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Abstract—In the multi-agent Parrondo’s games, if game A and 
game B both take certain network structures, then the 
heterogeneity of the network will produce impacts. By using the 
analytical approach based on the discrete Markov chain, we 
analyzed a one-dimensional case. Then, we deduced the transition 
probability matrix of game A under one dimensional line 
(homogeneous with game B) and a fully-connected network 
(heterogeneous with game B). Moreover, we gave the 
mathematical expectation of the randomized game A+B. The 
theoretical results showed that for the one-dimensional case the 
heterogeneity between game A and game B enlarges the 
parameter space of the strong paradox. Besides, we performed 
calculation simulations on two-dimensional networks. We used 
the following four networks for game A: a two-dimensional 
lattice (homogeneous with game B), random network, a scale-free 
network and a fully-connected network (the latter three networks 
are heterogeneous with game B). The simulation results showed 
that the gain and the strong paradox space both decrease with the 
increment of the degree of the heterogeneous, which shows that 
homogeneity  between game A and game B is beneficial for two-
dimensional networks.  

Keywords-parrondo's paradox, parrondo’s games, complex 
networks, heterogeneity  

I.  INTRODUCTION  

Parrondo’s paradox is an apparent paradox in game theory, 
and it is named after its creator Parrondo, a Spanish physicist 
[1]. The seminal papers on Parrondo’s paradox were published 
by Abbott and Harmer [2-3] in 1999. Moreover, Parrondo’s 
paradox has been developed into many different versions [4]. 
Generally, Parrondo’s games involve two games, A and B. 
Game B has some branches, some of which are favorable (that 
is the probability of winning is large) and others are 
unfavorable (that is the probability of losing is large).The 
design of the branches requires some forms of dependence. At 
present, according to the available Parrondo’s games, the 
dependent mechanisms mainly include three types, which are 
based on the individual capital, on the individual history of 
experience and on neighbors’ environment. According to the 
size of the participants, there mainly includes individual and 
group versions. Toral [8] proposed a space-dependent 
“cooperative Parrondo’s paradox” version. A remarkable 
difference is that there are i (i=2, …, N) players instead of only 
one player involved in the game. However, here the multi-
agent version was not carried out. Game A remained 
unchanged as was defined in the original Parrondo’s games. 
Game B, which was based on the neighboring environment. 
Wang [11] presented a version of Parondox’s paradox played 

in a population of agents where game A was the original game 
based on the flip of a suitably biased coin and game B was a 2
×2 game played between a pair of agents selected randomly. 
In this version, game B showed the characteristics of the multi-
agent game, that is, individuals had interactive roles between 
themselves. As the previous versions have focused on how to 
modify game B, Toral [12] proposed a modification of game A. 
There were N players involved in this version as well and there 
was interaction between individuals for game A. Game B 
remained unchanged as defined in the original Parrondo’s 
games or in the history-dependent version. In the version 
proposed by Xie [13], game A was the same as that in Toral 
[12] and game B was played based on the neighboring 
environment. Here, game A and game B produced the coupling 
effects spatially. 

For game A in the multi-agent versions, individuals have a 
interactive relationship, which belongs to a zero-sum game 
from the view of the population level. There are two key points 
in the interactive relationship: 1) The interactive modes. They 
can be divided into competition and cooperation. In the version 
proposed by Toral [12], individuals used the cooperative mode. 
Wang [14] presented four kinds of interaction, which were 
competition, cooperation, harmony and PCRC, respectively. 2) 
The network carriers. The population has a certain spatial 
distribution or a spatial structure which will be abstracted into a 
certain topology network in the theoretical analysis. Individuals 
interact through networks. In the version proposed by Toral 
[12], the network carriers were the fully-connected network 
and a one-dimensional line. Xie [13] also used a one-
dimensional line. Wang [14] and Ye [15-16] adopted a fully-
connected network, random network and a BA scale-free 
network as their spatial carriers. Moreover, they obtained that 
different network structures and the heterogeneity have 
different effects on the multi-agent Parrondo’s games. 

In the above studies of Toral [12], Wang [14] and Ye [15-
16], game A belonged to the multi-agent version and they use 
the capital-dependent and history-dependent mechanisms for 
game B. If game B was based on the neighboring environment 
mechanism, then game A and game B had the coupling effects. 
There are many network structures for game A while there are 
only one dimensional line and a two-dimensional lattice for 
game B due to the structure limitation. Xie [13] analyzed the 
multi-agent Parrondo’s game under the homogeneous networks. 
However, there are no relevant studies at present when game A 
and game B have different network carriers. For such a case, 
the paper demonstrates the effects of the heterogeneity of 
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networks through the theoretical and computer simulation 
analysis. 

