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Abstract—At present, next-generation sequencing technology are 
quickly applied to every field of life science research. Per base has 
higher coverage and lower cost. Shorter reads and higher error 
rates from these new instruments necessitate the development of 
new algorithm and software[1]. We describe an assembly 
algorithm for next-generation sequencing data. The algorithms 
developed to solve this problem are based on de Bruijn graph, 
greedy strategy and quicksort. We explain the algorithm and 
present the results of assembling a bacterial artificial 
chromosome(BAC). The value of scaffold N50 is 71613, and N90 
is 157742. And the final running time is 20.796 seconds. The value 
of N50 and N90 reflect the ability of scaffold sequence covering 
reference genome, the bigger the better. Therefore, the algorithm 
seems to be good for solving short reads assembly problem. 
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I.  INTRODUCTION  

For each organism, the genome contains the genetic 
information of the whole organism. Obtaining the genetic 
information of the organism quickly and accurately has great 
significance to biological research. For now, sequencing 
technology is developing towards the direction of high 
throughput and low cost. The characteristics of huge amounts 
of data, short reads and low accuracy, present a rather grim 
challenge for the whole genome sequence assembly[2]. 
Genome sequencing is an important research field of current 
biology, and genome assembly is the primary problem. 
Therefore, appear lots of genome assembly algorithm and 
assembly software. 

Steven L. Salzberg et al[3] , valuated several of the leading 
de novo assembly algorithms on four different short-read data 
sets, all generated by Illumina sequencers. Wenyu Zhang et 
al[4], provide the information of adaptivity for each program, 
then above all, compare the performance of eight distinct tools 
against eight groups of simulated datasets from Solexa 
sequencing platform. Daniel R. Zerbino and Ewan Birney[5] 
have developed a new set of algorithms, collectively called 
“Velvet” to manipulate de Bruijn graphs for genomic sequence 
assembly. Michael C. Schatz et al[6], describe the issues 
associated with short-read assembly, the different types of data 
produced by second-gen sequencers, and the latest assembly 
algorithms designed for these data. Anveshi Charuvaka and 
Huzefa Rangwala[7] present an evaluation of assembly of 
simulated short-read metagenomic samples using a state-of-art 
de Bruijn graph based assembler. Aarti Desai et al[8], identify 
the minimum depth of sequencing required for de novo 
assembly for different sized genomes using graph based 

assembly algorithms and real datasets. Sara El-Metwally et 
al[9], address the basic framework of next-generation genome 
sequence assemblers, which comprises four basic stages: 
preprocessing filtering, a graph construction process, a graph 
simplification process, and postprocessing filtering. In 2004, an 
algorithm that indirectly makes sequence comparisons in with 
respect to the size of the genome was presented by Maulik K. 
Shah et al[10]. Thomas C Conway and Andrew J Bromage[11] 
present a memory-efficient representation of the de Bruijn 
assembly graph using succinct data structures which allowed to 
represent the graph in close to the minimum number of bits. 

The performance of the existing algorithms still have much 
room for improvement. It is urgent to develop a new genome 
sequence assembly algorithm, which can meet the needs of 
practical application, according to the characteristics of the new 
generation sequencing data. According to the main challenge 
what the genome sequence assembly is facing, and we have 
gotten a deeper understand about the main strategies which the 
genome sequence assembly use now, namely the Greedy 
strategy, Overlap/ Layout/ Consensus(OLC), de Bruijn graph 
strategy and so on, we put forward a new algorithm based on 
de Bruijn graph, greedy strategy and quicksort to assemble.  

II. MODEL PREPARATION 

A. Experimental Sequence Data 

We obtained sequence data for the genome of a bacterial 
artificial chromosome (BAC) from the “Shenzhen cup” 
mathematical modeling camp in China (2014). The sequence 
was generated by Illumina Hiseq2000. The full-length is   
about 120000 base pairs and the sequencing depth is about 70X. 
The format of reads is shown as below:   

 The data file format is FASTQ and every 4 line in the 
file indicates a reads. 

