
 

Modelling Revenue Management Problem under 
Fare Class Interval Customer Choice 

Baohua Wang 
Tsinghua University, Beijing, 100084, China 

Beijing Union University, Beijing, 100025, China 
 
 
Abstract—In order to explain customer choice conditioned on 
opened classes more realistically and efficiently, I assume a 
customer considers a discrete choice as a fare class interval and 
buys the lowest opened class with that interval. Unlike the 
traditional one-dimensioned, unstructured choice model, I 
model customer choice as a two-dimensioned fare class interval 
distribution. I take closed set as a more efficient research angle, 
and find out an additive principle to reduce computation. Then 
I turn the traditional maximized decision principle into 
minimized decision principle and get a new model for the 
maximized total revenue management problem. This model 
builds the foundation for more efficient explorations to revenue 
management problem. 

Keywords-modeling; customer behavior; customer choice; 
operational research; revenue management 

I. INTRODUCTION 

Customer interview as well as airline information system 
data reveals that a customer usually buys different fare class 
across time. That is, a customer’s buying decision is made 
on condition of opened set [1]. Then what drives her to buy 
that certain class under that opened set? As customer 
demand is usually a mix of priceable type and yieldable type 
[2], there are several fare classes in a customer’s considering 
set [3][4], and she make eventual choice according to a 
certain preference order [5].  

Customer choice as a permutation of fare classes is 
called as discrete customer choice [1]. When the 
permutation is a subset of the entire fare class set ଵ݂, … , ௡݂ 
with a few fare classes missing, the number of demand types 
are relatively limited. Reference [1] gave an example of 
choice set. Reference [6] assumed all the customers are 
complete priceable type [2], buying the lowest opened class. 
That is, the customer choice is [݊, ℎ], ℎ = ݊,… ,1. This is a 
particular case of FCI model, with all the customers 
belonging to the same layer ݊. Reference [3] took choice 
model as choice set (customer choice as a set of fare classes) 
and estimated the arriving rate of each choice set across time 
by maximizing likelihood function dependent of offer sets, 
yet they only use class set to take place individual class 
without looking into the structure of all the choice sets. I 
construct a choice model not only as a fare class set-type 
choice model, but also study the inner instructure of choices 
by clustering choice sets in to layers.   

I study on a particular choice model where a customer 
independently makes choice in a fare class interval (FCI), 
and buys the lowest opened class within that FCI. For 
example, suppose a customer only makes choice in an FCI 
[5,2], i.e., {5,4,3,2}. When there are trivial differences 
between fare products while big difference between fares [7], 
a customer tends to choose an FCI instead of a single fare 

class. 

An explanation of FCI choice is customer’s valuation or 
willing to pay (WTP) [8] on flying travel being an interval 
of classes rather than a single class. A customer has a lower 
bound of WTP because one has a lower bound flying travel 
utility. One has an upper bound of WTP because of her 
affordable budget on flying travel. All the classes among the 
interval are acceptable because they are all fare-affordable 
and utility-acceptable. Furthermore, a customer’s total 
utility includes flying travel utility and customer surplus 
currency utility, i.e., a customers is price sensitive among 
her FCI, so although she gets more flying travel utility with 
higher fare class, she will eventually choose the lowest 
opened class among her FCI. Another rationale of FCI is 
anchoring effect in marketing science literature. Reference 
[9] found the original price of a discounted commodity had 
an upside-down U shape effect on price expectation of 
customers. That is, as the discrepancy between original price 
and discounted price expands, customer price expectation 
increases at first and then decreases, which implies 
customers take original price at first and then take 
discounted price as price anchor. Applying this effect into 
hierarchy of fare classes, I find when valuating lower classes 
standing at ones upper bound of WTP, at first one takes this 
higher fare class as anchor, and evaluates a fare product as 
higher than its fare. After a breaking point, one takes the 
lower fare class itself as anchor, and evaluates a fare product 
as low as its fare. Reflected on choice behavior, one will 
only choose some adjacent fare classes near ones WTP 
upper bound. 

