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Abstract—Prey toxicity and coexistence of multiple prey species 
are properties that exist wildly in predator-prey systems. Prey 
toxins might inhibit the food intake and maturity of predators. 
Optimal foraging theory predicts that predators prefer prey 
which can provide more energy and cost less energy to handling 
food. In this project, a three-dimensional model consisting of one 
predator and two prey species is constructed. This model 
incorporates explicitly the effects of both prey toxins and the 
optimal foraging theory. The dynamical behaviors of the model 
are analyzed and the results show that prey toxins and optimal 
foraging strategy play important roles in the stability of the 
system. 

Keywords-component; predator-prey model, prey toxicity, 
optimal foraging, local stability 

I.  INTRODUCTION 

With the progress of technology and continuous expansion 
of industrial production, problems of environment pollution 
became worse in recent years. For example, pesticides are 
widely used in farmland to defense pests. They take effect in 
killing pests, while threatening the native enemy of pests at the 
same time. This is because the chemical residues turn pests into 
toxic prey for their predators [1]. Moreover, some plant species 
can produce toxins for self-protection, which also affect 
herbivores [2]. The impact of toxins on predators diet has 
already been stressed in a number of researches as in [3], [4] 
and [5]. Results indicate that the toxicity effect cannot be 
omitted from the system. 

In [3], we achieved a toxin-determined functional response 
model based on the effect of toxicity on herbivore browsing. In 
this model, a toxin-determined functional response ݃(ܰ)  is 
constructed as ݃(ܰ) = ௘ேଵା௛෩(ே)௘ே, where the handling time ℎ෨(ܰ) 
is defined by  

ℎ෨(ܰ) = ቊ ௛ଵି௔ே , ܽܰ < 1;∞, ܽܰ ≥ 1,
Here ܰ is the population of prey species, ݁ is the encounter 

rate per unit of prey, ℎ is the handling time per unit of prey in 
the absence of toxins, ܩ is the toxin-adjusted maximal amount 
of prey a predator can ingest per unit of time. Here	1/(4ℎ) ܩ≥ ≤ 1/ℎ . ܽ = ܩ/݁ߙ , where ߙ = (1 − √ℎܩ)ଶ  is a scaling 
parameter which meets the condition max	 ݃ (ܰ) =  .ܩ

Besides prey toxins, how predators choose proper preys 
based on the balance between energy intake and costs has been 
intensively studied. Optimal foraging theory [8] is a widely 

used framework for explaining and predicting the foraging 
behavior of predators. It predicts that predators choose prey 
which provide maximal net rate of energy intake, while 
minimizing predators' energy costs at the same time.  

Kr ̌ivan [6] studied a one predator-two prey model 
including optimal foraging strategy. The model assumes prey 1 
is the more profitable one, i.e. ܤଵ/ℎଵ >  ଶ/ℎଶ. The probabilityܤ
of attack prey species ݅  is ݌௜ . It follows from the optimal 
foraging theory that the criteria to prey choice is to maximize 
the following fitness function:  

,ଵ݌)ܴ (ଶ݌ = ଵ݁ଵ݌ଵܤ ଵܰ + ଶ݁ଶ݌ଶܤ ଶܰ1 + ଵℎଵ݁ଵ݌ ଵܰ + ଶℎଶ݁ଶ݌ ଶܰ.ܤ௜ is the conversion coefficient of consumed prey species ݅ 
to the biomass of predator. Let ଵܰ∗ = ஻మ௘భ(஻భ௛మି஻మ௛భ),  then the 

monotonicity of ܴ(݌ଵ, ଵ݌ implies that the optimal strategy is	ଶ)݌ = ଶ݌ ,1 = 0 for ଵܰ > ଵܰ∗ and ݌ଶ = 1 for ଵܰ < ଵܰ∗. Thus, ݌ଶ 
is a step function of ଵܰ. This is a renowned result from the 
optimal foraging theory which describes how an generalist 
predator behaves when searching for food based on energy-
maximization rule [9], i.e. the more profitable prey is always 
chosen in the diet while the range of possibility of the less 
profitable one to be chosen relying on the population density of 
the more profitable prey. 

