
The Genome Assembly Model for Next-Generation
Sequencing Data

Yirong Wang, Chengdong Wei*, Xiaodong Zhang and Tailin Cen
School of Mathematical and Statistics, Guangxi Teachers Education University, China

*Corresponding author

Abstract—At present, next-generation sequencing technology are
quickly applied to every field of life science research. Per base has
higher coverage and lower cost. Shorter reads and higher error
rates from these new instruments necessitate the development of
new algorithm and software[1]. We describe an assembly
algorithm for next-generation sequencing data. The algorithms
developed to solve this problem are based on de Bruijn graph,
greedy strategy and quicksort. We explain the algorithm and
present the results of assembling a bacterial artificial
chromosome(BAC). The value of scaffold N50 is 71613, and N90
is 157742. And the final running time is 20.796 seconds. The value
of N50 and N90 reflect the ability of scaffold sequence covering
reference genome, the bigger the better. Therefore, the algorithm
seems to be good for solving short reads assembly problem.

Keywords-de Bruijn graph; greedy strateg; quicksort; algorithm

I. INTRODUCTION

For each organism, the genome contains the genetic
information of the whole organism. Obtaining the genetic
information of the organism quickly and accurately has great
significance to biological research. For now, sequencing
technology is developing towards the direction of high
throughput and low cost. The characteristics of huge amounts
of data, short reads and low accuracy, present a rather grim
challenge for the whole genome sequence assembly[2].
Genome sequencing is an important research field of current
biology, and genome assembly is the primary problem.
Therefore, appear lots of genome assembly algorithm and
assembly software.

Steven L. Salzberg et al[3] , valuated several of the leading
de novo assembly algorithms on four different short-read data
sets, all generated by Illumina sequencers. Wenyu Zhang et
al[4], provide the information of adaptivity for each program,
then above all, compare the performance of eight distinct tools
against eight groups of simulated datasets from Solexa
sequencing platform. Daniel R. Zerbino and Ewan Birney[5]
have developed a new set of algorithms, collectively called
“Velvet” to manipulate de Bruijn graphs for genomic sequence
assembly. Michael C. Schatz et al[6], describe the issues
associated with short-read assembly, the different types of data
produced by second-gen sequencers, and the latest assembly
algorithms designed for these data. Anveshi Charuvaka and
Huzefa Rangwala[7] present an evaluation of assembly of
simulated short-read metagenomic samples using a state-of-art
de Bruijn graph based assembler. Aarti Desai et al[8], identify
the minimum depth of sequencing required for de novo
assembly for different sized genomes using graph based

assembly algorithms and real datasets. Sara El-Metwally et
al[9], address the basic framework of next-generation genome
sequence assemblers, which comprises four basic stages:
preprocessing filtering, a graph construction process, a graph
simplification process, and postprocessing filtering. In 2004, an
algorithm that indirectly makes sequence comparisons in with
respect to the size of the genome was presented by Maulik K.
Shah et al[10]. Thomas C Conway and Andrew J Bromage[11]
present a memory-efficient representation of the de Bruijn
assembly graph using succinct data structures which allowed to
represent the graph in close to the minimum number of bits.

The performance of the existing algorithms still have much
room for improvement. It is urgent to develop a new genome
sequence assembly algorithm, which can meet the needs of
practical application, according to the characteristics of the new
generation sequencing data. According to the main challenge
what the genome sequence assembly is facing, and we have
gotten a deeper understand about the main strategies which the
genome sequence assembly use now, namely the Greedy
strategy, Overlap/ Layout/ Consensus(OLC), de Bruijn graph
strategy and so on, we put forward a new algorithm based on
de Bruijn graph, greedy strategy and quicksort to assemble.

II. MODEL PREPARATION

A. Experimental Sequence Data

We obtained sequence data for the genome of a bacterial
artificial chromosome (BAC) from the “Shenzhen cup”
mathematical modeling camp in China (2014). The sequence
was generated by Illumina Hiseq2000. The full-length is
about 120000 base pairs and the sequencing depth is about 70X.
The format of reads is shown as below:

 The data file format is FASTQ and every 4 line in the
file indicates a reads.