Customer choice is traditionally explained by fare 
products’ attributes including price. Reference [1], [4] and 
[10] used MNL model to determine the buying probability 
toward each class, by the weights of various attributes, such 
as customer’s sensitivity on price, restrictions, among the 
other attributes of fare class products. The parameters of 
MNL model were simulated or estimated on the basis of 
classes [1], [5], [10]. This is a rigid model [7] because the 
buying probability is deterministic, independent, without 
buy up, and results in only one customer choice type. To 
differentiate the choice model, Reference [1] and [10] added 
a random factor, while Reference [4] shortened customer’s 
consideration set into disjoint fare class sets. Reference [3] 
developed this MNL based choice model into choice sets as 
a hole. After preference on each class is given, a choice set 
will certainly contain the preference as an attribute. In this 
sense, FCI model is a case when customers are price 
sensitive within FCIs, while other attributes (such as utility) 
sensitive out of FCIs. Demand distribution has been 
modeled according to customer’s valuation of the product, 
customer’s willing to pay (WTP) [8], or customer’s highest 
fare class choice [6]. In their models, demand distribution is 
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the given proportion of a single variable on customer. My 
choice model is a two-dimensioned demand distribution of [݈, ℎ]. 

My research is presented as following. In section II I 
construct FCI choice model. Then in section III I model the 
maximized total revenue problem. Section IV provides 
conclusion of my research.  

II. CHOICE MODEL 

A. FCI Choice Model 

Notations of FCI choice model are listed in table I.  

TABLE I.  NOTATIONS IN CHOICE MODEL 

Terms Meaning ௝݂ Fare class.	 ௡݂ ൏ ⋯ ൏ ௝݂ ൏ ⋯ ൏ ଵ݂, ݆ = ݊, … ,1  
I Fare Class Interval. ܫ ≡ [݈, ℎ], ݈ ൒ ℎ, 1 ≤ ݈, ℎ ≤ ݊ 
l The lowest class of an FCI; Index of layers in l model 
h The highest class of an FCI; Index of layers in h 

model ݀௛௟  Demand quantity of FCI [݈, ℎ] in layer l ܽ௟ Demand quantity of layer l ܳ(ܣ௛ିଵ௟ ) Accumulative tail demand quantity of [݈, ℎ] within 
layer l. ܳ(ܣ௛ିଵ௟ ) = ∑ ݀௞௟ଵ௞ୀ௛ିଵ  

S Fare class set opened  ܵ Fare class set closed ܣ Complete fare set closed ܣ௝ Complete fare set closed with ݆ as its highest class. ܣ௝ ≡ [݊, ܭ .Incomplete FCI ܭ [݆ ≡ [݈, ℎ], ݈ ൒ ℎ, 1 ≤ ݈, ℎ ൏ ݊ 
q Closed set demand quantity (CSQ) 
r Closed set revenue (CSR) 
p Closed set price (CSP) 

I study a context where there is only one single leg of 
one airline company, who provide ݊ class fare products ଵ݂, . . , ௡݂, with total capacity ܥ. A customer type is defined 
as a FCI≡ [݈, ℎ], ݈ ൒ ℎ, 1 ≤ ݈ ≤ ݊, where ݈, ℎ is separately 
the lowest and highest fare class the customer chooses. I 
assume the customer eventually buys the lowest opened 
class within her FCI, and customer types are independent 
with each other, thereby the capacity control problem 
transits from being based on fare classes to being based on 
fare class sets. Furthermore, I assume that customer demand 
follows a deterministic discrete distribution denoted by ܨ(݀௛௟ ), where ݀௛௟  is the demand of FCI [݈, ℎ], ݈ ൒ ℎ, 1 ≤݈ ≤ ݊. ݀௛௟  could be directly investigated from customers.	݈ 
is taken as fare class layer, and [݈, ℎ] is taken as the FCI 
within layer ݈. Then ܽ௟ = ∑ ݀௛௟௟௛ୀଵ , ܽ௟ ∈ [0,1] is the layer 
demand, and ܳ൫ܣ௛௟ ൯ = ∑ ݀௞௟ଵ௞ୀ௛ /ܽ௟, ℎ = 1,… , ݈, ݈ = 1,… , ݊ 
is the cumulative demand of interval [ℎ, 1] within layer ݈. 
Figure I illustrates the distribution of customer demand 
under FCI model.  

