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Abstract—This paper focuses on the problem of modeling the 
correspondence pattern for ordinary people. Suppose that letters 
arrive at a rate 	and answered at a rate . Furthermore, we 
assume that, for a constant T, and the remains are answered in 
last in first out order. Let  be the waiting time of the n-th 
answered letter. It is proved that 	converges weekly to	 , a 
non-negative random variable which possesses a density with 
power-law tail when =  and with exponential otherwise. Note 
that this may provide a reasonable explanation to the 
phenomenon reported by Oliveira and Barabási in [16]. 
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I. INTRODUCTION  

In 2005, Oliveira and Barabási [16] reported their research 
results on the correspondence patterns of Darwin and Einstein: 
during their lifetimes, Darwin and Einstein answered a fraction 
of letters they received (the over-all response rate being 0.32 
and 0.24, respectively), and the distributions of response times 
to letters are both well approximated with a power-law tail that 
has an exponent	α = 3/2 . The classical M/M/1 process [10, 
Section 2.2], which assumes that letters arrive at a rate λ and 
are answered at a rate 	μ , can be used to model their 
correspondence patterns. Under some service discipline, the 
waiting-time density of the M/M/1 process may follow f(t) ∼exp	(− / ) for λ ≤ μ (see [1]), which predicts a power-law 
waiting time for the critical regime λ = μ   when 	 = ∞ . 
However, by the response rates 0.32 and 0.24, we have λ >	and this places the model in the supercritical regime, where a 
finite fraction of letters is never answered. Oliveira and 
Barabási pointed out in [16] that numerical simulations indicate 
that in this supercritical regime the waiting-time distribution of 
the responded letters also follows a power law with 
exponent	α = 3/2 . 

Clearly, [16] proposed such questions on modeling the 
correspondence patterns of human being: how do the ordinary 
people prioritize the correspondence in need of a response? 
And does a usual priority principle really lead to a power-law 
waiting time in the supercritical regime? To partially answer 
the above questions, or at least, to provide some useful 
evidence for understanding the above questions, in the present 
paper, we introduce a special queueing system with a service 
discipline, which corresponds an usual priority principle of 
ordinary people, and then study the waiting time for served 
customers, especially in the supercritical regime. 

Now, let’s consider the usual M/M/1 queue, the simplest 
queueing model used in practice. Suppose that the arrivals 
occur in a Poisson process with rate	λ	and the service times of 
the unique server have an exponential distribution with 
parameter	μ. We put the service discipline as follows: for some 
fixed T>0, a customer leaves the queue when his waiting time 
exceeds T; the remains are served on the last in first out 
principle, namely, the principle serves customers one at a time, 
and the customer with the shortest waiting time will be served 
first. Note that our model is a queueing system with impatient 
customers, which was first proposed by Barrer [3, 4], then 
followed by [8, 12, 13, 14] etc.. For details on queues with 
impatience, one may refer to [18] and the references therein. 

Assume that at time 0, a customer (the 0-th customer) 
arrives and the queueing system begins to work. Let { : n ≥1}  be an i.i.d sequence of exponential distribution random 
variables with parameter λ , independent of { : n ≥ 1} ,  { : n ≥ 1}  be another i.i.d sequence of exponential 
distribution random variables with parameter μ . Let =∑  and 	 = ∑ . In our system, the n-th customer 
arrives at time	 .  

Now, fix some λ, μ > 0 and 0<T≤ ∞. Let  be the queue 
length, namely, the total number of customers in the system at 
time t. It is clear that { : t ≥ 0} is no longer a Markov process 
for any 	0 < < ∞ ; and in the case of T= ∞ , { : t ≥0}	degenerates to the classical birth-death process with birth 
rate 	λ  , and death rate 	μ . For any n≥ 0 , Denote by 	 the 
waiting time of the n-th customer, namely,  is the usual 
waiting time when he is finally served before his waiting time 
exceeds T, otherwise, = ∞. By the setting given in the last 
paragraph, one has = 1	and	 = 0. Let 

 = ( , , ) = { ≥ 1: = 0}. 