Due to a number of biologically realistic uncertainties 
associated with predator assessment of prey encounter rates, 
prey profitability or predator motivational state [8], [9], there is 
usually considerable behavioral variation around the expected 
step functions. Fraxell [10] replaces the probability ݌ଶ of attack 
against prey species 2 by a continuous sigmoid function of ଵܰ, 
that is, 

 )ߚ ଵܰ) = ேభ∗೥ேభ∗೥ାேభ೥ , ݖ > 1. ݖ is a parameter dictating the closeness of the predator diet 
choice to the optimal foraging. When ݖ goes to infinity, the ߚ is 
the same as the optimal foraging ݌ଶ. In addition, its continuous 
prosperity of this ߚ simplifies the analysis of the model.  

All those models consider either optimal foraging strategy 
or prey toxins, respectively. However, the interactive impacts 
of diet selection and toxic prey on an ecosystem are still not 
clear and have not attracted enough attention. Therefore, we 
focus on the dynamics of a new predator-prey model which 
include both of those two factors in this paper. 
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The paper is organized as the follows. Section 2 introduced 
the model with the new toxin-determined functional response, 
and parameter ߚ is used to denote the optimal foraging strategy. 
Sections 3 and 4 are for the stabilities ties and bifurcations of 
the equilibria. Section 5 is the generalization on the conclusion 
of the dynamical analysis of the model. 

II. THE MODEL 

Let ܲ = (ݐ)ܲ  denotes the density of predator at time ݐ , ଵܰ(ݐ), ଶܰ(ݐ)  denote the densities of prey species 1 and 2. 
Assume that prey 1 contains toxins and prey 2 is toxin-free. We 
do not consider the intra-competition between two prey species.  

The system in [3] is modified to include optimal strategy of 
predators as follows:  



ௗேభௗ௧ = ଵݎ ଵܰ(1 − ேభ௄భ) − ܲ ଵ݃( ଵܰ, ଶܰ)ௗேమௗ௧ = ଶݎ ଶܰ(1 − ேమ௄మ) − )ଶ݃ܲߚ ଵܰ, ଶܰ)ௗ௉ௗ௧ = )ଵ݃ଵܤ)ܲ ଵܰ, ଶܰ) + )ଶ݃ଶܤߚ ଵܰ, ଶܰ) − 	(ܦ 

where ߚ = )ߚ ଵܰ) is defined in (1). 

In the above equations, ݎ௜  and ܭ௜  denote the intrinsic per 
capita growth rate and the carrying capacity of prey species ݅, 
respectively; ܦ is the per capita death rate of predators; ߚ( ଵܰ) 
represents the probability of attack against prey 2, which is a 
continuous sigmoid function of ଵܰ. We assume ܽ ଵܰ < 1, the 
functional response ݃௜( ଵܰ, ଶܰ) is defined as  

݃௜( ଵܰ, ଶܰ) = ݁௜ ௜ܰ1 + ℎ෨ଵ݁ଵ ଵܰ + )ߚ ଵܰ)ℎଶ݁ଶ ଶܰ,
where ℎ෨ଵ( ଵܰ) = ௛భଵି௔ேభ,	 and ܽ = (1 − ඥℎଵܩଵ)ଶ݁ଵ/ܩଵ . The 

parameters ℎ݅, ݁݅, ݅ܩ  of prey species ݅ are similar in definition 
with ℎ, ݁, ܩ  in the previous section. In the remaining of the 
paper, we assume that ܽܭଵ < 1, so that ݃݅(ܰ1, ܰ2) is always 

nonnegative for ܰ1 ≤  .1ܭ

III. BOUNDARY EQUILIBRIA 

In this section, the conditions for the existence and stability 
of boundary equilibria of the system (2) are studied. 

