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Abstract—Meshless local Petrov-Galerkin (MLPG) method is 
presented to treat parabolic partial differential equations with 
discontinuous material coefficients. In this paper, we use MLPG 
method to solve fractional constant coefficient discontinuous 
media mixed boundary problem. The trial and test functions for 
the weak form are constructed with moving least-square 
interpolants in each material domain. In the proposed method, 
the essential boundary conditions and the jump conditions are 
directly imposed by substituting the corresponding terms in the 
system of equations. Discontinuous medium boundary condition 
is also applied to the solution equation. Some numerical tests are 
given to demonstrate the effectiveness and applicability for these 
problems. 
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I.  INTRODUCTION  

The MLPG method was first proposed by S.N. Atluri and 
T.L. Zhu [1] in 1998. It offers many advantages for analysis of 
both static and dynamic problems in solid mechanics. The 
MLPG method utilizes moving least-squares interpolants [2] 
which require only nodes, unencumbered by elements and 
elemental connectivity, to construct the shape functions. 

In the twentieth century, the finite element method, which 
combines the Ritz-Galerkin method and the element-based 
slice polynomial interpolation approximation, opens up a new 
era of numerical computation, which deeply affects the 
branches of engineering physics. In the field of electrical 
engineering, since the introduction of Winslow for the first 
time in 1965, the finite element method has been widely 
applied and developed rapidly. Then mesh-less method 
followed finite element method and developed rapidly. It has 
become one of the main numerical methods for quantitative 
analysis and optimization of electromagnetic and 
electromagnetic wave problems. The main advantage of this 
approach is that it does not require a "grid", either for 
interpolation or for integration purposes. The essential 
boundary conditions and the jump conditions are directly 
imposed by substituting the corresponding terms in the system 
of equations. Although there is a great advantage in using 
MLPG, there are some drawbacks in implementing this 
method. For example, the nature of complex non-polynomial 
shape functions can lead to larger costs in implementing 
numerical integration schemes. 

The purpose of this paper is to improve the weight function 
in the MLS approximation and add the interface condition 
processing to the mesh-less method. We can get a very 

effective mesh-less method for solving two-dimensional 
mechanical problems that contain material discontinuities. 

In the article we use MLPG method to solve the following 
problems: 
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FIGURE I. TWO-DIMENSIONAL NON-HOMOGENEOUS MEDIA 

MODEL 
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where )2,1(],,[  ikyx ix is constant. d is Dirichlet 

boundary. On which apply function )(xg .  is 

discontinuous media boundary. In three dimensions, 

],,[ zyxx , the border is a closed face,  is the discontinuous 

medium interface. 

II. MATHEMATICAL FORMULATION 

A. The Shape Function of MLPG  

The approximation function of mesh-less local Petro-
Galerkin method (MLPG) is constructed by moving least 
squares (MLS) approximation. 

Consider a sub-domain s , the neighborhood of a point x  

and denoted as the domain of definition of the MLS 
approximation for the trial function at x , which is located in 

the problem domain s . To approximate the distribution of 

function u  in s , over a number of randomly located nodes 

nii ,,2,1, x  the moving least square approximation 

)(xhu  of )(x , sx can be defined by 

xxxPx  ),()()( au Th                      (8) 
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T ppp  is the complete 

monomial of order m ; and )(xa  is a vector containing 

coefficients mja j ,,2,1),( x , which are functions of the 

space coordinates x . 

Discrete form is as follows: 
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A linear basis )3( m  in a two-dimensional domain is 
applied in this paper and is given by 

],,1[)( yxT xp                            (10) 

The coefficients )(xia  are obtained at any point x  by 

stationarity of a weighted, discrete 2L  norm as follows: 
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Where 0)()(  II ww x-xx  is weight function, 

)(xu iI are the coefficients associated with node I  

at Ixx   ,and n  is the number of nodes in the neighborhood 
of x . The neighbor points of the x  are determined by the 

radius of the affected domain at that point, mid . If x  falls in 

the influence domain of the node Ix , then the node x  

influences Ix  and is considered to be a neighbor node. 

The stationarity of 0))(/(  xijaJJ leads to the 

following linear relationship. 
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And the node coefficient vector is given by the following 
equation: 
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Solving )(xa from (12) and substituting it into (9), the 

MLS interpolant of )(x may now be written as: 
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where  the shape function  (x)I  is defined  
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B. The Selection of the Weight Function 

(1)The choice of weight function in the mesh-less method 
is critical. In this paper we use Quadratic spline function and 
gauss weight function: 
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In those weight functions,  |||| IId xx   is the distance 

of x  to Ix ; r is the influence radius of point x ; rdd I / . 
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c , Ic  and k are control variables, which control the shape of 
the weight function. 