 The first line contains the index sequence and the mark 
of read1 or read2, and “@” followed by sequence ID. 

 The secend line is the base sequence represented by 
“ACGTN”.  

 In the third line, “+” denotes that the sequence ID is 
omitted. 

 The fourth line is the quality value sequence. ASCII 
value of the characters minus sixty-four is the quality 
value. 
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B. Data Preprocessing 

Before genomes assembly, we need to filtrate the sequence 
reads including unreliability, low quality and artificial adding 
to ensure the accuracy of the assembly. The specific 
requirements are as follows: 

 Remove the reads contained the “N” or “.”[12]. 

 Remove the reads of low quality (The quality value of 
reads is less than 7 and the base content is higher than 
50%). 

 Remove the reads whose “A” content is greater than or 
equal to 0.9. 

Therefore, we need to do the following work: 

1)  Gene encoding[13] 
a) Binary encoding: Because the DNA sequence is 

composed of A, T, C, G four base, which cannot be handled 
directly by computer, we use binary encoding. We use the four 
binary digits of 00(A), 01(T), 10(C) and 11(G) to represent the 
four bases of DNA sequence in this dissertation. 

b) Bit operation: Bit operation is the fastest way as to 
computers' process speed. In order to further improve the 
efficiency of storage, we adopt the bit operation. The encoding 
program of this dissertation is obtained by C++ bit operation. 

c) Array storage[14]: In order to avoid too much 
computer memory occupied by pointer when constructing the 
de Bruijn graph, we use arrays to store the data and then sort 
the data. Another advantage is easy to search. Therefore, we 
can use the quick and efficient method, such as binary search, 
to find a particular k-mer quickly. But if we use the chain table 
to store, the search speed will be slower. 

2)  Reads quicksort[15]: Quicksort is based on divide and 
conquer method and is a very popular sorting algorithm 
invented by C.R.A. Hoare[16] in 1962. Quicksort can sort a 
list of data elements significantly faster than any of the 
common sorting algorithms[17]. Since the data of reads have 
been encoded by binary, we need to improve the quicksort for 
short reads. In the following, we describe a reads quicksort 
algorithms developed by the author. The reads quicksort can 
be enumerated in the following steps:  

Step 1: Start from the first reads in data file. 

Step 2: The procedure partition: Sort the base in the order 
of A (00), T (01), C (10) and G (11) , and place the ith reads 
marked as 0 on the left and the ith reads marked as 1 on the 
right. 

Step 3: Repeat step 2 for left and right interval until each 
interval only exist a read. 

C++ code to implement this method for our specific 
problem is as follows. 

void quick_sort(Reads s[], int l, int r,int k) 
{ 
       int i = l, j = r; 
       Reads x; 
       while(i<j) 
       { 
          while(s[i].read[k]=='0'&&i<r)//Record the sequence  

number of read of which first position is marked as '0' 
             i++; 
          while(s[j].read[k]=='1'&&j>l) 
             j--; 
          if(i<j) 
          { 
             x=s[i]; 
             s[i]=s[j]; 
             s[j]=x; 
             i++; 
             j--; 
           } 
        } 
        if(i-1>l) 
              quick_sort(s, l, i-1,k+1); //Recursive invocation 
           if(r>i) 
              quick_sort(s, i, r,k+1);//Recursive invocation 
}  

The principle of reads quicksort is outlined in Figure 1. 

 
FIGURE I.  THE PRINCIPLE OF READS QUICKSORT 

3)  Remove the repeating segments of reads by the greedy 
strategy: After finishing the reads quicksort, we obtain an 
orderly reads cluster. And then we remove the repeating 
segments of reads by the greedy strategy. The steps can be 
enumerated as follows: 

Step 1: Calculate the value of overlap of the current ith  
reads and the (i+1)th reads. 

Step 2: If the value of overlap is equal to the length of the 
reads, assign the number of (i+1)th reads of -1. 

Step 3: Repeat the first and the second step. 

Step 4: Delete all the reads numbered by -1.  