A. Existence of Boundary Equilibria 

The equilibria of system (2) can be obtained by solving the 
following equations:  



ଵݎ ଵܰ(1 − ேభ௄భ) − ܲ ଵ݃( ଵܰ, ଶܰ) = ଶݎ0 ଶܰ(1 − ேమ௄మ) − )ߚ ଵܰ)ܲ݃ଶ( ଵܰ, ଶܰ) = )ଵ݃ଵܤ)0ܲ ଵܰ, ଶܰ) + )ߚ ଵܰ)ܤଶ݃ଶ( ଵܰ, ଶܰ) − (ܦ = 0. 
There are 7 possible boundary equilibria. The first type of 

equilibria are those at which predator is absent, i.e., ܲ = 0. 
There are four boundary equilibria of this type:  ܧ଴ = (0,0,0), ଵܧ = ,ଵܭ) 0,0),	

 ଶܧ = (0, ,ଶܭ 0), ሜܧ = ,ଵܭ) ,ଶܭ 0). 

It is clear that ܧ଴, ሜܧ ଶ andܧ ,ଵܧ  always exist.  

The second type of boundary equilibria are those at which ܲ > 0. There are at most three equilibria of this type:  ܧ෨± = ൫ ෩ܰଵ±, 0, ෨ܲ±൯, ෠ܧ = (0, ଶܰ෢, ෠ܲ),
with  



෩ܰଵ± = ஻భ௘భା஽(௔ି௛భ௘భ)±√∆ଶ஻భ௘భ௔ ,෨ܲ± = ଵݎ ଵܰ෪(1 − ே෩భ±௄భ) ஻భ஽ ,ଶܰ෢ = ஽(஻మି௛మ஽)௘మ ,෠ܲ = ௥మ஻మ[௘మ௄మ(஻మି௛మ஽)ି஽]௄మ௘మమ(஻మି௛మ஽)మ .
 

Where ∆= ଵ݁ଵܤ] + ܽ)ܦ − ℎଵ݁ଵ)]ଶ −  .ܦଵ݁ଵܽܤ4

Let  



௜ݓ = ௜ܩ௜ܤ − ,ܦ ݅ = ௄ଵݓ,1,2 = ,ଵܭ)ଵ݃ଵܤ 0) − ௄ଶݓ,ܦ = (ଶܭ,0)ଶ݃ଶܤ − ݓ̄,ܦ = ,ଵܭ)ଵ݃ଵܤ (ଶܭ + ,ଵܭ)ଶ݃ଶܤ (ଶܭ − .ܦ 

All of the above quantities are biologically meaningful. 
More specifically, ݓ௜  represents the maximum fitness of 
predator when only prey species ݅ is present, ݓ௄ଵ represents the 
predator’s fitness when ( ଵܰ, ଶܰ) = ,ଵܭ) 0) ௄ଶݓ ,  is the 
predator’s fitness when ( ଵܰ, ଶܰ) = (ଶܭ,0) , and ̄ݓ  represents 
the predator’s fitness when ( ଵܰ, ଶܰ) = ,ଵܭ)   .(ଶܭ

Note that the value of ଵ݃( ଵܰ, 0)  is increasing as ଵܰ  is 
increasing from zero, until it achieves the maximum value ܩଵ at ଵܰ௠ = ଵ௔ାඥ௛భ௘భ௔, and then decreases for ଵܰ starting from ଵܰ௠. 

The function ݃ଶ(0, ଶܰ) is a monotonically increasing function 
of ଶܰ. In the remaining of the paper, we assume that ଵܰ௠ <  ଵܭ
and ݃ଶ(0, (ଶܭ < ௄௜ݓ :ଶ. Under those assumptions, we haveܩ  .௜ݓ>

The existence results below suggest that for the predator to 
be able to survive in the system, its maximum fitness must be 
positive.  

Theorem 1.  Let ݓ௜ and ݓ௄௜ be as defined in (6).  

a) ܧ෨± does not exist if ݓଵ < 0; if ݓ௄ଵ > 0, then ܧ෨ି exists 
but ܧ෨ା  does not; both ܧ෨ା  and ܧ෨ି  exist when ݓ௄ଵ ≤ 0 ≤ ଵݓ , 
with ܧ෨ା = ଵݓ ෨ି ifܧ = 0.  

b) ܧ෠  exists if and only if ݓଶ > 0.  

Proof. The proof for ܧ෨±  is identical with the proof in 
Theorem 3.1 of [1]. Figure 1 shows graphically the existence of 
those equilibria. We only provide the proof for the existence of ܧ෠ .  