Each of the four curves in figure I separately denotes the 
distribution densities of the choice intervals with the lower 
bound, i.e., the layer of f୬, … , fଵ. Each layer is de- 

 
FIGURE I.  FCI CHOICE MODEL  

picted as a line, and a point ℎ in a curve ݈ represents the 
demand proportion of FCI [݈, ℎ]  within layer ݈ , whose 
value is ݀௛௟ /ܽ௟. 

Let’s take example 1 to illustrate this model. Referring 
to the fare structure of the Beijing – Shanghai leg, China 
Airline on www.ctrip.com, I get six fare classes: 520, 650, 
750, 1200, 2100, 3800. Setting up ݀௛௟  properly I get a 
FNAPO case, as seen in table II. Table II also list ܳ(ܣ௛௟ ), 
which is computed according to ݀௛௟ . 

TABLE II.  THE INTERVAL DEMAND OF EXAMPLE 1 [࢒, ࢒ࢎࢊ [ࢎ ࢒ࢎ࡭)ࡽ ) ,࢒] ࢒ࢎࢊ [ࢎ ࢒ࢎ࡭)ࡽ  )
[1] 0.0200 1.00 [5,4] 0.0950 0.68 

[2] 0.0464 1.00 [5,4,3] 0.0300 0.30 

[2,1] 0.0336 0.42 [5,4,3,2] 0.0250 0.18 

[3] 0.0975 1.00 [5,4,3,2,1] 0.0200 0.08 

[3,2] 0.0300 0.35 [6] 0.1317 1.00 

[3,2,1] 0.0225 0.15 [6,5] 0.0540 0.56 

[4] 0.1440 1.00 [6,5,4] 0.0600 0.38 

[4,3] 0.0440 0.28 [6,5,4,3] 0.0300 0.18 

[4,3,2] 0.0080 0.06 [6,5,4,3,2] 0.0150 0.08 

[4,3,2,1] 0.0040 0.02 [6,5,4,3,2,1] 0.0093 0.03 

[5] 0.0800 1.00 
  

According to ݀௛௟  of table I, I get the accumulative 
demand distribution of example 1, shown in figure II. 

 
 

FIGURE II.  FCI DEMAND DISTRIBUTION OF EXAMPLE 1 

B. Closed Set Research Angle 

No let’s find out which view angle is the simplest in 
analysis and computation.  

When an arbitrary FCI [݈, ℎ] is closed, the choice of 
customers in layer ݇, ݇ ∈ [݈, ℎ] shifts from class ݇ to class ℎ − 1. Meanwhile, customers who choose higher classes ℎ − 1,… ,1 have no demand in class ݇, and customers who 
choose lower classes ݊,… , ݈ + 1  still buy classes lower 
than ݇. So only the choice of customers in layer ݇, ݇ ∈[݈, ℎ]  is affected. For the same rationale, I analyze the 
changes in demand of various classes, concluded in Table 
III.  
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TABLE III.  DEMAND CHANGES UNDER CLOSED / OPENED FCI  

Class Under closed FCI Under opened FCI݇, ݇ ∈ [݈, ℎ] From ݇ to ℎ − 1
within layer ݈ From 0 to ݇ within 

layer ݈ ℎ − 1,… ,1 No demand in ݇ No demand in ݇݉,݉∈ [݊, ݈ + 1] Still ݉ Still ݉, ora from 0
to ݇  

a. It depends on the opened or closed status of class ݉.  

 

From table III we can see, the simplest scenario is to 
study closed sets. The simplification on computing isolated 
sets when they are closed is a sense of constructing FCI 
model. From now on, all the sets or classes in remained 
sections are referred to closed ones if no particular statements 
are offered.  

