In the paddy field management, we should take some 
measures to make the weed extinction equilibrium (r3

*, 0, u3
*), 

exist and be stable. Obviously, at this time the equilibria (0, 0, 
u1

*) and (0, p2
*, u2

*) are not stable or not exist. According to 

Theorem 3, these measures include: reducing the loss rate d3 of 
inorganic fertilizer, increasing fertilization rate b, selecting rice 
varieties with low mortality d1, increasing mortality of weed d2, 
reducing t the utilization rate of light energy of weed. We also 
can reduce the rice mortality rate d1, increase the utilization rate 
of light energy of rice c1. From the expression of r3

*, these 
measures also help to increase rice yield. 
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