III. THE ESTABLISHMENT OF MODEL 

Since genome sequencing was produced, the algorithm for 
sequence assembly is constantly being developed and improved. 
This paper presents a compound assembly algorithm that 
combines the de Bruijn graph with the greedy strategy. In this 
algorithm, the whole assembly process was divided into two 
phases: the reads assembly and the contigs assembly. The reads 
assembly phase is mainly to build the contings. Becasuse the 
assembly algorithm is based on the de Bruijn graph, the greedy 
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strategy and quicksort, we first need to build the de Bruijn 
graph before contigs construction. In this way, not only can 
improve the accuracy of the solution but also can reduce the 
consumption of memory and the occupation of CPU resources 
in the final improve the operation efficiency. The contigs 
assembly phase consists of the process of the determination of 
contigs relative position, the connection of contigs and the 
filling of gaps. And it was eventually assembled into scaffolds. 
In this way, it often has a relatively better assembly effect. 

A. Reads Assembly 

1)  Obtain the k-mer in each reads: We first need to read 
the data file because it contains the information of the base 
sequence and corresponding quality of reads. We save the 
information of reads in advance, then each reads is read 
sequentially when we read the data files. Assume that the set 
of these reads is F={f1,f2…fn}. We divide the reads into 
several equal length short sequences composed of continuous 
bases. All possible substrings of length k (termed k-mers) are 
generated from the sequence reads and the k-mer data set is 
built. A k-mer graph is a form of de Bruijn graph[18]. Its 
nodes represent k-mers in the graph. Its edges indicate that the 
adjacent k-mers overlap by exactly k-1 letters. Figure 2 give a 
specific example of obtaining k-mers from reads. Here, F is a 
set consisting of two reads, the k-mer length is 3, a read 
sequence is AGATACT. Its nodes are shown in figure 2 above, 
and its edges are shown in figure 2 below. In this way, we can 
construct a de Bruijn graph. The result of splice sequence can 
be get in the graph.  

 
FIGURE II.  EXAMPLE OF THE K-MER IN EACH READS. NODES ARE 

K-MERS AND EDGES ARE OVERLAPS.   

2)  K-mers Quicksort: In this algorithm, a key step is to 
construct de Bruijn graph. However, there are a lot of repeat 
fragments in gene. Therefore, the de Bruijn graph need to be 
simplified. Prior to this, we proceed the k-mers quicksort in 
each read for easier to simplify. Its basic idea is similar to 
reads quicksort, and specific steps are as follows: 

Step 1: Start from the first k-mer in data file. 

Step 2: The procedure partition. Sort the base in the order of 
A (00), T (01), C (10) and G (11) , and place the ith k-mers 
marked as 0 on the left and the ith k-mers marked as 1 on the 
right. 

Step 3: Repeat step 2 for left and right interval until each 
interval only exist a k-mer. 

3)  Simplify the k-mers group by the Greedy strategy: After 
the completion of k-mers quicksort, we get an orderly k-mers 
group. Then, use the greedy algorithm to remove k-mers of 
duplicate and low quality values. The steps are as follows: 

Step 1: Calculate the overlap value of the ith k-mers and the 
(i+1)th k-mers. 

Step 2: If the overlap value is equal to k-1, calculate the 
quality value of the last gene between the two k-mers according 
to the position information of the k-mers. 

Step 3: If the quality of the ith k-mers is greater than the 
quality of the (i+1)th k-mers, then assign the number of (i+1)th 
k-mers of -1, otherwise assign the number of ith k-mers of -1. 

Step 4: Calculate the overlap value of the ith k-mers and the 
(i+2)th k-mers. If the overlap is not equal to k-1, then i= i+1. 
Repeat the process of step1 to step3. If the overlap value is 
equal to k-1, calculate the quality value of the last gene 
between the two k-mers according to the position information 
of the k-mers. 

Step 5: If the quality of the ith k-mers is greater than the 
quality of the (i+2)th k-mers, then assign the number of (i+2)th 
k-mers of -1, otherwise assign the number of ith k-mers of -1. 

