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Abstract—Quantitative analysis of the potential causes of railway 
accidents is essential for ensuring the safety of railway. In this 
context, this paper proposes a directed railway hazard causation 
network (DRHCN) based on the complex network theory. 
According to the characteristic of the DRHCN, four statistical 
characteristic indicators of hazard causation are obtained. The 
statistic characteristic analysis of the train collision hazard 
causation is performed. The experimental results show that the 
proposed DRHCN model and its statistic characteristics can 
assist us to reveal the latent rules of the railway hazard causation 
and, hence, greatly prevent the railway accidents. 

Keywords-statistic analysis; railway hazard; complex network; 
hazard causation 

I. INTRODUCTION  

The railway plays a significant role in daily life. Any 
accident of it may lead to casualties and property losses. For 
avoiding the railway accidents, it is essential to perform hazard 
analysis of the railway systems to identify the potential causes 
(called hazard causation) of accidents before accidents occur. 
Nowadays, the effective and widely used hazard analysis 
methods are based on systemic accident models, such as 
AcciMap method [1], STAMP approach [2]. However, these 
systemic methods are not quantitative but only qualitative. 
Only qualitative identification of the hazard causation is not 
sufficient to establish the effective control measures for the 
potential causes. Therefore, it is required to quantitatively 
analyze the hazard causation. 

Railway systems are complex social-technical systems 
consisting of humans, technical equipments and environment. 
The railway hazard results from external disturbances, 
technical component failures, and dysfunctional interactions 
between humans and equipments. The component failures can 
be quantitatively evaluated by occurrence probabilities. 
Nevertheless, in reality, the characteristic of the dysfunctional 
interaction are not obvious. It is hard to obtain the occurrence 
probabilities of it. Hence, the traditional quantitative causation 
analysis approaches, such as FTA method [3], Bayesian 
network method [4], is not suitable for quantitative analysis of 
the railway hazard causation. 

Since the railway systems are complex in terms of the large 
number of subsystems and their complex functions, hazard 
causation and relationships among them are always complex. 
As one of the most important part of the complexity theory, the 
complex network [5] is a powerful tool to statistically analyze 

the complex objects and has been applied to the quantitative 
causation analysis by some researchers. For example, Ma et al. 
[6] and Zhou et al.[7] built an undirected railway accident 
causation network and utilized the statistic characteristics of the 
complex network to evaluate the causation. Klockner [8] 
utilized centrality analysis of the complex network to 
quantitatively investigate the contribution of causes to a 
railway accident. Lin et al. [9] revealed the hidden traffic 
accident causation through the cluster analysis of the causation 
network. However, these studies utilized the undirected 
complex network to model the causation, which has limitations 
in depicting the real relationships among causes. For example, 
design errors may lead to signal equipment faults but the signal 
equipment faults have no influence on the design errors, which 
cannot be depicted by an undirected network. 

Differing from the aforementioned undirected causation 
network, in this paper, a directed railway hazard causation 
network (DRHCN) is modeled based on the complex network 
theory. Then based on the DRHCN, the statistic characteristics 
of the complex network are utilized to quantitatively analyze 
the hazard causation. As a case study, the hazard of train 
collision and its causation are analyzed. The experimental 
results show that the proposed DRHCN model and its statistic 
characteristics are effective for quantitatively analyzing the 
railway hazard causation. 

II. MODELING DIRECTED RAILWAY HAZARD CAUSATION 

NETWORK  

A. Defination of DRHCN 

In the systemic accident models, the hazards occur when 
external disturbances, component failures, and dysfunctional 
interactions between humans and equipments are not 
adequately controlled. Hence, the causation identified by 
systemic hazard analysis methods can be divided into unsafe 
control actions (UCAs) and the potentially causal scenarios 
(CSs) that could cause the UCAs.  

To depict the hazard causation and their relations, the 
complex network is employed. The complex network is a 
topological description for the complex system. It is 
represented as a graph consisting of nodes and edges. The 
nodes are connected by the edges that can be undirected or 
directed. If two nodes are connected, it means that these two 
nodes have a certain relationship between each other, such as a 
causal relationship, a physical connectivity relationship. Based 
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on the complex network theory, directed railway hazard 
causation networks (DRHCNs) of railway systems can be 
constructed to depict hazard causation and their relationships. 
The definition of the DRHCN is shown as follows. 

Definition 1 The DRHCN consists of the representing 
characters of <V, E >, where, 

1) V={Vc, Vs, Vh} refers to a finite set of nodes, where the 
Vc refers to the nodes representing the UCAs, the Vs 
refers to the nodes representing the CSs, and the Vh 
refers to the node representing the hazard; 

2) E refers to a finite set of directed edges in the network. 
The nodes in the network are connected by these 
directed edges that represent the causal relationships 
among the hazard causation. 

In the DRHCN, if a node vi representing a cause may be 
caused by some nodes, the vi is connected with these nodes by 
incoming edges, and these nodes are denoted as N(vi). If the 
node vi may lead to the presence of some other nodes, the vi is 
connected with the nodes by outgoing edges, and the nodes are 
denoted as N (vi). A simple DRHCN graph with five nodes is 
shown in Figure 1. In Figure 1, N(v2)={v1, v3}, and N (v2)= 
{v4}. It means that the presence of v2 may be caused by the v1 
and the v3, and the v2 may lead to the presence of the v4. 

