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Abstract—In the field of industrial control, the dynamic 

mathematical model of the main equipment or process of the 
system is established by the field data, which has become the hot 
spot of system identification at present. Due to various reasons 
from the industrial production process and means of measuring, 
the time delay is usually unavoidable in the process control system, 
if the phenomenon of time delay is not paid attention, which may 
lead to a sluggish response or even trigger instability. In this paper, 
maximum likelihood estimation of time delay is proposed for first 
order linear single-input-single-output (SISO) time delay system 
to estimate the time delay parameter. Comparative simulation 
experiments are provided to verify the justifiability and 
effectiveness of the proposed method. 

Keywords-time delay estimation; MLE; copula; parameter 
identification 

I. INTRODUCTION  

Time delay is usually unavoidable in control systems, if the 
phenomenon of time delay is not paid attention, which may lead 
to a sluggish response or even trigger instability[1]. Therefore, 
the time delay estimation (TDE) draws more and more attention 
and becomes one of the most important topics in the field of 
system identification. 

In recent years, various methods for TDE have been reported 
in the literature. According to the target source and the detection 
system, the time delay estimation problem can be divided into 
two types: active time delay estimation and passive time delay 
estimation[2]. In the field of control and signal processing, most 
methods have been suggested for active time delay estimation, 
such as time-delay approximation methods, explicit time-delay 
parameter methods, area and moment methods, and higher-
order statistics (HOS) methods. In time-delay approximation 
methods, the time delay is not an explicit parameter in the model. 
In [3], Kurz and Goedecke estimated time delay by measuring 
the time delay to the start (the beginning of the nonzero part) of 
an estimated impulse response of the system. Carter[4] found the 
maximum of the cross-correlation between input and output, 
which was a common method. In [5], Horch and Isaksson 
studied the phase of the discrete-time all-pass part (DAP 
methods). Bjöklund and Ljung[6] found that DAP methods could 
fail completely in some cases. The reason was that the noise 
moving zeros across the unit circle. They proposed an improved 
method named “zero guarding” to make DAP methods more 
robust to noise. In explicit time-delay parameter methods, the 
time delay is an explicit parameter to be estimated in the model. 
Estimating time delays via state-space identification methods, in 
which the delay model was selected with the lowest loss 

function[9]. Elnaggar et al. developed a variable regression 
estimation technique to provide direct delay estimation, which 
was suitable for estimating industrial engineering[10]. The 
modified area and moment method for the first order system was 
described to estimate the time delay, which avoided the second 
order moment integration[11]. Nikias and Pan[12] proposed a time 
delay estimation method based on third-order statistics. The 
above methods estimate the time delay parameters based on the 
model structure of linear system. The model based methods 
always need a prior of the studied system, such as type of the 
system model, which limits the generalization of those methods. 

In this paper, a method is proposed for first order linear 
single-input-single-output (SISO) time delay system to estimate 
the time delay parameter. We construct a likelihood function 
with the input and output data of the system and time delay 
parameter as independent variables, and obtain the time delay 
parameter by maximizing log-likelihood function of time delay.  

II. 2-COPULA 

When the marginal distributions of multiple random variates 
are known, the coupling relationship between those random 
variates can be described by Copula, i.e. Copula connects the 
marginal distributions of the random variates to the joint 
distribution. This section states 2-Copula. See [13,14] for more 
details. 

A. 2- Copula Definition 

2-copula is a function C:[0,1]ଶ → [0,1] whose definition 
field is [0,1]ଶ	with the following properties:  

,ݑ∀ (1) ݒ ∈ [0,1], C(ݑ, 0) = C(0, (ݒ = 0,	C(ݑ, 1) = ,C(1 ,ݑ (ݒ =  ;ݒ

,ଵݑ∀ (2) ,ଶݑ ,ଵݒ ଶݒ ∈ [0,1],	when ݑଵ < ଵݒ	,ଶݑ < ,ଶݑ)ଶ is Cݒ (ଶݒ − C(ݑଵ, (ଶݒ − C(ݑଶ, (ଵݒ + C(ݑଵ, (ଵݒ ≥ 0. 