II. THE THEORETICAL ANALYSIS BASED ON A ONE-
DIMENSIONAL LINE 

A. Model  

The multi-agent Parrondo’s model based on one 
dimensional line is shown in Figure I [13]. Here, game B uses 
one dimensional line and game A uses the following two 
networks: 1) one dimensional line (the same as game B); 2) a 
fully connected network (heterogeneous with game B). 
Consider a population made up of N individuals. On each 
round of game, one player ‘i’ is randomly chosen from N 
persons to randomly play game A with probability γ or B with 

probability 1-γ), then the result is either winning(expressed by 
1) or losing(expressed by 0). When game A is played, 
individual j is chosen from i’s spatial neighbors randomly (for 
the one-dimensional line, Player i’s neighbors are i-1 and i+1; 
for the fully-connected network, all players are i’s neighbors 
except ‘i’ itself). Then the interaction between i and j is 
assumed to be a competitive way. The probabilities that i and j 
win are 0.5, respectively. j pays $1 for i when i wins; 
Otherwise, i pays $1 for j. When game B is played, the winning 
and losing probabilities of individual i are dissimilar under 
different conditions of neighboring environment. Player i’s 
neighbors are players i-1 and i+1 who have four different kinds 
of winning and losing states. Therefore, game B is composed 
of 4 branches. The corresponding winning probabilities of the 
individual i are ph (h=0, 1, 2, 3). Winning game B earns $1 and 
losing surrenders $1. 

 

FIGURE I.  THE MULTI-AGENT PARRONDO’S MODEL BASED ON A ONE-DIMENSIONAL LINE 

B. The Analysis of Game A  

Four individuals (N=4) are played in game A for example. 
There are 16 states—
E={(0000),(0001),(0010),(0011),…,(1110),(1111)}, which are 
0,1,2,3,4,……,14,15, in decimal notations correspondingly. 
Therefore, the state set can also be denoted by 
E={0,1,2,…,14,15}. The transition probability matrix is [P](A). 
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1) [P](A) in the one-dimensional network: When game A is 
played on the one-dimensional network, any individual i can 
only compete with its two neighbors, i-1 and i+1. Taking p15 
as an example, we explain the calculation method on the 
elements of this matrix. Because game A is a game between 
two neighboring individuals, thus there are only 4 categories, 
that is, individuals 1 and 2, individuals 2 and 3, individuals 3 
and 4, and individuals 4 and 1. From state 1 (0001) to state 5 
(0101), two cases exist. One is that individual 1 and individual 
2 compete and individual 2 wins (The winning probability is 
1/2), and the probability of occurrence is

8

1

2

1

4

1
 . The 

other is that individual 2 and individual 3 compete, individual 
2 wins (The winning probability is 1/2), and the probability of 
occurrence is

8

1

2

1

4

1
 .Therefore, 

4

1

8

1

8

1
15 p . Then 

other matrix elements can be calculated in the same way. 
Finally we obtain the transition probability matrix of game A 
[13] 
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The corresponding stationary distribution probability of 
game A is 

{}(A)={0,1/24,1/24,1/12,1/24,1/6,1/12,1/24,1/24,1/12,1/6,
1/24,1/12,1/24,1/24, 0}. 

2) [P](A) in the fully-connected network: When game A 
uses the fully-connected network, any individual i can 
compete with all its neighbors. Taking p15 as an example, we 
explain the calculation method on the elements of this matrix. 
As game A is played between any two individuals, thus there 
are 62

4 C  categories. From state 1 (0001) to state 5 (0101), 

two cases exist. One is that individual 1 and individual 2 
compete and individual 2 wins (The winning probability is 
1/2), and the probability of occurrence is

12
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6

1
 . The 

other is that individual 2 and individual 3 compete, individual 
2 wins (The winning probability is 1/2), and the probability of 
occurrence is

12

1

2
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6

1
 .Therefore, 

6
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1
15 p . Then 

other matrix elements can be calculated in the same way. 
Finally we can obtain the transition probability matrix of game 
A. 
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The corresponding stationary distribution probability of 
game A is 

{}(A)={0,1/20,1/20,1/10,1/20,1/10,1/10,1/20,1/20,1/10,1/1
0,1/20,1/10,1/20,1/20,0}. 
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No matter what network carrier is used, game A is a zero-
sum game, so the probability of winning or losing is 0.5 
regardless of the state. So the mean probability of the overall 
winning in game A is 
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C. The Analysis of Game B 

According to the method proposed by Mihailovic [9], we 
can obtain the transition probability matrix of game B for a 
case with N =4. 