C. Computations on Closed Set and Additive Principle 

According to FCI model, the decreased demand quantity 
brought by layer ݇, defined as layer closed set quantity 

(layer CSQ) is ݍ௞(ܫ) = ܽ௞ ቀ1 − ܳ൫ܣ௛ିଵ௞ ൯ቁ , while the 

decreased revenue, defined as layer closed set revenue (layer 

CSR) brought by layer ݇  is ݎ௞(ܫ) = ܽ௞ ቀ݌௞ ௛ିଵ௞ܣ௛ିଵܳ൫݌− ൯ቁ. The FCI’s total CSQ to the leg, defined as 

CSR, is (ܫ)ݍ = ∑ (ܽ௞(1 − ܳ൫ܣ௛ିଵ௞ ൯)௛௞ୀ௟ , the FCI’s total 
CSR to the leg, defined as CSR, is (ܫ)ݎ = ∑ ܽ௞(݌௞ −௛௞ୀ௟݌௛ିଵܳ൫ܣ௛ିଵ௞ ൯), and the FCI’s closed set price (CSP) to the 

leg is (ܫ)݌ ≡ ௥({௟,௛})௤({௟,௛}) = ∑ ௔ೖ൬௣ೖି௣೓షభொቀ஺೓షభೖ ቁ൰೓ೖస೗∑ ௔ೖቀଵିொ൫஺೓షభೖ ൯ቁ೓ೖస೗ . For the same 

rationale, non-adjacent FCIs will also not affect the demand 
of each other. To summarize we have additive principle as 
stated in property 1.  

PROPERTY 1. For ∀	ܫ = [݈, ℎ] and for ∀ܵ,	ܵ =∪  ,(ܵ)ܫ
where ܫ൫ܵ൯s are the non-adjacent FCIs composing ܵ, there 
exists additive principle as (ܫ)ݍ = (ܫ)ݎ ,(ܫ)௞ݍ∑ = ൫ܵ൯ݍ ,(ܫ)௞ݎ∑ = ൫ܵ൯ݎ ,(൫ܵ൯ܫ)ݍ∑ =   .൫ܵ൯ܫ)ݎ∑

Table IV lists the additive principle separately at the 
level of layer, FCI and ܵ̅ . Note that layer CSQ is the 
demand quantity at class level [1].  

Table IV implies that under FCI model, there exists 
additive principle from class to FCI and through to general 
set. It facilities the computation and decision directly on sets 
instead of on classes.  

TABLE IV.  ADDITIVE PRINCIPLE ABOUT FCI AND ARBITRARY 
SET 

 CSP CSR, CSQ 
Layer CSR, CSQ to Layer ࢑, ࢑ = …,࢒ ,  ࢎ

(ܫ)݌ = (ܫ)ݎ (ܫ)ݍ(ܫ)ݎ = ෍ݎ௞(ܫ)௟
௞ୀ௛  

=(ܫ)௞ݎ ܽ௞( ௞݂ − ௛݂ିଵܳ(ܣ௛ିଵ௞ )) 
(ܫ)ݍ = ෍ݍ௞(ܫ)௟

௞ୀ௛ (ܫ)௞ݍ  = ܽ௞(1 − ௛ିଵ௞ܣ)ܳ )) 
(̅ܵ)݌ = (̅ܵ)ݎ (̅ܵ)ݍ(̅ܵ)ݎ = ෍((̅ܵ)ܫ)ݎ  

(̅ܵ)ݍ = ෍((̅ܵ)ܫ)ݍ  

III. MAXIMIZED REVENUE MODEL 

A. Traditional Model 

I construct maximized total revenue model based on the 
Bellman equation in Reference [1]. Notations of maximized 
total revenue model are included in table V.  

TABLE V.  NOTATIONS IN MAXIMIZED TOTAL REVENUE MODEL 

Terms Meaning ߣ Customer arriving rate within one stage. ߣ ≤ 1
t Index of remaining time before departure
x Index of remaining seat on the airline ܴ Revenue gained when class set ܵ is openedܳ Demand probability when class set ܵ is opened௧ܸ(ݔ) Total revenue gained by sailing ݔ units of seats∆ ௧ܸ(ݐ, ݔ Revenue gained by sailing the (ݔ th seat at time ∆ݐ ௧ܸ(ݐ, (ݔ ≡ ௧ܸ(ݔ − 1) − ௧ܸ(ݔ) ݒ Bid price of the ݔth seat at time ݒ .ݐ ≡ ∆ ௧ܸ(ݐ, ∗ܵ(ݔ Optimal closed set 

When customer choice structure is known, and customer 
arriving rate is ߣ, the Bellman equation is  

