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Abstract—In this present paper a model with media coverage and 
vaccination is proposed on the spread of H7N9 influenza. We 
worked out the disease-free equilibrium and basic reproductive 
number by mathematical method and analyzed the sensitivity 
and uncertainty of the basic reproductive number by random 
sampling. At the same time, we also make some simulation on the 
stability of the disease-free equilibrium and the influence of the 
media coverage on the spread of the disease. These conditions 
can be used to gain important insights into the effect of media 
coverage and treatment on the prevention and control of 
influenza. The simulations are also conducted to confirm and 
extend the analytic results. 

Keywords- influenza H7N9; media coverage; vaccination; 
stability 

I. INTRODUCTION 

Mathematical modeling in epidemiology has become a 
more and more useful tool in the analysis of spread and 
control of infectious diseases. There are diseases such as 
SARS and flu that exhibit some distinct features such as 
rapid spatial spread and visible symptoms [1]. H7N9 is one 
of them, and it is a new subtype H7N9 virus infection in 
eastern China in 2013. It has posed potential threat to the 
health of the global human being. Up to now, the cases are 
distributed. There is no evidence of human-to-human 
transmission (see figure 1). 

Comparative knowledge of the effectiveness and efficacy of 
different control strategies is necessary to design useful 
influenza control programs.  Mathematical  modeling  of  the  
spread of influenza can  play  an  important role  in  comparing  
the different control  strategies [2–5]. Although different 
control and prevention strategies are available to control 
influenza transmission, influenza has been a major cause of 
morbidity and mortality among humans all over the world. The 
models currently have provided useful information about the 
impact of various control measures in the disease dynamics, for 
example: vaccination or antiviral use [6]. In addition the basic 
reproduction ratio or basic reproductive rate or basic 
reproduction number is one of the most  important  theoretical  
concepts  in  theoretical  infectious  diseases  epidemiology[7]. 

Media reporting plays a key role in the perception, 
management and even creation of crisis [8]. Since media 
reports are retrievable and because the messages are widely 
distributed, they gain authority as an inter-subjective 
anchorage for personal recollection [9]. At times of crisis, 
non-state-controlled media thrive, while state-controlled media 
are usually rewarded for creating an illusion of normalcy [10]. 

The role of media coverage on disease outbreaks in thus 
crucial and should be given prominence in the study of 
disease dynamics. However, these models now have seldom 
considered the latent period or the effect of media coverage. 
As we know that the influenza indeed has a latent period 
before the infected become ill. The main aim of this study is 
to investigate the impact of media coverage on the spread 
and control of an influenza strain when there is a latent 
period and a vaccine is available, and where the media 
reporting of both disease dynamics and vaccination is high. 
Reporting the number of individuals who vaccinate may have 
a positive effect on the disease transmission by increasing the 
vaccination rate. 

In this article, we established a model with the latency 
effects on the basis of [6], and analyzed the stability of the 
model. From the simulation about the factors we obtain some 
control strategies. At last, we discussed the sensitivity of the 
basic reproduction number, which will help us to determine the 
relative importance of different parameters in transmission and 
prevalence of influenza. 

 
FIGURE I.  THE FORMULATION OF THE H7N9 

II. MODEL FRAMEWORK 

We divide the population N into five sub-populations, 
according to their disease status: susceptible E, vaccinated 
V, latent E, infected I, and recovered R. Our model 
monitors the dynamics of influenza based on a single strain 
without effective cross-immunity against the strain. The 
susceptible population is increased by recruitment of 
individuals (either by birth or immigration), and by the loss 
of immunity (acquired through previous vaccination or 
natural) infection. The model is represented by the following 
system of ordinary differential equations: 
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The biological meaning of the parameters and chosen 
values of these parameters are speci fied in the Table 1. 

We suppose that the recovered individuals can not be 
vaccinated. Also, a vaccinated who gets infected and those 
recovers will return to the susceptible class with no vaccine 
protection. This is true even if ω is quite small but σ and λ are 
large.  For example, if vaccination lasts three years, but 
recovery and loss of immunity takes 6months, then we are 
assuming this person is subsequently unvaccinated. The rate at 
which information is spread by the media rises as infectives 
increase, but eventually levels off at a plateau (or asymptote) 
at which the information (rate) remains constant. Our model is 
clearly a crude reflection of the complicated nonlinear 
phenomena of the transmission dynamics, and it does not 
incorporate the self-control property due to the change of 
avoidance patterns of individuals at different stages of the 
infectious process[1]. 