The transition probability matrix of game B [13] is  
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The mathematic expectation of game B is 

  ( )( ) ( ) ( )
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where: {}(B) is the stationary distribution probability of game 

B. It can be obtained by solving )()()( ][}{}{ BBB Pππ  , where 
[P](B) is the transition probability matrix of game B. 

)(
win}{ B and ( )

lose{ } B are the average probabilities of the overall 

winning and losing in game B, respectively. 
(B) (B){ } { }lose winI   . }111{ I . 

TB
w

B
w

B
w

B }{}{ )(
15

)(
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0

)(
win    are the average 

probabilities of the overall winning from state 1 to state 15 in 

game B. Xie gave the calculation method to solve )(B
iw  in Ref. 

[13]. Table I shows the average probability )(B
iw of the overall 

winning from state 1 to state 15 in game B. 

TABLE I.  THE AVERAGE PROBABILITY OF THE OVERALL WINNING OF GAME B 

state 0000 0001 0010 0011 0100 0101 0110 0111 
)(B

iw  p0 
(p2+p0+p1

+p0)/4 
(p0+p1+p0

+p2)/4 
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+p0)/4 
(p3+p0+p3

+p0)/4 
(p1+p1+p2

+p2)/4 
(p3+p1+p3

+p2)/4 
state 1000 1001 1010 1011 1100 1101 1110 1111 
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D. The Analysis of the Randomized Game A+B 

The transition probability matrix of the randomized game 
A+B is 


)()()(rank ][)1(][][ BABA PPP    

where: γ is the probability of playing game A. 
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According to (8), we deduce the stationary distribution 

probability )(rank}{ BA of the randomized game A+B. 
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where: ){
win}{ A and ){

win}{ B are the mean probabilities of the 

overall winning in game A and game B.  

The established conditions of the weak paradoxical form is  
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The established conditions of the strong paradoxical form is 
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E. The Analysis of Results 

We take N=4 and get the mathematical expectation of game 
B according to [P](B) in (5) and 
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win    in Table 1. Then, based 

on [P](A)in (2) and (3) and [P](B) in (5), we obtain )(rank}{ BA  

by using (7) and (8). Moreover, by substituting ){
win}{ A  in 

（4）and ){
win}{ B  in (5) into (10), we get )(rank

win}{ BA . Finally, 

we substitute )(rank}{ BA  and )(rank
win}{ BA  into (9) and obtain 

the mathematical expectation of playing the randomized game 
A+B. The calculation results of Figure II show that when game 

A uses one dimensional line (homogeneous with game B), the 
parameter space where the strong paradox occurs is smaller 
than that by using the fully-connected network (heterogeneous 
with game B). Therefore, for the one dimensional line, the 
heterogeneity between game A and game B expands the 
parameter space where strong paradox occurs. 

 
a. a one-dimensional line 

 
b. a fully-connected network 

FIGURE II.  THE THEORETICAL RESULTS OF PARRONDO'S GAMES 
BASED ON A ONE DIMENSIONAL LINE  (A: GAME A USES A 

ONE-DIMENSIONAL LINE. B: GAME A USES A FULLY-
CONNECTED NETWORK. THE POPULATION SIZE IS N=4. Γ= 
0.5, P0=0.5. THE BLUE AREA DENOTES THE PARAMETERS 
AREA OF WEAK PARRONDO'S PARADOX WHILE THE RED 

STANDS FOR THE STRONG ONE). 
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III. THE SIMULATION ANALYSIS BASED ON A TWO-
DIMENSIONAL LATTICE 