The significance of the Copula is that it characterizes the 
dependent structure between multiple random variates. Suppose ଵܺ, ܺଶ represent random vectors whose distribution functions 
are recorded as 

 ,ଵݔ)ܨ (ଶݔ = ܲ( ଵܺ ≤ ,ଵݔ ܺଶ ≤ ࢞	ଶ)ݔ = ,ଵݔ) (ଶݔ ∈ ܴଶ
The marginal distributions of the random variates ௜ܺ  are 

recorded as 

 ܨ௜(ݔ) = ܲ( ௜ܺ ≤ ݅	(ݔ = 1,2 
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According to theorem (Sklar)[15], there is a unique 2-Copula 
C:[0,1]ଶ → [0,1], for ∀ݔ ∈ ܴଶ, 

 ,ଵݔ)ܨ (ଶݔ = ܲ( ଵܺ ≤ ,ଵݔ ܺଶ ≤ (ଶݔ = ,(ଵݔ)ଵܨ)ܥ 	.((ଶݔ)ଵܨ
It can be seen that the joint distribution of two random 

variables can be constructed through two separated steps, i.e. 
one step is the marginal distributions of the random variates, the 
other step is the dependent structure between the random 
variates, that is the Copula. 

B. 2-Copula Estimation 

When the Copula between random variates is unknown, it is 
necessary to estimate Copula in some way. In [16-21], various 
Copula estimation methods are introduced, which are roughly 
divided into two categories. The first category is a priori 
knowledge of the marginal distributions type of known random 
variables and the type of Copula. In this kind of problem, the 
undetermined parameters are estimated by maximum likelihood 
estimation and other methods (see e.g. [18,20]); The second 
category only knows the type of partial distribution (marginal 
distributions or joint distribution type) or has not prior 
knowledge of the distribution type. In this kind of problem, 
Copula can be estimated by empirical formula or several types 
of distribution are artificially designated as a priori, and the 
undetermined parameters are estimated through based on 
Bayesian method. Finally, it selects the final distribution type 
using some criteria such as AIC, BIC, DIC (see e.g. [17,22,23]).  

In practical problems, if we do not know the distribution of 
random variates at all, we can get many observations of random 
variates. It is desirable to record the observed values of the 
random variates 	 ଵܺ, ܺଶ  as a set ܦ௝ = ൛ݔ௝௜|݅ = 1,2,… , ݊ൟ(݆ =1,2). The empirical formula in the second category of Copula 
estimation method can be used, and the marginal distributions 
of the random variates are 

 (ݔ)෨௝ܨ					 = ଵ௡∑ 1൫ݔ௝௜ ≤ ൯௡௜ୀଵݔ , ݆ = 1,2. 

Similarly, the Copula is estimated as 

 ,ଵݑ)ሚܥ (ଶݑ = ଵ௡ ∑ 1൫ܨ෨ଵ(ݔଵ௜) ≤ ,ଵݑ ଶ௜ݔ)෨ଶܨ ) ≤ ଶ൯௡௜ୀଵݑ  

III. MAXIMUM LIKELIHOOD ESTIMATION OF TIME DELAY 

In this paper, we only discuss the time delay estimation 
problem between single input and single output system, because 
the time delay calculation problem between multiple input and 
multiple output system is equivalent to the time delay 
calculation between multiple single input and single output 
system. 

Suppose ܺଵ, ܺଶ are real value random variates, where the 
random variate ଵܺ  is input and the random variate ܺଶ  is 
output. The set of observations for the random variates ଵܺ, ܺଶ 
at a fixed time ݐ଴ are recorded as ܦ௝ = ൛ ௝ܺ௜ൟ (j = 1,2); When ଵܺ, ܺଶ delay time ௝݇ݐ଴ ( ௝݇ taken as an integer, j = 1,2), they 
are recorded as random variates	ܺଵ[݇ଵ], ܺଶ[݇ଶ]，then the set of 
observations for the random variates ଵܺ[݇ଵ], ܺଶ[݇ଶ]	 are 

recorded as ܦ௝ൣ ௝݇൧ = ቄ ௝ܺ௜ା௞ೕቅ (j = 1,2). When the sampling 

data are enough, it can be assumed that ଵܺ, ܺଶ  and ଵܺ[݇ଵ], ܺଶ[݇ଶ]	  have the same marginal distributions. The 
Copula of ܺଵ, ܺଶ  is not only related to the marginal 
distributions of ଵܺ, ܺଶ , but also related to the time delay 
between them. In general, if the time delay between ܺଵ, ܺଶ is 
different, the Copula of ଵܺ, ܺଶ is different. Thus, the Copula of ଵܺ, ܺଶ can be represented as function form via their marginal 
distributions and time delay, i.e. C(ܨଵ( ଵܺ), ,ଶ(ܺଶ)ܨ ݇ଵ, ݇ଶ) . 
Since the time delay between ܺଵ, ܺଶ is relative time delay and 
the degree of freedom of ݇ଵ, ݇ଶ	 is 1, we can take ݇ଵ = 0 . 
Therefore, the time delay between ଵܺ, ܺଶ  is ݇ଶ . For the 
convenience of writing, we use ݇  instead of ݇ଶ  in the 
following equation. 