TABLE I.  MODEL PARAMETERS AND THEIR INTERPRETATIONS 

Parameter Description Value 

  The rate at which individuals are 
recruited into population 

7.14× 10−8

θ The rate at which susceptible individuals 
receive vaccine 

0.002 

µ The rate at which people leave the 
population (natural death or emigration) 

5.5× 10−7 

1β  
The rate at which susceptibles get 

infected 
0.514 

ω  The rate at which vaccine-based 
immunity wanes 

0.015 

  The vaccine efficacy 0.1 

  The death rate due to the infection 0.01 

  The recovery rate from infection 0.2 

  The mean duration of latency 0.5 

II
2 m

I
β ，

II
3 m

I
β  

 
The effect of reduction of the contact 
rate when infectious and vaccinated 
individuals are reported in the media 
[1][11][12] 

β2 = 0.013 
β3 = 0.015 

Im  
The impact of media coverage on the 

contact  transmission Im = −0.9

  Duration of immunity loss 1/365 

IIm

I  
A continuous bounded function which 
takes into account disease saturation or 

psychological effects[13] 

 

News coverage may have a significant impact on 
avoidance behaviors at both individual and society levels, 
which may reduce the effective contact between susceptible 

and infectious individuals; we include this via a saturation 
incidence functional response. 

It is easy to see that the model will be studied in the 
following region: 

  5,,,,  RRVIES  

Which is positively invariant and attracting (thus, the 
model is mathematically and epidemi-ologically well-posed); 
it is therefore sufficient to consider solution in Ω. Existence, 
uniqueness and continuation results for model system (2.1) 
hold in this region and all solutions of this system starting in 
Ω remain in Ω for all t ≥ 0. 

III. STABILITY OF THE EQUILIBRIUM STATES 

The disease-free equilibrium of the system is given by 
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The endemic equilibrium of the system is given by (S∗, E∗, 
I∗, V ∗, R∗) , which satisfied S∗, E∗, I∗, V ∗, R∗>0, and 
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I∗ is the root of the equation: Λ + ωV ∗ 
− (θ + µ)S∗ 

− h1(I∗)S∗ 

+ σR∗ = 0 , and this is a equation about I∗ . 

The basic reproductive ratio 0R  is defined as the expected 

number of secondary infections caused by an infective 
individual upon entering a totally susceptible population. This 
quantity is not only important in describing the infectious 
power of the disease, but can also supply information for 
controlling the spread of the disease [14]. The stability of the 
equilibrium is governed by the basic reproductive ratio R0 , 
using the next-generation method[15], we have 
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Local stability of the disease-free equilibrium is 
determined by the following lemma 

Lemma 3.1  The disease-free equilibrium is locally 
asymptotically stable if R0 < 1 , and unstable if R0 > 1. 

Proof  The Jacobian of the system evaluated at the 
disease-free equilibrium is given by 
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The eigenvalues of JI=0 are ξ1 = −(µ + σ), ξ2 = −(θ + µ), ξ3 = 

−(µ + ω) , ξ4, ξ5 are the root of the equation 
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For the reason R0 < 1, we can conclude that m4m5 > 0, thus 
m4 < 0, m5 < 0. 

The local stability of the disease-free equilibrium is that all 
the eigenvalues be negative. From above we can conclude that 
the disease-free equilibrium is locally asymptotically stable. 

In the following, we will prove the global stability of the 
disease-free equilibrium. We adopt the method of Castillo-
Chavez et al [16] and we rewrite the set of model equations in 
the form 

 GG
G ZXF

dt

dX
,     GG

G ZXG
dt

dZ
,  

With G( GX , 0) = 0, GX  ∈ 3R  denotes the number of 

uninfected classes and GZ  ∈  2R denotes the number of 

infected classes. U0G = ( *
GX  , 0) denotes the disease-free 

equilibrium of the system where 
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For the set of equations in (2.1), we set XG = (S, V, R) and 
ZG = (E, I). The conditions H1, H2 below must be met for 
global stability. 