Denote = ( = ), ≥ 1 , and let M = M(λ, μ, T) =E(τ) be the expectation of	τ.  

First of all, we have the following proposition on	E(τ). 
Proposition 1.1  i) for any , > 0 and 0<T≤ ∞, we have 

  = ( , , ) = ( ) < ∞ 

ii) for any given > 0, = ( , , )	increases in  and 
T. Furthermore, for any given	λ and	  , 
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  → ( , , ) = ( , ) < ∞,					 		 < ,= ∞,					 		 ≥ . 

Let = 0 be the number of customers who have already 
been in the queue when the n-th customer arrives. Then, almost 
surely, = 0  if and only if	 = 0, and τ is the first return 
time of state 0 for process	{	 : ≥ 0}. 

By i) of  Proposition 1.1 and a renewal limit theorem for 
general stochastic processes (see [5] or [9, Section 8, Chapter 
11]), the limit 

 → ( = 0) = → (	 = 0) 	exists					(4)
and will be proved to be 1/M (see Lemma 2.1 in Section 2). 

We point out that, for any 0<T≤ ∞, by i) of Proposition 1.1 
and the renewal limit theorem in [5], our system tends to 
statistical equilibrium, namely the queue length 	converges 
in distribution to a -valued random variable N as	t → ∞. 

Let 	be the modified Bessel function of first kind for real 
and positive t, see [17], given by 

( ) = 1! ( + 1)! 2 ~√2 

as	t → ∞. Note that for two functions a(t) and b(t), a(t)~b(t),t → ∞	means that	 lim→ ( )( ) = 1. 

Now, we can state our main theorem as follows.  

Theorem 1.2 For any , > 0  and 0<T≤ ∞ , 	 , the 
waiting time of the n-th served customer, converges in 
distribution to a non-negative random variable 	 . 
Furthermore, the distribution function  of 	satisfies	 ( ) = 0, for x<0, ( ) = 1, for x>T, and 

 ( ) = ( ) + ∨ 1 − ( )  

for	0 ≤ ≤ , where C(T) is the normalization constant, =		and 

 ( ) = ∨ ( ) 2 , > 0 

Remark 1.1 The function 	given in (6) is the probability 
density of D, the length of the busy period in the classical 
M/M/1 system when	ρ ≤ 1, and is the conditional probability 
density of D conditioned on D<∞ when	ρ > 1. Note that in 
case of	ρ > 1, P(D<∞)= . 

Remark 1.2 For any large 0<T≤ ∞,	 ( ), the density of 
 has a power-law tail with exponent = 3/2 in the critical 

regime = 	as ↗ . In both subcritical and supercritical 
cases, ( )	decays exponentially fast. 

But, what are the correspondence patterns of Darwin and 
Einstein? Numerical simulations indicate that they always 
keep themselves in the critical regime. A reasonable 

explanation may be the following: letters arrive according to a 
Poisson process with rate 	λ = + > , where <  is 
the rate of letters heard from friends and family members, 	is 
the rate of letters heard from the strangers. As the most 
distinguished scientists in their research fields, Darwin and 
Einstein received too many letters from the strangers, so they 
had to ignore such a received letter with probability	1 − (μ −)/  , such that, in their eyes, letters arrived according to a 

Poisson process with rate + × = μ.  
II. PROOFS  

In this section we will prove Proposition 1.1 and Theorem 
1.2. Before we give a proof to Proposition 1.1, we introduce an 
algorithm to obtain	τ. 

Given λ, μ and T, let  and   be defined as in Section 1 
and let	 =  +T. For any integer k≥ 1, define the random 
index set 	as  													 ≔ { : ≤ < }where		 = 0

Let = ⋃  and write  as the largest element in  
when	 ≠ . 