A. Model 

The multi-agent model based on a two-dimensional lattice 
is shown in Figure III[16], where game B uses two dimensional 
lattice ( such a square lattice uses periodic boundary conditions, 
that is, the left and right edges are connected; the up and below 
edges are connected.). Game A uses the following networks: 1) 
a two-dimensional lattice (homogeneous with game B); 2) 
random network (heterogeneous with game B); a scale-free 
network (heterogeneous with game B); 4) a fully connected 

network. On each round of game, one player ‘i’ is randomly 
chosen from N players to randomly play game A (probability γ) 
or B (probability 1-γ). When game A is played, individual j is 
chosen from i’s spatial neighbors randomly. Then the 
interaction between i and j is assumed in a competitive way. 
When game B is played, the winning or losing probability of 
individual i is dissimilar under different conditions of 
neighboring environment, which has five different kinds of 
winning and losing conditions. Therefore, game B is composed 
of 5 branches. The corresponding winning probabilities of the 

individual i are hp (h=0,1,2,3,4). 

 

FIGURE III.  THE MULTI-AGENT PARRONDO’S MODEL BASED ON A TWO DIMENSIONAL LATTICE 

B. Construction of Random Network  

We use the rewiring mechanism [17] to generate random 
network. Based on the original square lattice, first a randomly 
chosen EF link is broken up and the site E is rewired to the 
randomly chosen site D (D cannot be the neighbor of E). This 
process is repeated K times. Compare random network with the 
original square lattice and the degree of the heterogeneity is 
determined by the rewiring times K. 

C. Construction of a BA Scale-Free Network  

To demonstrate the progressively changing from random 
network to scale-free network, we use an adjustable-parameter 
network of degree distribution and the corresponding 
construction method. The steps are in [18]: a) growth. The 
initial network consists of N nodes, where m0 nodes are fully 
connected among themselves. Thus, the set J2 is constructed; 
the unconnected set J1 is composed by ((N-m0) isolated nodes. 
At each time step, choose one new node from J1. In order to 
produce m edges, we connect this new node to some other 
nodes. b) preferential connectivity. m edges of the new node 
are connected to the nodes from the remaining (N-1) nodes 
with probability λ; then connect the nodes of the set J2 by 
following a linear preferential attachment strategy with the 

probability 1-λ. When the connectivity is completed, we 
remove the new node from J1 and add it to J2. c) After N-m0 

steps, the network model is generated by a series of parameter 
λ∈[0,1], where λ=0 corresponds to a BA scale-free network 
and λ=1 corresponds to random network. 

D. The Calculation Results and the Analysis 

For the two dimensional lattice, we also perform the 
theoretical analysis. Without generality, we analyze the case of 
N=9 at least (the 3×3 lattice network). With the increase of N, 
the transition probability matrix is added with 2N. Then, the 
analysis of the stationary distribution probability and the 
mathematical expectation becomes difficult. Therefore, for the 
two dimensional lattice, we mainly use computer simulations to 
analyze. 

For computer simulations, we define the multi-agent 
average fitness d(t) as 

 T

tW
td

)(
)( 

 
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1
0 ])([)(  was the multi-agent total 

profit. )(tCi  was the capital of individual i at time t, C0 was 

the initial capital and T was the total time of the game. 

 

FIGURE IV.  SIMULATION RESULTS (THE POPULATION SIZE N IS 
1600 AND PLAYING TIME T IS 100 000. THE INITIAL WINNING 

(1) AND LOSING (0) STATES ARE SET RANDOMLY. THE 
PROBABILITY OF PLAYING GAME A IS P=0.5 AND THE 

PARAMETERS OF GAME B ARE P0=0.01, P1=0.15, P2=P3=0.7 
AND P4=0.6. WE USE DIFFERENT RANDOM NUMBERS TO 

PLAY THE GAME FOR 100 TIMES REPETITIVELY AND THEN 
MAKE A FIGURE FROM THE AVERAGE VALUE OF THEIR 
RESULTS. THE REWIRING TIMES K IS 1600 IN RANDOM 

NETWORK.) 

 

FIGURE V.  THE EFFECT THAT THE HETEROGENIETY OF THE 
NETWORKS (THAT IS THE REWIRING TIMES K) HAS ON THE 

POPULATION GAIN (THE NETWORK CARRIER OF GAME A 
CHANGES PROGRESSIVELY FROM REGULAR NETWORK TO 
RANDOM NETWORK WITH THE INCREMENT OF K. OTHER 

PARAMETER ARE THE SAME AS IN FIGURE 4.) 