 0,1 G
G XF

dt

dX
ForH ： , *

GX  is globally 

asymptotically stable. 

   GGGGGG ZXGZAZXGH ,ˆ,2 ： , 
 GG ZXG ,ˆ ≥ 0 for   GG ZX , , where

 0,*
GZGG XDA   is M-matrix(the off-diagonal elements of 

A are nonnegative) and Ω is the region where the model makes 
biological sense. 

If the above two conditions are satisfied, then the 
following theorem holds. 

Theorem 3.2 (Castillo-Chavez et al [6]) The fixed point

 0,*
0 GG XU   is a globally stable equilibrium of (2.1) 

provided that and that assumptions are satisfied. 

IV. SENSITIVITY ANALYSIS 

A. Simulation of the Disease-Free Equilibrium 

First we study the stability of the disease-free equilibrium. 
We obtain using parameter data of table 1 and the formula 
(3.1). The simulation of the disease-free equilibrium stability 
is shown by Fig. 2. 
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FIGURE II.  THE STABILITY OF THE DISEASE-FREE EQUILIBRIUM 

B. Sensitivity Indices of R0 Based on Perturbation of Five 
Point Estimations 

Next we discuss the sensitivity indices of R0 based on 
perturbation of fixed point estima- tions. In the next section, 
sensitivity analysis is performed to identify the parameters 
which are important in contributing variability in the outcome 
of the basic reproduction number based on their estimation 
uncertainty. Partial rank correlation (PRCCs) is the method 
used here to find statistical influence of any parameters and R0 
[19], especially the monotonicity i.e. how well the relationship 
between the parameters and the basic reproduction number R0 
varies. The effect of variability of the input parameter on the 
outcome parameter using variable factor prioritization method 
by reduction of variance i.e. sensitivity index has been used 
here [17]. The larger the partial rank correlation coefficient, 
the larger influence of the input parameter is on magnitude of 
R0. 

The basic reproduction number R0 is a function of 9 
parameters where 
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Thus the normalized sensitivity indices for 9 parameters 
are obtained as 
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As the same method we can obtain   = 1. 
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We can get the table 2 by mathematical calculation 

TABLE II.  SENSITIVITY INDICES OF R0 

Parameter 

Sensitivity 
indices of R0 

Value  

  000000000.1  81014.7 
θ 672310218985718.0 0.002 

µ 901745140353672.0 7105.5 

1β  000000000.1
1

  0.514 

ω  846760105035179.0 0.015 
 782920119043721.0 0.1 

   -0.047600000 0.01 

  564199523784580.0 0.2 
 610100.1   0.5 

C. Uncertainty analysis for R0 

The five parameters out of 9 parameters have been chosen 
for uncertainty analysis because of uncertainties in their 
estimation [18]. In order to examine the uncertainty in the 
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values of these parameters, each parameter is assumed to be a 
random variable with a corresponding probability density 
function. Latin hypercube sampling has been used to sample 
the five parameters that considered for uncertainty analysis. 
The other parameters are given in Table 1. 

The five parameters η, µ, β1, θ, γ follow the following 
probability distributions: 

β1 follows normal distribution with mean and standard 
deviation 0.514 and 0.1 respectively. η follows the uniform 
distribution on [0, 20] . 

Vaccine rate θ follows triangular distribution with 
minimum, maximum and mode as 0.001, 0.002, 0.003. 

The vaccine efficacy γ follows the triangular distribution 
with minimum, maximum and mode as 0.05, 0.1, 0.15. 

The mean duration of latency η follows the gamma 
distribution with mean 3days and stand deviation 0.1 days. 

Duration of infectious period λ − 1 follows gamma 
distribution with mean 5days and standard deviation 1day. 

Histograms for the distributions of the basic reproduction 
number types of parameter dis- tribution as shown in Figure 
2.A set of 1000 parameter values has been also sampled from 
Latin hypercube sampling again from various different types 
of parameter distribution as shown in Figure 2. 