Now we will start a procedure to define a sequence of index 
sets 	{ : k ≥ 1} , we write  as the largest element of 

when 	 ≠ . Let 	 = { ∈ : ̅ > } . If 	 ≠ , then 
let = \{ }  and define 	 = { ∈ ∪ : ̅ > } ; 
otherwise, the procedure is stopped. By induction, for any	k ≥2, if	 	has already been defined and 	 	 ≠  , then let =\{ }  and define 	 = { ∈ ∪ : ̅ > } ; 
otherwise, the procedure is stopped. Let 

 = 	{ ≥ 1: = }set	 = ∞ 

Then  

τ = + 1,				 		 < ∞∞,														 ℎ .
Proof of i) of Proposition 1.1. Suppose that 0<T<∞. For 

any 	k ≥ 1 , let  be the event that ≥  and 	 = . 
Recalling that the random point set { : n ≥ 1}forms a one 
dimensional Poisson point process in 	 , we know that { }	are mutually independent and, for any	k ≥ 1, 

≔ ( ) = ( = | = ) 

= = + ( ) 
Let 	 = inf	{ ≥ 1:	 	 } . First, we point out that 	 is a geometry distribution random variable with 

parameter	 , hence, we have 

 E( ) = = ( )  
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Second, by (7), we have ≤ 	and	 ≤ . Denote by ℎ  the cardinality of	 , then  

= ℎ 

and  

E = ( | = ) ( = )						
 = ∑ ∑ (ℎ | = ) ( = ) 

Note that	{ = n} = ⋂ ∩ , then	E(ℎ | = n)=0 
and, for any	1 ≤ k ≤ n − 1, E(ℎ | = n) = E(ℎ ) = E(ℎ |ℎ > 0) (ℎ > 0| )																												≤ E(ℎ |ℎ > 0) = ( )( )
where the first equality comes from the fact that ℎ is 
independent of	 	for any 	 ≠ . Clearly, 

E(ℎ ) = (ℎ | = ) = = 

and  

P(ℎ > 0) = (ℎ > 0| = ) 	 

																				= (1 − ) = + .
Thus, by (9), (10) and then by (8),  E(τ) = E( + 1) ≤ E( + 1)

≤ ∑ ( − 1) ( = ) + 1
≤ ( ) < ∞.□

Proof of ii) of Proposition 1.1. Given 	μ  and T. To see ( , , )	increases in	λ, one only need to notice the fact that 
two Poisson processes with parameters  and 	 , 	 < , 
respectively can be coupled together in such a way that all 
arrivals of the former forms a part arrivals of the later. Note 
that this follows from the infinitely divisible property of 
Poisson distribution [11]. For details on coupling technique in 
probability theory, please refer to [15]. Then, the corresponding 
monotonicity follows from (7), the definition of   . 

For given λ	and	μ, the fact that ( , , ) increases in T 
follows directly from the definition of	 . 

Now we are in the way to prove (3), note that the λ ≥ μ	part 
of (3) only need to be proved for 	λ = μ , the case of 	λ >	follows from the monotonicity in λ	proved above. 

We first declare that ( , ,∞) < ∞  for λ <  and = ∞ 
for	λ = μ. In fact, in case of	T = ∞,	our system degenerates to 
the classical M/M/1 queue, the standard argument of the birth-
death process (see [2, 6]) tells us that 

 ( ( , ,∞) < ∞) = 1		 		 ≤ , 

and 

M(λ, μ,∞) = E(τ(λ, μ,∞)) < ∞,				 	 <= ∞,				 	 = .
Second, by (11) and the algorithm we have used to obtain	τ, 

we have	τ(λ, μ, T) increases in T, and  lim→ (λ, μ, T) = τ(λ, μ,∞),			a. s.
Thus, (3) follows from the monotone convergence theorem.

□ 

Before we give a proof to Theorem 1.2, we have to prove 
the following lemma. Note that this lemma plays the key role in 
the proof of Theorem 1.2. 

Lemma 2.1   Suppose that	 , > 0, and	0 < ≤ ∞, then 

→ ( = 0) = 1( , , ) 																		(12)
Proof. In case of	T = ∞, we are dealing with a classical 

M/M/1 system, (12) follows from a standard argument for 
birth-death process [2, 6]. Now, we suppose 0<T<∞. 