 The first line contains the index sequence and the mark
of read1 or read2, and “@” followed by sequence ID.

 The secend line is the base sequence represented by
“ACGTN”.

 In the third line, “+” denotes that the sequence ID is
omitted.

 The fourth line is the quality value sequence. ASCII
value of the characters minus sixty-four is the quality
value.

97
This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/).

Copyright © 2017, the Authors. Published by Atlantis Press.

Advances in Intelligent Systems Research (AISR), volume 141
International Conference on Applied Mathematics, Modelling and Statistics Application (AMMSA 2017)

B. Data Preprocessing

Before genomes assembly, we need to filtrate the sequence
reads including unreliability, low quality and artificial adding
to ensure the accuracy of the assembly. The specific
requirements are as follows:

 Remove the reads contained the “N” or “.”[12].

 Remove the reads of low quality (The quality value of
reads is less than 7 and the base content is higher than
50%).

 Remove the reads whose “A” content is greater than or
equal to 0.9.

Therefore, we need to do the following work:

1) Gene encoding[13]
a) Binary encoding: Because the DNA sequence is

composed of A, T, C, G four base, which cannot be handled
directly by computer, we use binary encoding. We use the four
binary digits of 00(A), 01(T), 10(C) and 11(G) to represent the
four bases of DNA sequence in this dissertation.

b) Bit operation: Bit operation is the fastest way as to
computers' process speed. In order to further improve the
efficiency of storage, we adopt the bit operation. The encoding
program of this dissertation is obtained by C++ bit operation.

c) Array storage[14]: In order to avoid too much
computer memory occupied by pointer when constructing the
de Bruijn graph, we use arrays to store the data and then sort
the data. Another advantage is easy to search. Therefore, we
can use the quick and efficient method, such as binary search,
to find a particular k-mer quickly. But if we use the chain table
to store, the search speed will be slower.

2) Reads quicksort[15]: Quicksort is based on divide and
conquer method and is a very popular sorting algorithm
invented by C.R.A. Hoare[16] in 1962. Quicksort can sort a
list of data elements significantly faster than any of the
common sorting algorithms[17]. Since the data of reads have
been encoded by binary, we need to improve the quicksort for
short reads. In the following, we describe a reads quicksort
algorithms developed by the author. The reads quicksort can
be enumerated in the following steps:

Step 1: Start from the first reads in data file.

Step 2: The procedure partition: Sort the base in the order
of A (00), T (01), C (10) and G (11) , and place the ith reads
marked as 0 on the left and the ith reads marked as 1 on the
right.

Step 3: Repeat step 2 for left and right interval until each
interval only exist a read.

C++ code to implement this method for our specific
problem is as follows.

void quick_sort(Reads s[], int l, int r,int k)
{
 int i = l, j = r;
 Reads x;
 while(i<j)
 {
 while(s[i].read[k]=='0'&&i<r)//Record the sequence

number of read of which first position is marked as '0'
 i++;
 while(s[j].read[k]=='1'&&j>l)
 j--;
 if(i<j)
 {
 x=s[i];
 s[i]=s[j];
 s[j]=x;
 i++;
 j--;
 }
 }
 if(i-1>l)
 quick_sort(s, l, i-1,k+1); //Recursive invocation
 if(r>i)
 quick_sort(s, i, r,k+1);//Recursive invocation
}

The principle of reads quicksort is outlined in Figure 1.

FIGURE I. THE PRINCIPLE OF READS QUICKSORT

3) Remove the repeating segments of reads by the greedy
strategy: After finishing the reads quicksort, we obtain an
orderly reads cluster. And then we remove the repeating
segments of reads by the greedy strategy. The steps can be
enumerated as follows:

Step 1: Calculate the value of overlap of the current ith
reads and the (i+1)th reads.

Step 2: If the value of overlap is equal to the length of the
reads, assign the number of (i+1)th reads of -1.

Step 3: Repeat the first and the second step.

Step 4: Delete all the reads numbered by -1.