Step 6: Repeat all steps above. 

Step 7: Delete all the k-mers of number -1. 

4)  De Bruijn graph construction: The algorithm based on 
de Bruijn graph is the most widely used to the next-generation 
sequencing data. At present, many assembly softwares 
expanded are also based on the de Bruijn graph. The typical 
assembly softwares are: ALLPATHS, ABySS, Euler-SR, 
SOAPdenovo and Velvet[19].  

Therefore, in order to better realize the algorithm based on 
de Bruijn graph and greedy strategy, we need to construct the 
de Bruijn graph. The algorithm cleverly map the k-mers with 
overlapping relationship together. In that case, the 
computational complexity and the memory consumption is 
reduced. The basic steps are as follows. 

Step 1: Select the available k-mers0 (lock equal to 0). 

Step 2: If there are multiple available k-mers0 (up to 4) to 
be selected, it means that there are error k-mers in the k-mers0. 
At the moment, we need to select the the highest quality value 
of the error gene as the only k-mers0, then assign the lock of 
the rest k-mers to -1. 

Step 3: Use the dichotomy to find the next k-mers1 which 
can be spliced with the current k-mers0. 

Step 4: Mark the value of next_kmer of current k-mer0 as 
k-mers1, and then mark the value of front_kmer of k-mers1 as 
k-mers0. 

Step 5: Repeat all steps above until the available k-mers is 
empty. 

5)  Contigs Construction: An overall consideration of the 
information of k-mers involved in the splicing and a splicing 
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problem study considering from the whole k-mers are the 
basic idea of the whole genome short sequence splicing 
algorithm based on de Bruijn graph and greedy strategy. The 
main approach is as follows. Encapsulate the data of the 
assembling k-mers in an object one by one. The object store 
the number, content, position and the lock (If the lock is equal 
to 0 means that it can be spliced, else -1 means it can’t be 
spliced) of k-mers in the reads. Considering the data 
characteristics of k-mers in object comprehensively, we 
designed the following contigs construction process: 

Step 1: Search the ith k-mers of which front_kmer is -1, 
n=1, and then build a contig. 

Step 2: Add the last gene recorded as next_kmer to the end 
of contigs according to the next_kmer of (i+n)th k-mers, and 
then the length of contigs plus 1. 

Step 3: If the next_kmer of (i+n)th k-mers is not -1, then 
n=n+1, and search the (i+n)th k-mers recorded as next_kmer.  

Step 4: Repeat step 2 until the next_kmer of (i+n)th k-mers  
is -1. 

Step 5: Repeat step1 to step5 until the end. 

B. Contigs Assembly  

This phase take the contigs generated in reads assembly 
stage and paired data file as input. Through the process of 
contigs relative position determination, contigs connection and 
gaps filling, a longer length scaffolds is formed  

1)  Contigs Relative Position Determination: Before the 
contigs assembly, we need to fix the relative position and 
direction between contigs. If we map the paired data to the 
contigs generated by reads assembly stage, there usually have 
several pairs of reads mapped to different contigs. If there are 
overlaps between the two contigs, we need to see if the 
distance between the two paired reads in a reasonable range. If 
the distance is in the reasonable scope and the number of 
paired reads achieve the setting threshold, we consider the two 
contigs are adjacent to each other and should be linked 
together. If there are no overlaps between the two contigs, we 
consider there exist gaps between them and need to fill them in 
subsequent gaps filling operation. The result of practice proves 
that this approach is consistent with the actual situation of the 
target genome. 

Therefore, we abandoned the general approach to make the 
paired reads data map to the whole contigs, but only take the 
sequence fragments of L bp at each end of the contigs. This 
way not only reduces the memory consumption but also 
improve the computing speed. If the contigs length is less than 
L, we take the whole sequence. The L value is related to the 
overall mean value of the k-mers and greater than the average 
value in general. For instance, if the average length is 200 bp, 
the L value is 300 bp. 