 ௧ܸ(ݔ) = (ܵ)ܴ)ߣ}ݔܽ݉ − {((ܵ)ܳݒ + ௧ܸିଵ(ݔ) 

where bid price ݒ ≡ ௧ܸିଵ(ݔ) − ௧ܸିଵ(ݔ − 1)  denotes the 
marginal revenue gained by selling the ݔst capacity at stage ݐ −  (ܵ)ܳ means the revenue gained by selling (ܵ)ܳݒ ,1
units of the opening set remains ܵ∗(ݐ − 1, (ܵ)ܴ and ,(ݔ  ݒ means the incremental revenue under bid price (ܵ)ܳݒ−
yielded by opening set ܵ  compared with the revenue 
yielded by last stage opening set ܵ∗(ݐ − 1,  Decision .(ݔ
principle ݉ܽߣ}ݔ(ܴ(ܵ) − ,ݐ)∗ܵ is to find {((ܵ)ܳݒ  with (ݔ
the highest incremental revenue at stage ݐ. Let ܵ଴ denote 
the last opened set, then ܴ(ܵ) − (ܵ)ܳݒ  represents the 
incremental revenue gained by opening ܵ than by opening ܵ଴ . Furthermore, the value of ݒ  is monotonically 
decreasing with remained time ݐ and remained capacity ݔ.  

B. New Decision Principle 

From the Bellman equation we can see that the decision 
principle of the problem is ݉ܽݔ{ܴ(ܵ) −  In order to .{(ܵ)ܳݒ
simplify computation, I transform it into that under closed set 
research angle. 

THEOREM 1. Under FCI model, decision principle ݉ܽݔ	{ܴ(ܵ) − (ܵ)ݎ}݊݅݉ is equivalent to {(ܵ)ܳݒ + 1)ݒ   .{൫ܵ൯ݍ−

PROOF. First verify	ܴ(ܣ௡) = ܴ(ܵ) +   .(ܵ)ݍ

There are two contexts with the queue of closed sets and 
opened sets. That is, to begin with a closed set or with an 
opened set. See as in figure III and figure IV, where blanks 
denote closed sets, while shadows denote opened sets. The 
symbols only denote closed sets.  

 
  
  ݊      ℎ଴          ݈ଵ          ℎଵ    ݈ଶ               ℎଶ 

FIGURE III.  BEGINNING WITH A CLOSED SET 

 
  
             ݈ଵ          ℎଵ   ݈ଶ               ℎଶ    

FIGURE IV.  BEGINNING WITH AN OPENED SET 
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When beginning with a closed set, ܣ௛బ = [݊, ℎ଴],	ܭ௜ =[݈௜, ℎ௜], ݅ = 1,… ,ܰ , we have ܵ = [݊, ℎ଴] ∪ (⋃ [݈௜, ℎ௜]ே௜ୀଵ ) , ܵ = ⋃ [ℎ௜ − 1, ݈௜ାଵ + 1]ேିଵ௜ୀ଴ . According to additive principle, ݎ൫ܵ൯ = ௛బ൯ܣ൫ݎ + ∑ ,௜݈])ܭ)ݎ ℎ௜]))ே௜ୀଵ = ∑ ܽ௞ ቀ ௞݂ −௛బ௞ୀ௡௛݂బିଵܳ൫ܣ௛బିଵ௞ ൯ቁ + ∑ ∑ ܽ௞ ቀ ௞݂ − ௛݂೔ିଵܳ൫ܣ௛೔ିଵ௞ ൯ቁ௛೔௞ୀ௟೔ே௜ୀଵ ܴ(ܵ) = ∑ ℎ௜])ܭ)ܴ − 1, ݈௜ାଵ + 1]))ே௜ୀ଴ =∑ ൬∑ ܽ௞ ௞݂௟೔శభାଵ௞ୀ௛೔ିଵ + ∑ ܽ௞௛೔௞ୀ௟೔ ௛݂೔ିଵܳ൫ܣ௛೔ିଵ௞ ൯൰ே௜ୀ଴ 