III. THE ESTABLISHMENT OF MODEL

Since genome sequencing was produced, the algorithm for
sequence assembly is constantly being developed and improved.
This paper presents a compound assembly algorithm that
combines the de Bruijn graph with the greedy strategy. In this
algorithm, the whole assembly process was divided into two
phases: the reads assembly and the contigs assembly. The reads
assembly phase is mainly to build the contings. Becasuse the
assembly algorithm is based on the de Bruijn graph, the greedy

98

Advances in Intelligent Systems Research (AISR), volume 141

strategy and quicksort, we first need to build the de Bruijn
graph before contigs construction. In this way, not only can
improve the accuracy of the solution but also can reduce the
consumption of memory and the occupation of CPU resources
in the final improve the operation efficiency. The contigs
assembly phase consists of the process of the determination of
contigs relative position, the connection of contigs and the
filling of gaps. And it was eventually assembled into scaffolds.
In this way, it often has a relatively better assembly effect.

A. Reads Assembly

1) Obtain the k-mer in each reads: We first need to read
the data file because it contains the information of the base
sequence and corresponding quality of reads. We save the
information of reads in advance, then each reads is read
sequentially when we read the data files. Assume that the set
of these reads is F={f1,f2…fn}. We divide the reads into
several equal length short sequences composed of continuous
bases. All possible substrings of length k (termed k-mers) are
generated from the sequence reads and the k-mer data set is
built. A k-mer graph is a form of de Bruijn graph[18]. Its
nodes represent k-mers in the graph. Its edges indicate that the
adjacent k-mers overlap by exactly k-1 letters. Figure 2 give a
specific example of obtaining k-mers from reads. Here, F is a
set consisting of two reads, the k-mer length is 3, a read
sequence is AGATACT. Its nodes are shown in figure 2 above,
and its edges are shown in figure 2 below. In this way, we can
construct a de Bruijn graph. The result of splice sequence can
be get in the graph.

FIGURE II. EXAMPLE OF THE K-MER IN EACH READS. NODES ARE

K-MERS AND EDGES ARE OVERLAPS.

2) K-mers Quicksort: In this algorithm, a key step is to
construct de Bruijn graph. However, there are a lot of repeat
fragments in gene. Therefore, the de Bruijn graph need to be
simplified. Prior to this, we proceed the k-mers quicksort in
each read for easier to simplify. Its basic idea is similar to
reads quicksort, and specific steps are as follows:

Step 1: Start from the first k-mer in data file.

Step 2: The procedure partition. Sort the base in the order of
A (00), T (01), C (10) and G (11) , and place the ith k-mers
marked as 0 on the left and the ith k-mers marked as 1 on the
right.

Step 3: Repeat step 2 for left and right interval until each
interval only exist a k-mer.

3) Simplify the k-mers group by the Greedy strategy: After
the completion of k-mers quicksort, we get an orderly k-mers
group. Then, use the greedy algorithm to remove k-mers of
duplicate and low quality values. The steps are as follows:

Step 1: Calculate the overlap value of the ith k-mers and the
(i+1)th k-mers.

Step 2: If the overlap value is equal to k-1, calculate the
quality value of the last gene between the two k-mers according
to the position information of the k-mers.

Step 3: If the quality of the ith k-mers is greater than the
quality of the (i+1)th k-mers, then assign the number of (i+1)th
k-mers of -1, otherwise assign the number of ith k-mers of -1.

Step 4: Calculate the overlap value of the ith k-mers and the
(i+2)th k-mers. If the overlap is not equal to k-1, then i= i+1.
Repeat the process of step1 to step3. If the overlap value is
equal to k-1, calculate the quality value of the last gene
between the two k-mers according to the position information
of the k-mers.

Step 5: If the quality of the ith k-mers is greater than the
quality of the (i+2)th k-mers, then assign the number of (i+2)th
k-mers of -1, otherwise assign the number of ith k-mers of -1.

Step 6: Repeat all steps above.

Step 7: Delete all the k-mers of number -1.

