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Abstract—In this paper we study the patterns of behavior of the 
stock price and the results of Merton on European option pricing 
spread by stochastic analysis method. Assume that the stock price 
jump process is special class of compound Poisson process and 
the volatility without jump is the function of time. We derived the 
European option with continuous dividends pricing formula 
under the assumption of risk neutral and stock price jump 
process for of the compound Poisson process, to promote the 
results of Merton. 
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I.  INTRODUCTION  

Modern option pricing theory revolution began in 1973, 
F.Black M.Scholes in assumptions effectively market and stock 
prices follow Ito process, derive the famous Black-Scholes 
option pricing model [1]. In reality, however, some significant 
information arrives to lead to stock price discontinuous changes 
that jump, Merton jump diffusion model [2] established in 
1976, which the diffusion process represents the continuous 
fluctuations of stock prices jump process said not continuous 
fluctuations of stock prices, and he assumed that the jump 
process with a Poisson process. In recent years, there are still 
many people in this area for further research [3-5], this article 
assumes that the process of jumping to a special class of 
compound Poisson process , we study European options with 
continuous dividends, and to disseminate the results of the 
literature [2]. 

II. ASSUMPTIONS AND MODEL 

Definition1. Suppose that 1 2, ,Y Y  is a sequence of i.i.d. 

random variables, { , 0}tN t  is a Poisson process with 

intensity parameter  , and independent of { , 1}nY n  , let 
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 then { , 0}tX t  is call the compound Poisson 

process. 

In this paper we consider that a kind of special compound 

Poisson process who 1iY  are uniform distribution sequence 

whose possible values are{0,1, 2, , }m . 

Proposition 1. Suppose that{ , 0}tX t  is a kind of special 

compound Poisson process described above, then 
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Especially 0m  , { }tX is Poisson process. Where 

( )G y is the distribution function of 1Y , ( ) ( )jG y is j fold 

convolution of ( )G y with itself, and conventions 
(0) ( ) 1G n  . 
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Let  0, , , ( )t t TF P   F  be a probability space. We 

consider a frictionless financial market consisting of a riskless 

bond tM  and a risky asset tS , that are traded up to a finite 

time horizonT , 

We suppose that tM  and tS  satisfy the differential 

equation 
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where risk-free interest rate r , volatility ( )t  and continuous 

dividend ( )t ,  ( ),0W t t T  be a standard Wiener 

process, ( )E U  ,We assume that the filtration 

 ,0t t T F is generated by the tS and martingale tX . 

III. OPTION PRICING FORMULA 

Proposition 2 Assume tS  satisfy the stochastic differential 

equation (3) stock price behavior, maturity date T ，exercise 

price K ，then at time t  the price ( , )tC t S of European call 

option satisfy 
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According to Girsanov theorem, 
0

( )d
t

t tB W s s    is 

a standard Wiener process under the measure *P , 
then(6)equivalently 
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Equation (7) exists unique solution 
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By virtue of (5)and(8) 
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Use the same method can be 
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Together with (4), (8) and (10), we have 
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Proposition 3 Assume tS  satisfy the stochastic differential 

equation (3) stock price behavior, maturity date T , exercise 
price K . If U  have  lognormal distribution with mean 

parameter  and variance 2  under the martingale 

measure P ,then at time t  the price ( , )tC t S of European call 

option satisfy 
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Proposition 4 Assume tS  satisfy the stochastic differential 

equation (3) stock price behavior, maturity date T ，exercise 
price K . Then the put-call parity relation may be rewritten as   
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We can using put-call parity to find the price of a European 
put option on a stock with the same parameters as earlier. 

Proposition 5 Assume tS  satisfy the stochastic differential 

equation (3) stock price behavior, maturity date T ，exercise 

price K ，then at time t  the price P( , )tt S of European put 

option satisfy 
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Especially 0m  , { }tX is Poisson process, when ( )t is 

a constant and ( ) 0t  , Proposition is Merton the famous 
jump diffusion model results. 
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