103

Advances in Intelligent Systems Research (AISR), volume 141



 
FIGURE I.  PLOT OF ݕ = ଵܤ ଵ݃( ଵܰ, 0) AND ݕ =  EVERY.ܦ

INTERSACTION OF TWO CURVES PRESENTS AN 
EQUILIBRIUM. 

Note that ߚ( ଵܰ)=1 if ଵܰ =0, so ܧ෠  can be calculated by 
solving the equations:  

 ,ଶ݃ଶ(0ܤ			 ଶܰ) = ,ܦ ଶݎ		 ଶܰ ቀ1 − ேమ௄మቁ = ܲ݃ଶ(0, ଶܰ) 

From the second equation of (7), we have	ܲ = ௥మேమ(ଵିಿమ಼మ)௚మ(଴,ேమ)  . 

Therefore, ܲ > 0  if and only if 0 < ଶܰ < ଶܭ . It follows 
that we only need to show that the first equation of (7) has a 
solution between 0 and ܭଶ . Since ݃ଶ(0, ଶܰ) is monotonically 
increasing with respect to ଶܰ , and ܤଶ݃ଶ(0,0) = 0 < ܦ ,ଶ݃ଶ(0ܤ , (ଶܭ = ଶݓ + ܦ >  it follows that there must exist a ,ܦ
solution ଶܰ෢ ∈   .This completes the proof .(ଶܭ,0)

A. Stability of Boundary Equilibria 

The stability conditions of the four equilibria listed in (4) 
can be easily obtained by calculating the eigenvalues of the 
Jacobian matrices at the equilibria. The results are summarized 
in the following theorem.  

Theorem 2.  Let ̄ݓ be as defined in (6). Then  

a) ܧ଴, ܧଵ and ܧଶ are always unstable;  

b) ܧሜ  is locally asymptotically stable if ̄ݓ < 0.  

The stability results of the equilibria ܧ෨± are given below.  

Theorem 3.  Let 

 ݓଵ > 0, ଵܩ	݀݊ܽ < ଵସ௛భ. 

a) The equilibrium ܧ෨ା is always unstable;  

b) There exist constants ߪଵ > 0 and ݓଵ௖ > 0, such that ܧ෨ି 
is l.a.s. if  

௥భ௥మ > ଵݓ ଵ andߪ >  ଵ௖, and unstable if eitherݓ
௥భ௥మ <  ଵߪ

or ݓଵ <   ;ଵ௖ݓ

c) When 
௥భ௥మ > ଵݓ ଵ, a Hopf bifurcation occurs atߪ = ଵ௖ݓ , 

and stabile periodic solutions exist for ݓଵ near ݓଵ௖ and ݓଵ   .ଵ௖ݓ>
Proof. The Jacobian matrix at the equilibrium point ܧ෨± is  

±ሚܬ = ቌܽଵ± ∗ ܽଶ0 ܽଷ± 0ܽସ± ∗ 0 ቍ,
where  

ܽଵ± = ଵ(1ݎ − 2 ෩ܰଵ±ܭଵ ) − ෨ܲ± ߲ ଵ߲݃ ଵܰ ( ෩ܰଵ±, 0),ܽଶ = − ±ܽଷ				ଵ,ܤܦ = ଶݎ − ෨ܲ± )ߚଶ݁ܦ ෩ܰଵ±)ܤଵ݁ଵ ෩ܰଵ± ,
ܽସ± = ෨ܲ± ߲݃ଵ߲ ଵܰ ൫ ෩ܰଵ±, 0൯,



and the other two entries have no effect on the stability of the 
equilibrium, which are denoted.  

The matrix ܬሚ±  has one eigenvalue ܽଷ±  and two other 
eigenvalues are the same as that of the matrix  

±෩ܯ = ቆܽଵ± ܽଶܽସ± 0 ቇ,
Thus, ܧ෨± is l.a.s. if and only if ܽଶܽସ± < 0, 	ܽଷ± < 0, ܽଵ± < 0. 
Since ෨ܲା > 0 and 

డ௚భడேభ ( ෩ܰଵା, 0) < 0, then ܽଶܽସା > 0. So ܧ෨ା 

is always unstable, and part (a) is proved.  