4) De Bruijn graph construction: The algorithm based on
de Bruijn graph is the most widely used to the next-generation
sequencing data. At present, many assembly softwares
expanded are also based on the de Bruijn graph. The typical
assembly softwares are: ALLPATHS, ABySS, Euler-SR,
SOAPdenovo and Velvet[19].

Therefore, in order to better realize the algorithm based on
de Bruijn graph and greedy strategy, we need to construct the
de Bruijn graph. The algorithm cleverly map the k-mers with
overlapping relationship together. In that case, the
computational complexity and the memory consumption is
reduced. The basic steps are as follows.

Step 1: Select the available k-mers0 (lock equal to 0).

Step 2: If there are multiple available k-mers0 (up to 4) to
be selected, it means that there are error k-mers in the k-mers0.
At the moment, we need to select the the highest quality value
of the error gene as the only k-mers0, then assign the lock of
the rest k-mers to -1.

Step 3: Use the dichotomy to find the next k-mers1 which
can be spliced with the current k-mers0.

Step 4: Mark the value of next_kmer of current k-mer0 as
k-mers1, and then mark the value of front_kmer of k-mers1 as
k-mers0.

Step 5: Repeat all steps above until the available k-mers is
empty.

5) Contigs Construction: An overall consideration of the
information of k-mers involved in the splicing and a splicing

99

Advances in Intelligent Systems Research (AISR), volume 141

problem study considering from the whole k-mers are the
basic idea of the whole genome short sequence splicing
algorithm based on de Bruijn graph and greedy strategy. The
main approach is as follows. Encapsulate the data of the
assembling k-mers in an object one by one. The object store
the number, content, position and the lock (If the lock is equal
to 0 means that it can be spliced, else -1 means it can’t be
spliced) of k-mers in the reads. Considering the data
characteristics of k-mers in object comprehensively, we
designed the following contigs construction process:

Step 1: Search the ith k-mers of which front_kmer is -1,
n=1, and then build a contig.

Step 2: Add the last gene recorded as next_kmer to the end
of contigs according to the next_kmer of (i+n)th k-mers, and
then the length of contigs plus 1.

Step 3: If the next_kmer of (i+n)th k-mers is not -1, then
n=n+1, and search the (i+n)th k-mers recorded as next_kmer.

Step 4: Repeat step 2 until the next_kmer of (i+n)th k-mers
is -1.

Step 5: Repeat step1 to step5 until the end.

B. Contigs Assembly

This phase take the contigs generated in reads assembly
stage and paired data file as input. Through the process of
contigs relative position determination, contigs connection and
gaps filling, a longer length scaffolds is formed

1) Contigs Relative Position Determination: Before the
contigs assembly, we need to fix the relative position and
direction between contigs. If we map the paired data to the
contigs generated by reads assembly stage, there usually have
several pairs of reads mapped to different contigs. If there are
overlaps between the two contigs, we need to see if the
distance between the two paired reads in a reasonable range. If
the distance is in the reasonable scope and the number of
paired reads achieve the setting threshold, we consider the two
contigs are adjacent to each other and should be linked
together. If there are no overlaps between the two contigs, we
consider there exist gaps between them and need to fill them in
subsequent gaps filling operation. The result of practice proves
that this approach is consistent with the actual situation of the
target genome.

Therefore, we abandoned the general approach to make the
paired reads data map to the whole contigs, but only take the
sequence fragments of L bp at each end of the contigs. This
way not only reduces the memory consumption but also
improve the computing speed. If the contigs length is less than
L, we take the whole sequence. The L value is related to the
overall mean value of the k-mers and greater than the average
value in general. For instance, if the average length is 200 bp,
the L value is 300 bp.

In the previous, we have completed the reads quicksort and
k-mer quicksort, and stored the information of number, content,
position, etc, of reads and k-mers in the object. Hence, it is
quite convenient to map the reads to contigs. But when paired
reads data map into contigs, some paired reads only have a read

mapped to the contigs and the other can not find the location in
the contigs, some are mapped to different locations of one or
multiple contigs. Namely, the matching position of a single
read is not unique. This brings a great trouble to the
determination of the relative position between contigs. The best
solution generally is to consider as the two contigs are adjacent
to each other in the target genome when the pair reads matched
to different contigs reach a certain threshold.