Figure IV shows the simulation results of the average gain 
of the population, including playing game B individually (game 

B uses a square lattice) and the randomized game A+B (where 
game A uses a square lattice, random network, a BA scale-free 
network and a fully-connected network, respectively). 
According to Figure IV, we notice that no matter what network 
game A uses, the gain of the randomized game A+B is positive, 
where Parrondo’s paradox occurs. Especially, the gain based 
on the square lattice is the largest. Therefore, for the square 
lattice, when game A and game B have the same network, they 
are conducive to increasing the gain of the game. In order to 
study the quantitative effect that the heterogeniety of the 
networks has on the gain, we use the method introduced in 
Section 2.2 by changing the rewiring times K. Figure V shows 
the effects that the rewiring times K has on the population 
profit for game A which changes gradually from regular 
network to random network. We find that with the increment of 
the degree of the heterogeniety between game A and game B, 
the gain decreases gradually until to stabilization. 

Figure VI demonstrates the effects that the adjustable 
parameter λ of degree distributions has on the population gain. 
We see that the effect is not obvious, which shows that the 
heterogeneity of the networks has no obvious change when the 
network changes progressively from random network to a 
scale-free network. 

 

FIGURE VI.  THE EFFECT THAT Λ HAS ON THE AVERAGE GAIN OF 
THE POPULATION (THE NETWORK CARRIER CHANGES 

GRADUALLY FROM A SCALE-FREE NETWORK TO RANDOM 
NETWORK WITH THE INCREMENT OF Λ. M0=2, M=2. OTHER 

PARAMETERS ARE THE SAME AS IN FIGURE 4) 

Figure VII shows the parameter space in which paradox 
occurs on the two-dimensional lattice. The calculation results 
demonstrate that when game A uses a two-dimensional lattice 
(heterogeneous with game B), the parameter space where the 
strong paradox occurs is slightly larger than that in other three 
networks while the parameter space where the weak paradox 
occurs is slightly smaller than that in other three networks. 
Therefore, for the two-dimensional network, homogeneousness 
between game A and game B enlarges the parameter space in 
strong paradox. 
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a. random network 

 
b. two-dimensional lattice 

 
c. BA scale-free network 

 
d. fully-connected network 

FIGURE VII.  THE RESULTS OF PARRONDO'S GAME BASED ON 
TWO-DIMENSIONAL NETWORKS (A. GAME A USES TWO-

DIMENSIONAL LATTICE B. GAME A USES RANDOM 
NETWORK. THE REWIRING TIMES ARE 1600. C. GAME A USES 

BA SCALE-FREE NETWORK. D. GAME A USES FULLY-
CONNECTED NETWORK. THE POPULATION SIZE IS N=1600. 
Γ= 0.5. THE PARAMETERS OF GAME B ARE P1=0.15 AND 

P2=P3=0.7. THE BLUE AREA DENOTES THE PARAMETERS 
AREA OF WEAK PARRONDO'S PARADOX WHILE THE RED 

STANDS FOR THE STRONG ONE). 

IV. CONCLUSIONS  

For the cases that the spatial networks between game A and 
game B are different (heterogeneous networks), this paper 
demonstrates the effects of the heterogeneity of the networks 
through the theoretical analysis and computation simulations. 

 We perform the theoretical analysis on a one-
dimensional line. Game A uses the following two 
networks: a one-dimensional line (homogeneous with 
game B) and a fully-connected network 
(heterogeneous with game B). We deduce the 
transition probability matrix of game A under these 
two networks and give the mathematical expectation 
of the randomized game A+B. The theoretical results 
show that when game A uses a one-dimensional line 
(homogeneous with game B, the parameter space 
where strong paradox occurs is smaller than that in 
fully-connected network (heterogeneous with game B). 
Therefore, for the one- dimensional line, the 
heterogeneity between game A and game B enlarges 
the parameter space where the strong paradox occurs.   

 We perform computer simulations on two-
dimensional networks. Game A uses the following 
four networks: a two-dimensional lattice 
(homogeneous with game B), random network, a BA 
scale-free network and a fully-connected network (the 
latter three network are heterogeneous with game B). 
The simulation results show that when game A uses 
the two-dimensional lattice (homogeneous with game 
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B), the gain and the parameter space where the strong 
paradox occurs are both slightly larger than those in 
the other three networks. Moreover, the gain and the 
strong paradox space decrease with the increment of 
the degree of heterogeneity, which shows that the 
homogeneousness between game A and game B is 
beneficial for two-dimensional networks. 
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