Next, we consider the stability of ܧ෨ି.  

Since ෨ܲି > 0 and 
డ௚భడேభ ( ෩ܰଵି , 0) > 0, we have ܽଶܽସି < 0.  

Substitution of ෨ܲି = ଵݎ ෩ܰଵି (1 − ே෩భష௄భ) ஻భ஽ in ܽଷି  yields ܽଷି ଶݎ= − ௥భ௘మఉ(ே෩భష)௘భ ቀ1 − ே෩భష௄భቁ.Let ߪଵ = ௘భ௘మఉ(ே෩భష)(ଵି෩ಿభష಼భ) > 0, where ෩ܰଵି  

is given in (5) and is independent of ݎଵ and ݎଶ. Then ܽଷି < 0 ⟺௥భ௥మ >  .ଵߪ
The discussion about the sign of ܽଵି  is the same as that of 

the entry ܾଷି  in Theorem 3.3 of [1], except that the parameter ܽଵ in that theorem is replaced by ܽ, ߪଵ௖ is replaced by ߪଵ in this 
paper. Therefore, the remaining proof is the same and we omit 
it in this paper.  

The stability of ܧ෠  is stated in the following Theorem, which 
can be proved in a similar way as for ܧ෨±. 

Theorem 4.  Let ݓଶ > ଶܩ ,0 < ଵସ௛మ.  
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a) There exist constants ߪଶ > 0 and ݓଶ௖ > 0, such that ܧ෠  is 
l.a.s. if  

௥మ௥భ > ଶݓ ଶ andߪ > ଶ௖ݓ , and unstable if either 
௥మ௥భ <  ଶߪ

or ݓଶ <   ;ଶ௖ݓ
b) When 

௥మ௥భ > ଶݓ ଶ, a supercritical Hopf bifurcation occurs atߪ =   .ଶ௖ݓ
We remark that the sets of stability conditions (see, for 

example, (8)) identified in this section are sufficient but not 
necessary. There are other scenarios in which the equilibria ܧ෨ି 
and ܧ෠ି may be stable. Nonetheless, these results provide useful 
insights into the role of prey toxicity and optimal foraging 
strategy in the composition of prey community. For example, 
Theorem 3 suggests that in the presence of predator, if prey 1 
has a relatively high growth rate ( ଶݎ/ଵݎ > ଵߪ ) and higher 
toxicity (smaller ܩଵ value, see (8)), then it is possible for prey 1 
to exclude prey 2 (as ܧ෨ି is l.a.s.). Consider the system of [1], 
we can observe that, if we do not consider the competition 
effect between prey species, i.e., let ߚଵଶ = 0 , then ߪଵ௖ =௘భ௘మ(ଵି෩ಿభష಼భ). The equilibrium ܧ෨ି is l.a.s. if  

௥భ௥మ >  ଵ௖. If we includeߪ

the optimal foraging parameter 0 < )ߚ ଵܰ) < 1 in the system, 
then ߪଵ௖ is replaced by ߪଵ. Since ߪଵ >  ଵ௖, Theorem 3 impliesߪ
that optimal foraging strategy may prevent the extinction of 
toxin-free plant species. 

IV. INTERIOR EQUILIBRIUM 

In this section, we derive the conditions in which an interior 
equilibrium exists. Most of the conditions are motivated by 
biological consideration. 

A. Existence of an Interior Equilibrium 

An interior equilibrium of the system (2) is indicated by ܧ∗ = (ܲ∗, ଵܰ∗, ଶܰ∗), i.e., all components of ܧ∗ are positive due 
to their biological purpose. Then ଵܰ∗  and ଶܰ∗  satisfy the 
equations:  



ଵܤ ଵ݃( ଵܰ, ଶܰ) + )ߚ ଵܰ)ܤଶ݃ଶ( ଵܰ, ଶܰ) − ܦ = 0,
௥భ௘భ (1 − ேభ௄భ) − ௥మఉ(ேభ)௘మ (1 − ேమ௄మ) = 0.  