The density of 2-Copula is 

 ,ଵݑ)ܿ ,ଶݑ ݇) = డ஼(௨భ,௨మ,௞)డ௨భడ௨మ . 

According to theorem (Sklar)[15], the density f of the 2-
dimensional distribution function F can be represented as 

 ݂(xଵ, xଶ) = c(ܨଵ( ଵܺ), ,ଶ(ܺଶ)ܨ ݇) ଵ݂(xଵ) ଶ݂(xଶ) 

where ଵ݂(xଵ)  and ଶ݂(xଶ)	 represent the marginal probability 
density functions of the random variates ଵܺ, ܺଶ. The random 
vectors ܆ = (ܺଵ, ܺଶ)  are subjected to multiple independent 
samples to obtain their log-likelihood function 

 ܮ = ∑ log݂(xଵ௜, xଶ௜ା௞)௜  

In order to be able to solve the impact of time delay on the 
system, we construct the following log-likelihood function 

 (݇)ܮ = ∑ log݂(xଵ௜, xଶ௜ା௞)௜  

According to the equation (7), L can be decomposed into the 
following two parts 

 (݇)ܮ = ௖ณௗ௘௣௘௡ௗ௘௡௖௘ܮ + ∑ ଶ௝ୀଵᇣᇧᇤᇧᇥ௠௔௥௚௜௡௔௟௦,	௝ܮ 

where 

 ௖ܮ = ∑ logܿ(ܨ(ݔଵ௜), ,(ଶ௜ା௞ݔ)ܨ ݇)௜ . ܮ௖ is the log-likelihood contribution in from dependence 
structure in data represented by the copula C. ܮ௖	varies with the 
time delay ݇; ܮ௝ has the following form 

 ௝ܮ = ቊ ∑ log ଵ݂(ݔଵ௜)௜ 		 , ݆ = 1∑ log ଶ݂(ݔଶ௜ା௞)௜ , ݆ = 2	 

௝ܮ  is the log-likelihood contributions from each margin: 
observe that ∑ ௝ଶ௝ܮ  in (10) is exactly the log-likelihood of the 
sample under the independence assumption. When the sample 
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are enough, the value of this part varies little with the time 
delay	݇. Theoretically, with taking the partial derivative of the 
time delay 	݇  of ܮ  and the partial derivative is zero, the 
following equation for time delay is obtained as  

 డ௅೎డ௞ + ∑ డ௅ೕడ௞ = 0	ଶ௝ୀଵ  

The solution of the equation is the maximum likelihood 
estimation value of time delay. But equation (13) is difficult to 
express as an explicit equation for time delay ݇. In order to 
facilitate the calculation of time delay, we turn to solve the 
following optimization problem 

 ෠݇ = argmax௞ ௖ܮ) + ∑ ଶ௝ୀଵ	௝ܮ ) 

When the sample are sufficient, the value of the second term 
of the objective function of the optimization problem (14) 
fluctuates little with the change of point ݇.	In	extreme	cases, 
there is no obvious knowledge of ܺଵ, ܺଶ	, we can think that	݇ 
is uniformly distributed. The value of the second term of the 
objective function of optimization problem (14) does not change 
with the change of point 	݇ . The objective function of the 
optimization problem is simplified as 

 ෠݇ = argmax௞ (௖ܮ) 

At this point, the solution of the optimization problem to 
satisfy the equation xଵ௜ = ݃(xଶ௜ା௞) is ෠݇. 

Therefore, the time delay between random variables can be 
calculated using equation (15). 

IV. SIMULATION 

A. First Order Linear System 

Consider the following first order linear continuous-time 
SISO system with a time delay, Simulink simulation block 
diagram is as follows 

 
FIGURE I.  FIRST ORDER LINEAR SYSTEM 

The model of first order inertial time delay system is as 
follows 

 (ݏ)ܩ = ௄௘షഓೞ்௦ାଵ 	 

where τ is the time delay parameter to be estimated. In order to 
further verify the correctness and applicability of the above   
method, where the two different relatively large parameters are 
selected to fix model. The first group parameters take K =1.94, T = 0.5, τ = 20 , and the second take K = 9.4, T =4.2, τ = 30. 

