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Abstract—We analyze the space of 9 9  optical flow high-
contrast patches by computational topological tools. The fact that 

there are subspaces of 9 9  optical flow high-contrast patches 
with topology of a circle is experimentally shown. Subspaces of 
9 9  optical flow patches with homology of the Klein bottle are 
not been found by two different ways. 
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I. INTRODUCTION  

A lot of researches about natural image statistics have been 
made, as difficulty of producing ground truth data for 
modelling optical flow statistics, there are relatively few about 
statistics of optical flow. Roth and Black [1] constructed a 
database of natural scene motions by using of range images and 
camera motions, and established a rich prior model for optical 
flow. A new topological property of 3 3  optical flow patches 
is found by using the nudged elastic	band technique [2]. As 
the optical flow database producing from the Brown range 
image database, optical flow patches may have similar 
topological properties as that of range image patches. The 
authors of papers [2, 3, 4] have found such similar topological 
features for optical flow n n  patches with range image 
patches when 3, 4, n   5, 6, 7  .  

In this short note, we enlarge the size of optical flow 
patches to 9. By using methods of the paper [5], it is shown that 
9 9 optical flow patches with density subsets having 
topology of a circle. As increasing of the size of optical flow 
patches, the Klein bottle property of the optical flow spaces 
gradually weaken [3, 4]. Here, we prove that the Klein	bottle	property  of 9 9  optical flow patches may 
vanish. 

II. THE OPTICAL FLOW 9 9 PATCHES SPACE 

The main space comes from the Roth and Black optical 

flow database [1]. Figure I is one sample. Our space 9X  

consists of 9 9  optical flow patches established by the same 
way as [5, 6, 7].  

A 9 9  patch is put in order 
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where u denotes optical flow in the horizontal direction and v  
express the vertical direction. We take each 9 9  patch as a 

vector
162
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We randomly take 50,000 patches of 9X , written as 9XS , 

for convenience of computing. 

 
FIGURE I.  ONE SAMPLE FROM THE OPTICAL flOW DATABASE.  

HORIZONTAL MOTION IS ON THE TOP AND VERTICAL 
MOTION IS ON THE BOTTOM. 

III. RESULTS FOR 9 ,( )XS k p  

Persistent homology is a means to detect topological 
property of a space by a finite sampled points. We use software 
package Javaplex to compute persistent homology, please refer 
to [5, 8, 9, 10, 11] for more details. 
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We take core subset
9 200,30( )XS , and compute its 

barcodes, Figure II shows one PLEX results for it. A long 
Betti0 line and a long Betti1 line are in the plots, this means:

0 11, 1    , having the topology of a circle. We do one 

hundred trials on 
9 200,30( )XS , in all trial results, the circular 

behavior 
0 11, 1     is discovered in a large range, and other 

Betti plot lines are very short, hence the result is steady. When 
we take core subsets 

9 100,30( )XS , we have the same result.  

 

FIGURE II.  BARCODES FOR 9 200,30( )XS
 

IV. MAIN RESULTS FOR  9X  

To detect Klein bottle behavior of 9 9  optical flow 

patches 9X , we describe main steps of generating a theoretic 

Klein bottle model. Let  be functions with the form 
2

2 1 1( )a a x b y 2 1 1( ),b a x b y  where 1( , )i ia b S

( 1,2)i  ,  
1S  being the unit circle. Let: 1 1:g S S   

be given by 1 1 2 2( , , , )a b a b a 2
2 1 1( )a a x b y

2 1 1( )b a x b y   ([5]), and 9 :h  161S  defined by a 

composite of evaluating the function at each grid 

9 { 8, 7,G    ,8,9}K { 4, 3,...,3,4}    subtracting the 

mean and normalizing. 

It is followed from [5] that the image 9(im h |) is 

homeomorphic to the Klein bottle. 

We uniformly pick 200 points 1 200({ , , })x xK  on 
1S , all 

possible tuples ( , )i jx x  compose a point set on the torus

1 1S S for gaining a proper theoretic model of the Klein 

bottle in
161S . Then, we map each of the 40000 points into 

161S by 9h go , the image is represented 
9(200)K . Figure III 

is one PLEX result of  
9(200)K , which shows 

0 11, 2     

and 2 1  , that are the Betti numbers of the Klein bottle. 

Therefor 9(200)K is a proper approach of the Klein bottle in 
161S . 

 

FIGURE III.  BARCODES FOR 9(200)K
 

To detect Klein bottle behavior of 9 9  optical flow 

patches, we use two kinds of subspaces of 9X  obtained by 

following.  

(1) For each point p  in 9 (200)K  we compute the 

Euclidean distance from p  to every point of 9X , and then 

choose t  closest points to the point p . The obtained subspace 

of 9X  is represented by 9(200, )Kopt t .  

(2) For each point of 9X , we calculate the Euclidean 

distance from p  to the set 9 (200)K , then we resort points of 

9X  in order to increasing of their Euclidean distances to 

9 (200)K ,  the subspace
9(200, )XP t  of 9X is taken by the top 

t  percent of the closest distances.  

To discover whether a subspace of 9X  has the homology 

of the Klein bottle, we consider the subspace
9(200,11)Kopt . 

We many tests on
 9 (200,11)Kopt , Figure IV shows one PLEX 

result for 9 (200,11)Kopt , which has the Klein bottle behavior. 

Figure V shows the other PLEX result of 9(200,11)Kopt , 

which shows no the Klein bottle behavior. 

We also consider 9 ( , )Kopt w t  for w  = 180, 280, and t =1, 

3, 5, 7, 9, 11, 13, we ran many experiments on them, which 
give similar results as for

9 (200,11)Kopt . 
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FIGURE IV.  BARCODES FOR 9 (200,11)Kopt
 

 

FIGURE V.  BARCODES FOR 9 (200,11)Kopt
 

When we take subsets 
9 (200, )XP t for t =10, 15, 20, 25, 30, 

35, and 40, we do many tests on them with different parameters, 
we cannot discover the Klein bottle behavior. If we take the 
union

9 (200,20)XP 9 (200,1)Kopt , we run 150 tests on it, 

there are 45 tests with the Klein bottle behavior, but the others 
show no the Klein bottle  behavior.  Figures VI~VIII give three 
PLEX results for

9 (200,20)XP 9(200,1)Kopt . Figure 6 

shows 0 11, 2    , 2 1   in [0.105, 0.172], Figure 7 has

0 11, 2    , 
2 1   in a very small range [0.110, 0.125], 

but Figure 8 has no the Klein bottle behavior. 

Therefor we can deduce that the Klein bottle behavior of 
the spaces  9X  gradually eliminates. 

V. CONCLUSIONS 

In this short note we utilize persistent homology technique 
to show that there are core subsets of the high-contrast 9 9  
patches modeled as a circle. The Klein bottle’s behavior of 
9 9  optical flow patches gradually vanish. Our result shows 
that we need not to study larger n n  optical flow high-
contrast patches for 10n  .  

 

FIGURE VI.  BARCODES FOR 9(200,20)XP
 9 (200,1)Kopt

 

 

FIGURE VII.  BARCODES FOR 9(200,20)XP
 9 (200,1)Kopt

 

 

FIGURE VIII.  BARCODES FOR 9 (200,20)XP 9 (200,1)Kopt
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