2) Contigs Connection: From the above we only know the
relative position of contigs but they do not really connect
together. When the contigs connect, we need to calculate the
overlaps between contigs. Due to the relative position between
the contigs have been confirmed, we can calculate the distance
between the contigs according to the paired reads of two
adjacent contigs. Then the size of overlaps between contigs is
confirmed. At the moment, the distance between contigs can
be greater or less than zero. If the distance is less than zero, it
means that there exist overlaps. If the distance is greater than
zero, there exist gaps.

Below we take contigs A and contigs B for example to
detailedly describe the contigs connection process. If only one
read of paired reads is mapped to the two adjacent contigs, the
calculation formula is 21 llmg  , as shown in figure 3. If
several reads of paired reads are mapped to the two adjacent

contigs, the calculation formula is 



n

i
ig

n
gEBAd

1

1
)(),(,

as shown in figure 4.

FIGURE III. ONLY ONE READ OF PAIRED READS IS MAPPED TO

THE TWO ADJACENT CONTIGS.

FIGURE IV. SEVERAL READS OF PAIRED READS ARE MAPPED TO

THE TWO ADJACENT CONTIGS.

3) Gaps Filling: During the stage of contigs connecting,
the contigs contained overlaps are connected together and
merged into a longer contigs. But there exist gaps between the
adjacent and unconnected contigs, and we need to fill them.
The way of filling the gaps is to construct the missing bases
sequence by partial sequence splicing.

100

Advances in Intelligent Systems Research (AISR), volume 141

IV. THE SOLUTION OF THE MODEL

In the process of reads assembly, we first encapsulate the
reads data in the object one by one. In order to read and dock,
the object store the reads number, content and position. As you
can see from the figure 5, the number of 12260, 12261, 34858
and 41014 in the read1 contain the "N", and the number of
12261 contain two "N" especially. The number of low-quality
reads is 0. The number of reads whose quality value is greater
than or equal to 0.9 is also 0. In the figure 6, only the number
of 28815, 37835 and 38992 in the read2 contain the "N", and
the number of 38992 contain two "N" especially. The number
of low-quality reads is 0. The number of reads whose quality
value is greater than or equal to 0.9 is also 0.

Next, we use the algorithm to removed the incorrect base
sequences, and get 46841 valid reads. The number of k-mer is
682969. One indicator commonly used to evaluate the efficacy
of assembly is the N50 statistic. The N50 is a weighted median
of the lengths of the sequences, equal to the length of the
longest sequences L such that the sum of the lengths of
sequences greater than or equal in length to L is greater than or
equal to half the length of the genome being assembled[20].
N90 is another statistic to assess assemblies. The N90 is equal
to the length of the longest sequences L such that the sum of
the lengths of sequences greater than or equal in length to L is
greater than or equal to 90% the length of the genome being
assembled. Various combinations of sequencing libraries were
used to obtain the best scaffold N50s and N90s using
SOAPdenovo[21]. The value of N50 and N90 reflect the ability
of scaffold sequence covering reference genome, the bigger the
better. In this paper, the value of N50 is 71613, and the value of
N90 is 157742. And the final running time is 20.796 seconds.

V. CONCLUSION

The assembly algorithm in this paper obey the assessment
standard above. The value of N50 and N90 is relatively large,
and the assembly effect is relatively good. But the number of k-
mer is too much, there's room for improvement. Fortunately,
the running speed is very fast, only 20.796 seconds.

ACKNOWLEDGMENT

The authors thank the anonymous for their valuable
suggestions to improve the quality of this paper. This paper
was partially supported by the Key Laboratory for data science
of Universitie of Guangxi Province(8852), National Natural
Science Foundation of China (11561010) and Innovation
Project of Guangxi Graduate Education (YCSW2017188).

REFERENCES
[1] Ratan A, Assembly algorithms for next-generation sequence data,

Dissertations & Theses - Gradworks, 2009.