C.  Local Weak Formulation 

Consider the following weak form in s  associated with 

(1) 
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Where v  is a test function. Using the divergence theorem 
and integral subsection integration yields the following 
expression: 
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The function )(x and coefficients )(x  can be also 
discontinuous across the interface  , i.e. 
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In order to satisfy the condition(5)-(6) for the 

discontinuous boundary, decompose   into overlapping 

1
 and 

2
 . In Figure 2, the point on 

1
  is affected only 

by the nodes on 1  and  , and the point on 
2

  is affected 

only by the nodes on 2  and  . 

 
FIGURE II. EQUIVALENT TREATMENT OF DISCONTINUOUS 

BOUNDARY   

 
FIGURE III. THE INFLUENCE DOMAIN OF THE DISCRETE 

POINTS NEAR   

In figure 3, the impact domain of all nodes can not cross 
the media interface, so the point in each medium is only 
affected by the nodes in the medium region and the nodes on 

s . 

To find a weak formulation for the above interface problem, 
we multiply (1), (5) and (6) by test function v  and integrate on 

both sub-regions 1  and 2 . Applying Green’s theorem in 

the domain 1 , outside of the interface  , we get the 
interface condition: 
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Similarly, we have the following relation from the inside of 

the interface, i.e., 2  
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Consider (22), (17) we get integral equation satisfied (4)-

(7) in (n is the number of s ): 
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MJNI ,,2,1,,2,1   . N is the number of 

nodes in  , M is the number of nodes in s . 

Finally, we obtain the linear system fK u where each 

node corresponds to a row of the matrix K . It should be noted 
that for each point of interface, two components of the 
unknown vector u and two rows of the matrix K are 
considered. In the MLPG method by employing MLS 
approximation, we want to find good estimates for the target 



x 1
x 2

x

1x2x

3x

4x
1 2



159

Advances in Intelligent Systems Research (AISR), volume 141



function (x)I  in terms of the values at nodes, to set up the 

matrix K . 

III. NUMERICAL EXPERIMENTS 

Example 1 

In this section consider two numerical examples. We show 
the effectiveness of MLPG algorithm to solve the 
discontinuous media problem by comparing the error. 

In figure 4, ]1,0[]1,0[  , 21  , 

]1,0[]5.0,0[1  , ]1,0[]1,5.0[2  . 

 

 

 

FIGURE IV. TWO REGIONS OF DIFFERENT MEDIA  

Given )(1 x and )(2 x  that satisfy (1)-(2): 
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20,1 21  kk , 5,1  ba , 

here we consider the impact of the node number and the 
weight function on  error. First, define the norm of the error 
within  in following: 

|),(|max)( , ji
h

jiM yxue   

h
jiu ,  is numerical solution on ),( ji yx . 

TABLE I.  TABLE OF ERROR AND RATE WHEN H IS DIFFERENT 

In the table, 1
Me is the norm )(Me when weight 

function v is quadratic spline function, 2
Me is the norm 

)(Me when weight function v is gauss weight function. In 
the following we select two error surface map (when h=0.1 and 
h=0.0167) for comparing. 

 
FIGURE V. THE ERROR OBTAINED WHEN H=0.1 

 
FIGURE VI. THE ERROR OBTAINED WHEN H=0.0167 

 
FIGURE VII. ERROR COMPARISON CHART 

 
FIGURE VIII. RATE COMPARISON CHART 

      h 31 10 Me  rate 32 10 Me  rate 

0.1000 19.7 0.16 16.6 0.23 

0.0667 15.8 0.30 13.8 0.41 

0.0500 12.3 0.69 10.0 0.85 

0.0250 8.3 1.27 6.5 1.37 

0.0200 7.0 1.38 5.9 1.50 

0.0167 6.9 1.95 5.3 2.05 

1 2



x0

y

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1

1
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Example 2 

We consider the domain ]3,0[]3,0[  , divided into 

one interior domain, )5.1,5.0()2,1(1  , and  one 

exterior 12 / , we set 121  kk . 

)3/sin()3/sin(
9

2 2

yxf 
                (26) 

)3/sin()3/sin( yx                         (27) 

TABLE II.  TABLE OF ERROR AND RATE WHEN H IS DIFFERENT 

h 31 10 Me  rate 32 10 Me  rate 

0.250 8.9 0.30 7.4 0.31 

0.200 8.5 0.45 6.6 0.51 

0.150 5.3 0.68 4.8 0.75 

0.075 3.3 1.14 3.0 1.56 

0.050 2.7 1.50 2.1 1.63 

In the following we select two error map for comparing. 

  
FIGURE IX. ERROR COMPARISON CHART 

 

FIGURE X. RATE COMPARISON CHART 

IV. CONCLUDING REMARKS 

In this paper, we use MLS approximate function and 
implement further processing of interface nodes, to achieve an 

efficient and fast solution to the equation. In addition, through 
numerical experiments we get a conclusion: In that question, 
gauss weight function is better than quadratic spline function 
as weight function. With the increase in the number of nodes 
the error is getting smaller. 
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