Histograms for the distributions of the basic reproduction 
number are shown in Figure3 and 4.These histograms have 
been generated from (2.1) using Latin hypercube sampling 
with sizes 1000. 

 
Histogram of the value of β1, γ, θ 

 
Histogram of the value of η, λ, R0 

FIGURE III.  HISTOGRAMS OBTAINED FROM LATIN HYPERCUBE 
SAMPLING USING A SAMPLE OF 1000 FOR THE SIX INPUT 

PARAMETERS 

Scatter-plots comparing the basic reproduction number 
against each of five parameters η, µ, β1, θ, γ are shown in 
Fig.4 for random sampling with sample size 1000. These 
scatter-plots clearly show the linear relationships 

(monotonicity) between outcome of 0R  and input parameters. 

And they verify the correctness of the theory. 

    
(a)                                              (b)  

    
(c) θ                                                (d)  

    
(e)                            (f) Box Plot of the estimated R0 

 
(g) Normal Q-Q Plot of the estimated λ values 

FIGURE IV.  GRAPHIC REPRESENTATION OF BASIC 
REPRODUCTION NUMBER BASED ON RANDOM SAMPLING 

Box plots for the distributions  of  the  basic  reproduction  
number  R0  are  shown  in  Fig. 4f. These Box plots have also 
been generated from system (2.1) using random sampling with 
sample sizes 1000. As shown in Fig.4 (f), the shaded box 
represents the first quartile, median and third quartile, which 
are quite symmetrically arranged. Few value are beyond the 
adjacent maximum line. However there are many values 
beyond the adjacent minimum line. The normal quantile-
quantile (Q-Q) plot and detrended Q-Q plot of the value of R0 
with sample sizes 1000, using random sampling are shown in 
Fig.4g. It is shown that the observed values closely fit the 
expected normal values. The actual deviations of data points 
from the normal values have been shown in Fig 4g. 

D. The Impact of the Media Coverage 

In this section, we analyse the impact of media coverage 
on disease transmission. The impact of media coverage on the 
contact transmission mI in this paper mI < 0 means that 
thenegative effect caused by the contact media. The derivative 

1β 




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of 
Im

I

I 
 on mI is 0

)( 2





Im

I

I

, so we can conclude 

that with the increase of Im , β1 –β2
Im

I

I 
and β1 –β3

Im

I

I 
will be more and more larger. 

From Figure 5 we can see the effect of mI on infected 
communication. Inhibition of media coverage to the spread of 
disease is not endless, which is worth noting. Here, when mI 
<-1 and mI > 0, the disease transmission will hardly have any 
change. From Figure 5 we can see that values of mI is −0.9, −
0.6, −0.3, −0.1 respectively, with the increase of mI , the peak 
arrival will be delayed, and the peak value will also be bigger. 
If the mI is greater than 0, then the infected will never change. 
So we can conclude that the media coverage is not a panacea, 
only can control the disease to a certain extent, but it have to 
be just perfect! Otherwise it will run counter to one’s desire or 
harass the people and waste money! 

V. CONCLUSION 

For a long period of time R0 < 1 was considered the key to 
understand the dynamics of epidemiological models. In many 
cases, R0 < 1 will signify the disease free equilibrium is stable. 
And our control strategy is focused on how to effectively 
eliminate the disease. So from our view, we make some study 
on the sensitivity and uncertainty on the basic reproduction is 
very useful. On the other hand we also pay some attention to 
the influence of disease transmission media. In addition to 
other efforts, the emergence of H7N9 in China did not cause 
large-scale epidemic, which make us have to admit the great 
effects of media broadcasting. 

 
FIGURE V.  THE IMPACT OF THE MEDIA COVERAGE 

In this we formulated a model on the spread of influenza. 
Through mathematical method we worked out the disease-free 
equilibrium and basic reproductive number and analyzed the 
sensitivity and uncertainty of the basic reproductive number. 
We also make some simulation on the stability of the disease-
free equilibrium and the influence of the media coverage on the 
spread of the disease. 

Our work award was conducive to more in-depth 
understanding of control the spread of the disease. And a better 
control of all the variables in the realistic society, the output of 
infectious disease effectively, so as serious errors can not be 
caused in terms of disease control. 
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