[2] Luo R, Liu B, Xie Y, et al, “SOAPdenovo2: an empirically improved
memory-efficient short-read de novo assembler.” GigaScience, 2012,
vol.1, pp.18.

[3] Salzberg, S. L., et al, “GAGE: A critical evaluation of genome
assemblies and assembly algorithms,” Genome Research, 2011, vol.22,
pp.557-567.

[4] Zhang, W, et al. “A practical comparison of de novo genome assembly
software tools for next-generation sequencing technologies,” Plos One,
2011, vol. 6, pp.e17915.

[5] Zerbino D R, Birney E, “Velvet: algorithms for de novo short read
assembly using de Bruijn graphs,” Genome Research, 2008, vol.18,
pp.821-829.

[6] Schatz M C, Delcher AL, and Salzberg S L, “Assembly of large
genomes using second-generation sequencing,” Genome Researc, 2010,
vol.20, pp.1165-1173.

[7] Charuvaka A, Rangwala H, “Evaluation of short read metagenomic
assembly,” Bmc Genomics, 2011, vol.Suppl12, pp.1-13.

[8] Desai A, Marwah V S, Yadav A, et al, “Identification of Optimum
Sequencing Depth Especially for De Novo Genome Assembly of Small
Genomes Using Next Generation Sequencing Data,” Plos One, 2013,
vol.8, pp.e60204.

[9] El-Metwally S, Hamza T, Zakaria M, et al, “Next-Generation Sequence
Assembly: Four Stages of Data Processing and Computational
Challenges,” Plos Computational Biology, 2013, vol.9, pp.e1003345-
e1003345.

[10] Shah M K, Lee H J, Rogers S A, et al, “An Exhaustive Genome
Assembly Algorithm Using K-Mers to Indirectly Perform N-Squared
Comparisons in O(N),” IEEE Computer Society, IEEE Computational
Systems Bioinformatics Conference, pp.740-741, 2004.

[11] Conway T C, Bromage A J, “Succinct data structures for assembling
large genomes,” Bioinformatics, 2011, vol.27, pp.479-86.

[12] Chen C, Khaleel S S, Huang H, et al, “Software for pre-processing
Illumina next-generation sequencing short read sequences,” Source Code
for Biology & Medicine, 2014, vol. 9, pp.8-8.

[13] Sadasivan E, Cedeno M M, Rothenberg S P, “Characterization of the
gene encoding a folate-binding protein expressed in human placenta.
Identification of promoter activity in a G-rich SP1 site linked with the
tandemly repeated GGAAG motif for the ets encoded GA-binding
protein. Journal of Biological Chemistry,” 1994, vol.26, pp.4725-35.

[14] Rusu F, Cheng Y, “A Survey on Array Storage, Query Languages, and
Systems,” Short Term Thermal Energy Storage, 2013.

[15] Hoare, C. A R, “Quicksort,” Computer Journal, 1962, vol. 5, pp.10-15.

[16] Sedgewick R, “The analysis of Quicksort programs,” Acta Informatica,
1977, vol. 7, pp.327-355.

[17] Mishra A D, Selection of Best Sorting Algorithm for a Particular
Problem, 2009.

[18] Miller J R, Koren S, Sutton G, “Assembly algorithms for next-
generation sequencing data,” Genomics, 2010, vol.95, pp.315-327.

[19] Nagarajan N, Pop M, “Sequence assembly demystified,” Nature
Reviews Genetics, 2013, vol.14, pp.157-167.

[20] Earl D, Bradnam K, John J S, et al, “Assemblathon 1: a competitive
assessment of de novo short read assembly methods,” Genome Research,
2011, vol.21, pp.2224-2241.

[21] Krishnan N M, Pattnaik S, Jain P, et al, “A Draft of the Genome and
Four Transcriptomes of a Medicinal and Pesticidal Angiosperm
Azadirachta indica,” BMC Genomics, 2012, vol.13, pp.1-13.

101

Advances in Intelligent Systems Research (AISR), volume 141