Hence ݎ൫ܵ൯ + ܴ(ܵ) = ∑ ܽ௞ ௞݂௛బ௞ୀ௡ + ∑ ܽ௞ ௞݂௟భାଵ௞ୀ௛బିଵ +∑ ቀ∑ ܽ௞ ௞݂௛೔௞ୀ௟೔ + ∑ ܽ௞ ௞݂௟೔శభାଵ௞ୀ௛೔ିଵ ቁே௜ୀଵ = ∑ ܽ௞ ௞݂ଵ௞ୀ௡ . Since ܴ(ܣ௡) = ∑ ܽ௞ ௞݂ଵ௞ୀ௡ , we have ݎ൫ܵ൯ + ܴ(ܵ) =   .(௡ܣ)ܴ

When beginning with an opened set, ܣ௟భ = [݊, ݈ଵ + 1], 
closed set ܭ௜ = [݈௜, ℎ௜], ݅ = 1,… ,ܰ , we have ܵ =(⋃ [݈௜, ℎ௜]ே௜ୀ଴ ), ܵ = [݊, ݈଴ + 1]⋃ [ℎ௜ − 1, ݈௜ାଵ + 1]ே௜ୀଵ . By the 
same rationale as in the context of beginning with a closed 
set, I also have ݎ൫ܵ൯ + ܴ(ܵ) =   .(௡ܣ)ܴ

Then, by the same rationale as that with ݎ൫ܵ൯ + ܴ(ܵ) ൫ܵ൯ݍ we have ,(௡ܣ)ܴ= + ܳ(ܵ) =   .(௡ܣ)ܳ

As ܳ(ܣ௡) = ∑ ܽ௞ଵ௞ୀ௡ = 1, we have ݍ൫ܵ൯ + ܳ(ܵ) = 1. 
Thus under any contexts, I always have ܳ(ܵ) = (௡ܣ)ܳ ൫ܵ൯ݍ− = 1 −   .(ܵ)ݍ

Therefore, ܴ(ܵ) − (ܵ)ܳݒ = (௡ܣ)ܴ) − (൫ܵ൯ݎ − 1)ݒ −ँ൫ܵ൯) = (௡ܣ)ܴ − ൫ܵ൯ݎ) + 1)ݒ − ँ൫ܵ൯).  

Since ܴ(ܣ௡) is the same for all the ܵ, ݉ܽݔ{ܴ(ܵ) (ܵ)ݎis equivalent to ݉݅݊൛ {(ܵ)ܳݒ− + 1)ݒ − ँ൫ܵ൯ൟ. 
C. New Model 

Accoring to problem (1), theorem 1, and the definition of 
bid price ݒ, the maximized revenue model is transformed to  

 ,ݐ)ݒ (ݔ = (௡ܣ)ܴߣ − (ܵ)ݎ}݊݅݉ߣ + 1)ݒ − ൫ܵ൯}ݍ 

Problem (2) contains a dynamic programming (DP) 
game. In each stage ݐ , airline company acquires ݐ)ݒ, ,(ݔ ݔ = 1,… , ,ݐ)∗ܵ and chooses ܥ  After that, each .(ݔ
customer buys a fare class according to ܵ∗(ݐ,  and her (ݔ
FCI. Behavior of all the customers generate ݐ)ݒ +1, ,(ݔ ݔ = 1,… ,  which will trigger the game of the next ,ܥ
stage ݐ + 1 . As ݒ  is monotonically decreasing, one or 
more optimal policies (ݒ௜,	ܵ௜∗), ݅ = 1,… will be found.  

IV. CONCLUSION 

In this research I construct a new customer choice model 
–FCI model, where an FCI [݈, ℎ] is composed of several 
adjacent fare classes. This model reflects the fact that a 
sami-price sensitive customer usually chooses among several 
fare classes and eventually buy the lowest opened fare class. 
I find under FCI model, computation is simplified under 
closed set research angle rather than under traditional opened 
set research angle. So a new decision cretiria is developed 
and a new maximized total revenue model is formed. The 
maximized model reflects the game between the airline 

company and its customers, and airline’s optimal policy will 
be formed during the game process. This modeling process 
builds the foundation for further researches such as analysis 
on optimal policy, total revenue, buy up behavior and its 
impact under FCI choice model. 
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