Using MATLAB programming to achieve the above method, 
the time delay parameter of the model is estimated. The specific 
estimation process can be simply described as: the first is that 
the data are collected, in which the input is the uniformly 
distributed random signal, the output is the output of the model 
and the sampling period is 1s; Then adopts the above equation 
(15) to estimate the time delay parameter of the model via the 
collected data.  

 
(A) TIME DELAY ESTIMATION RESULT (τ = 20) 

 
(B) TIME DELAY ESTIMATION RESULT (τ = 30) 

FIGURE II.  OUR METHOD FOR TIME DELAY ESTIMATION 

Fig. 2 shows the log likelihood estimation of input and 
output for different delay times. In Fig. 2(A), the maximum 
value of the log likelihood function is 20s, and the value of the 
log likelihood function is smaller when the time delay is less 
than 20s and greater than 20s; In Fig. 2(B), the maximum value 
of the log likelihood function is 30s, and the value of the log 
likelihood function is smaller when the time delay is less than 
30s and greater than 30s. As shown in Fig. 2, the time delay is 
20s in Fig. 2(A) and 30s in Fig. 2(B). The obtained of time delay 
value is consistent with the time delay parameter value selected 
in G(s), which proves the effectiveness of the proposed method. 

Comparison to other time delay identification methods in 
Fig. 3: Our method (A), Exhaustive method (B), PSO method 
(C) and System Identification Toolbox (Process models) (D). 
Where the value of parameters in G(s)  is 	K = 1.94, T =2.5, τ = 20. 
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(A) OUR METHOD 

 
(B) EXHAUSTIVE METHOD  

 
（C）PSO METHOD  

 
(D)SYSTEM IDENTIFICATION TOOLBOX (PROCESS MODELS) 

FIGURE III.  FIRST ORDER LINEAR SYSTEM IDENTIFICATION  

Fig. 3(B)-(D) depict measured data and identification result 
with exhaustive, PSO and System Identification Toolbox 
(Process models) methods. The time delay parameter 
identification results are summarized in Table 1. 

 

 

TABLE I.  TABLE ICOMPARISON TO OTHER METHODS IN FIRST 
ORDER LINEAR SYSTEM. 

  Methods Time delay estimation error 
Our method 20 0 
Exhaustive method 20 0 
PSO method 20.2159 0.0108

System Identification 
Toolbox (Process models) 

20 0 

B. First Order Linear System with Noise  

Consider the case of noise in first order linear system, 
Simulink simulation block diagram is as follows 

 
FIGURE IV.  LINEAR SYSTEMS WITH NOISE 

where the value of parameters in G(s)  is 	K = 1.94, T =2.5, τ = 20, τ is the time delay parameter to be estimated. 

Comparison to other time delay identification methods in 
Fig. 5: Our method (A), Exhaustive method (B), PSO method 
(C) and System Identification Toolbox (Process models) (D).  
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(B) EXHAUSTIVE METHOD 
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Measured model output
Simulated model output
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(C)PSO METHOD 

 
(D)SYSTEM IDENTIFICATION TOOLBOX (PROCESS MODELS) 

FIGURE V.  FIRST ORDER LINEAR SYSTEM WITH NOISE 
IDENTIFICATION 

Fig. 5(B)-(D) depict measured data and identification result 
with exhaustive, PSO and System Identification Toolbox 
(Process models) methods. The time delay parameter 
identification results are summarized in Table 2. 

TABLE II.  COMPARISON TO OTHER METHODS IN FIRST ORDER 
LINEAR SYSTEM WITH NOISE. 

 Methods Time delay estimation error 

Our method 20 0 

Exhaustive method 20 0 

PSO method 20.4705 0.0235

System Identification 
Toolbox (Process models) 

19.992 0.0004

From Table 1-2 we can find that our proposed estimation 
method obtained best time delay precision and error 
performance.  

V. CONCLUSION 

This paper is concerned with the time delay parameter 
estimation of first order linear SISO time delay systems. The 
time delay parameter is estimated by the maximum log-
likelihood function of time delay. For the linear delay system 
identification, the good statistical properties of the time delay 
parameter can be obtained and the influence of noise disturbance 
is small, which proves the effectiveness of the proposed method. 
This method is based entirely on the input and output data of 
system, which is more practical for the complex systems in 
industry. When the time delay parameter is estimated, the input 
signal needs to have a rich change in the model. Future work 

will focus on extending the proposed idea for MIMO and 
nonlinear time delay systems. 
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