Let  

 ଶܰ⋄ = ଶ(1ܭ − ௥భ௘మ௥మ௘భ)	ݓଶ⋄ = ,ଶ݃ଶ(0ܤ ଶܰ⋄) − .ܦ 

Theorem 5. Assume 
௥భ௥మ < ௘భ௘మ  holds. System (2) has an 

interior equilibrium ܧ∗ = (ܲ∗, ଵܰ∗, ଶܰ∗), if  ̄ݓݓଶ⋄ < 0. 
Proof. Note that all components of ܧ∗ are positive, if exists, 

and they must satisfy the equations of (9).  

We can solve for ଶܰ as a linear function of ଵܰ:  

 ଶܰ = ଶܭ ቂ1 − ௥భ௘మఉ(ேభ)௥మ௘భ ቀ1 − ேభ௄భቁቃ := ߶( ଵܰ), 

By replacing ߶( ଵܰ) for ଶܰ, the first equation in (9) can be 
re-written as: ܳ( ଵܰ): = )ଵ݃ଵܤ ଵܰ, ߶( ଵܰ)) + ,ଵܭ)ଶ݃ଶܤ (ଶܭ −  .ܦ

From (10) and (11), we have ܳ(0) = (ଵܭ)ܳ	and	ଶ⋄ݓ =  .ݓ̄
Clearly, ̄ݓݓଶ⋄ < 0 suggests that there exists an ଵܰ∗ ∈ (0, (ଵܭ , 
such that ܳ( ଵܰ∗) = 0.  

With ଶܰ∗ = ߶( ଵܰ∗) , then 0 < ଶܭ ቂ1 − ௥భ௘మ௥మ௘భቃ < ଶܰ∗ < ଶܭ . 

And ܲ∗ = 1ݎ ቀ1 − 1ቁܭ∗1ܰ ܰ1∗݃1(ܰ1∗ ,ܰ2∗) > 0.  
Therefore, all the factors in ܧ∗ are positive. ܧ∗ is an interior 

equilibrium of the system (2). 

Notice that only prey toxicity level has some affect the 
existence of interior equilibrium, since ݓ,̄  ଶ⋄ are both related toݓ
toxins. The parameter ߚ( ଵܰ)  can be found in (11), which 
indicates that optimal foraging strategy play an important role 
in determining the population density of prey species 2. 

B. Stability of ܧ∗ 
According to Routh-Hurwitz Theorem, the local stability of ܧ∗ depends on the coefficients of characteristic equation of its 

Jacobian matrix. Suppose the characteristic equation:  ܽଷݏଷ + ܽଶݏଶ + ܽଵݏ + ܽ଴ = 0
If all coefficients are positive, and ܽଵܽଶ − ܽ଴ܽଷ > 0	. then 

the interior equilibrium is locally asymptotically stable. 

Due to the express of the new functional response of our 
model, all those coefficients have very complicated forms. 
Hence, the stability conditions cannot be expressed in a simple 
way. However, numerical simulations (see Figure 2) show that 
there might exist a stable interior equilibrium of the system 
under suitable parameter values. 

    
FIGURE II.  DENSITIES OF TWO PREY SPECIES AND & DENSITY OF 

PREDATOR SPECIE(THE PARAMETERS ARE ݎଵ=0.00167;	ݎଶ=0.0028;	ܭଵ=8000; ܭଶ=15000; ݁ଵ=0.0001; ݁ଶ=0.0005; ℎଵ=1/10; ℎଶ=1/160; ܤଵ=0.00001; ܤଶ=0.000036; 0.000114=ܦ ;50=ݖ ;8=ܩ). 

V. DISCUSSION 

In this paper, we integrate diet selection theory for an 
adaptive predator with a toxin-determined functional response ௜݃( ଵܰ, ଶܰ) in a one predator-two prey model. Results show that 
both of those factors play important roles in the dynamics of 
the system. The critical existence threshold such as ݓ௜,  ⋄ଶݓ
implies that toxicity level may play a key role in the existence 
of equilibria.  

Analysis also shows that optimal foraging strategy may 
help preventing the toxin-free plant species from extinction. 
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