Let 	 ( ) = ( = 0), ≥ 0 . Then 	 ( ) = 1 , and for 
any	n ≥ 1, 

( ) = ( ),																													(13)
where 		 = ( = ) . (13) indicates that the sequence { ( ): n ≥ 0} is iteratively determined by { : ≥ 1} and its 

initial value	 ( ) = 1. 

Provided (4) and (13), the lemma may follow from a 
standard argument on generation function and the Abel’s 
Theorem (see [7, page 12]). Here, we prefer to give it a 
probabilistic proof, one will see that our proof mainly depends 
on (13), and (4) is only a consequence of it. 

By the basic theory on discrete-time Markov chains [7, 
Section 1.2], to prove (12), it suffices to construct a -valued 
discrete-time Markov chain { : n ≥ 0}	 such that 	{ }  is 
ergodic and 

 ( ) ≔ ( = | = 0) = , ≥ 1 
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where = inf	{ ≥ 1: = 0} is the first return time of state 0. 
Note that ergodic means irreducible, aperiodic and positive 
recurrent as usual. 

To this end, we give the following transition matrix P =( )  to	{ }: 
= 1 − ∑ ,								 = 0;						1 − 	,																	 = + 1;0,																										 .						 

It is straightforward to check that 	{ }  with the above 
transition matrix P is ergodic and satisfies (14). Thus we finish 
the proof of the lemma.  

Proof of Theorem 1.2. For any	0 ≤ x ≤ T, one has P( ≤ x)																																																									
 = P( = 0) + P( ≤ x| > 0)P( > 0). 

First of all, 	 > 0	if and only if, at	 , the arrival time of 
the n-th customer, the unique server is occupied, namely, >0. It is clear that, on the last in first out principle, if	 > 0, 
then  does not depend on the exact value of	  . Second, for 
any	0 < ≤ ,	 ≤ 	means that all customers arrived after, 
but were served before the n-th one are finally served in 
time	x(≤ T). In other word, the n-th customer finally gets into 
the server after a whole busy period finishes in time x. Hence, 
by the memoryless property of the exponential distribution, for 
any 0 < ≤  and for any	n ≥ 1, 							 ( ≤ | > 0) = ( ≤ ) =: ( )
where D is the length of the busy period of the classical M/M/1 
system. Note that, in our setting,  D =  with 

 = inf{ : < }																													(16)	
As calculated in [19], 

( ) = ( ) ! ( )			
																				= ( )! ( + 1)! ( ) ,																		(17)

where	   is the distribution function of	 . 

In case of 	λ ≤ μ , by (16), we have P(D < ∞)=P( =∞)=1, so 		is a probability distribution function and  

 ( ) ≔ ( ) = ( ) (2 ) 

is a probability density. 

To finish the proof of the theorem, we will introduce	Γ, the 
Laplace transform of 	 	defined by the following Lebesgue-
Stieltjes integration 

Γ(s) = ( ), > 0.
It is calculated directly that (see [19, Eq. (51)]), 

Γ(s) = 12 + + − ( + + ) − 4 .											(19)
Clearly, Γ can be uniquely inverted to give the probability 

distribution function  in case of	λ ≤ μ. 

In case of 	λ > , by symmetry and the linearity of the 
(inverse) Laplace Transform, the following  

Γ(s) = ρΓ(s) = 12 + + − ( + + ) − 4 

can be inverted to give the following probability distribution 
function 

( ) ≔ ( ) = ( ≤ )( < ∞) = ( ≤ | < ∞), (20)	
and 		 = 	 is the probability density corresponding 
to	 ( ). 

By (20), one has P(D < ∞) = 	 and ( )  is the 
conditional distribution function of D conditioned on	D < ∞. 

Write  and 	in the unified form	 , which is given in (6). 
Then, by (15), the conditional distribution of 	conditioned on 	 ≤ 	is  ( ) ≔ ( ≤ | ≤ )
= ( ) P( = 0) + P( > 0) ∨ ( ) , (21)
for	0 ≤ x ≤ T, where ( )	is the normalization constant. The 
theorem follows immediately form (21) and Lemma 2.1.								□ 
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