In the previous, we have completed the reads quicksort and 
k-mer quicksort, and stored the information of number, content, 
position, etc, of reads and k-mers in the object. Hence, it is 
quite convenient to map the reads to contigs. But when paired 
reads data map into contigs, some paired reads only have a read 

mapped to the contigs and the other can not find the location in 
the contigs, some are mapped to different locations of one or 
multiple contigs. Namely, the matching position of a single 
read is not unique. This brings a great trouble to the 
determination of the relative position between contigs. The best 
solution generally is to consider as the two contigs are adjacent 
to each other in the target genome when the pair reads matched 
to different contigs reach a certain threshold.     

2)  Contigs Connection: From the above we only know the 
relative position of contigs but they do not really connect 
together. When the contigs connect, we need to calculate the 
overlaps between contigs. Due to the relative position between 
the contigs have been confirmed, we can calculate the distance 
between the contigs according to the paired reads of two 
adjacent contigs. Then the size of overlaps between contigs is 
confirmed. At  the moment, the distance between contigs can 
be greater or less than zero. If the distance is less than zero, it 
means that there exist overlaps. If the distance is greater than 
zero, there exist gaps.  

Below we take contigs A and contigs B for example to 
detailedly describe the contigs connection process. If only one 
read of paired reads is mapped to the two adjacent contigs, the 
calculation formula is 21 llmg  , as shown in figure 3. If 
several reads of paired reads are mapped to the two adjacent 

contigs, the calculation formula is 

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i
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as shown in figure 4. 

 
FIGURE III.  ONLY ONE READ OF PAIRED READS IS MAPPED TO 

THE TWO ADJACENT CONTIGS. 

 
FIGURE IV.  SEVERAL READS OF PAIRED READS ARE MAPPED TO 

THE TWO ADJACENT CONTIGS. 

3)  Gaps Filling: During the stage of contigs connecting, 
the contigs contained overlaps are connected together and 
merged into a longer contigs. But there exist gaps between the 
adjacent and unconnected contigs, and we need to fill them. 
The way of filling the gaps is to construct the missing bases 
sequence by partial sequence splicing. 
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IV. THE SOLUTION OF THE MODEL 

In the process of reads assembly, we first encapsulate the 
reads data in the object one by one. In order to read and dock, 
the object store the reads number, content and position. As you 
can see from the figure 5, the number of 12260, 12261, 34858 
and 41014 in the read1 contain the "N", and the number of 
12261 contain two "N" especially. The number of low-quality 
reads is 0. The number of reads whose quality value is greater 
than or equal to 0.9 is also 0. In the figure 6, only the number 
of 28815, 37835 and 38992 in the read2 contain the "N", and 
the number of 38992 contain two "N" especially. The number 
of low-quality reads is 0. The number of reads whose quality 
value is greater than or equal to 0.9 is also 0. 

Next, we use the algorithm to removed the incorrect base 
sequences, and get 46841 valid reads. The number of k-mer is 
682969. One indicator commonly used to evaluate the efficacy 
of assembly is the N50 statistic. The N50 is a weighted median 
of the lengths of the sequences, equal to the length of the 
longest sequences L such that the sum of the lengths of 
sequences greater than or equal in length to L is greater than or 
equal to half the length of the genome being assembled[20]. 
N90 is another statistic to assess assemblies. The N90 is equal 
to the length of the longest sequences L such that the sum of 
the lengths of sequences greater than or equal in length to L is 
greater than or equal to 90% the length of the genome being 
assembled. Various combinations of sequencing libraries were 
used to obtain the best scaffold N50s and N90s using 
SOAPdenovo[21]. The value of N50 and N90 reflect the ability 
of scaffold sequence covering reference genome, the bigger the 
better. In this paper, the value of N50 is 71613, and the value of 
N90 is 157742. And the final running time is 20.796 seconds. 

V. CONCLUSION  

The assembly algorithm in this paper obey the assessment 
standard above. The value of N50 and N90 is relatively large, 
and the assembly effect is relatively good. But the number of k-
mer is too much, there's room for improvement. Fortunately, 
the running speed is very fast, only 20.796 seconds. 
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