 
FIGURE I.  A SIMPLE DRHCN GRAPH WITH FIVE NODES 

B. Steps of Modeling DRHCN 

According to the definition above, the DRHCN of railway 
systems can be established in following steps, which are shown 
in Figure 2.  

Step 1: Construct causal networks of unsafe control 
actions. An UCA may be caused by the CSs, the first step of 
modeling the DRHCN is that each UCA is connected with 
some CSs by incoming edges. It is noteworthy that an 
incoming edge represents a possibly causal relationship instead 
of an inevitably causal relationship.  

Step 2: Connect the causal networks. The high-level 
control actions will impact on the low-level control actions. It 
means that the UCAs at high level may also cause the low-level 
UCAs. Hence, the second step is to connect the causal 
networks of the UCAs according to the relationships between 
the UCAs at different levels. 

Step 3: Connect the system-level hazard with the causal 
networks. The presence of the system-level hazard may be 
directly caused by some UCAs. Therefore, the hazard is 
connected with these UCAs by some incoming edges. As each 
UCA is modeled in a causal network, a causation network for 
the hazard is constructed, which is a DRHCN. 

 
FIGURE II.  STEPS OF MODELING A DRHCN 

III. STATISTIC CHARACTERISTICS OF DRHCN 

Complex networks are topological graphs with some 
parameters that reflect the statistic characteristics of networks. 
In this paper, four statistic characteristic parameters including 
output degree, degree distribution, shortest path length and 
betweeness are utilized to statistically analyze the hazard 
causation. 

A. Output Degree and Degree Distribution 

The node degree of a node is the number of edges 
connecting with this node [5]. If a node has larger node degree 
than others, it means that this node is a key point of the 
network. Considering the directions of edges, the node degree 
can be divided into input degree (the number of incoming 
edges) and output degree (the number of outgoing edges). As 
this paper focuses on the contribution of causes to the hazard, it 
is more significant to calculate the output degrees of nodes. 
The output degree of a node is calculated in terms of the 
adjacency matrix of the DRHCN: 


j N

outk aiji


   

where N is the number of the causation nodes in DRHCN, aij is 
the value of the element in the ith row and the jth column of the 
adjacency matrix. 

Based on the node degree, the degree distribution p(k) is 
defined as the probability of a randomly selected node with 
degree k. It reflects the statistical properties of a network. 
Nevertheless, the degree distribution p(k) is often noisy 
because of the finite network size. Therefore, the cumulative 
degree distribution P(k), the probability of a randomly selected 
node with degree greater than or equal to k, is used for analysis 
instead. In this paper, we utilize the cumulative degree 
distribution to evaluate the causes in the DRHCN. 

B. Shortest Path Length in DRHCN 

The shortest path length is the number of steps along the 
shortest path connecting two nodes. Since this paper focuses on 
the influence of causes on the hazard, the shortest path length 
refers specifically to the shortest path length from each node to 
the node Hazard. For a node i, its shortest path length is 
denoted as dih. For example, in Figure 2, the shortest path 
lengths of the nodes CS2 and CS6 are 2 and 4 respectively. 

According to the above definition, the smaller value of the 
shortest path length, the more direct influence of the cause on 
the hazard. Some safety measures can be implemented for 
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increasing the shortest path length so as to reduce the 
possibility of the hazard. 

C. Betweenness in DRHCN 

In the network theory, the betweenness of a node is defined 
as the proportion of the number of shortest paths going through 
this node to the number of all shortest paths in a network. It is 
used to measure what extent a node appears in the connection 
paths between the other nodes. Since the shortest paths refer 
specifically to the shortest paths leading to the node Hazard in 
this paper, the traditional betweenness should be tailored. The 
definition of betweenness bi of a node i in the DRHCN is 
shown as follows. 

 ( )

, ,

jh i
i

jhj h N j h

n
b

n 

   

Where, both j and h are the nodes in the DRHCN, h refers 
specifically to the node Hazard, njh(i) is the number of the 
shortest paths going through the node i and connecting the j 
and h, and njh is the number of the shortest paths connecting the 
j and h. According to the definition above, the betweenness 
centrality of a node reflects the role of intermediary the node 
plays in the emergence of the system hazard. In the DRHCN, 
the larger the betweenness centrality of a node, the larger 
numbers of shortest paths the node appears in. 

IV. STATISTIC ANALYSIS OF TRAIN COLLISION CAUSATION 

In this section, we take the hazard of train collision and its 
causation as a study case, and statistically analyze the causation. 

 
FIGURE III.  THE DRHCN MODEL OF TRAIN COLLISION 

The hazard of train collision has been identified in [10]. 
And the causes of this hazard are related to five kinds of 
entities: dispatcher (D), centralized traffic control system (C), 
radio block center (R), vital computer (V) and train driver (T). 
According to the steps of modeling DRHCN, the directed 
causation network can be constructed and shown in Figure 3. 
The meanings of the nodes can be found in [10].  

A.  Output Degree and Degree Distribution 

The average output degree of total 78 nodes in this DRHCN 
is 1.57. It indicates that each causal factor averagely leads to 
one or two causal factors. Only 25 nodes in the DRHCN have 
the output degrees greater than or equal to 2, as shown in 

Figure 4. The values of other 53 nodes are equal to 1. As 
shown in Figure 4, the node “DA01” has the highest output 
degree with the value of 5. This indicates that the “DA01” may 
lead to five other causal factors and is a key point in the 
DRHCN. As shown in [10], the “DA01” means that the 
dispatcher violates working procedures because of 
misoperation. It is important to prevent such human failure by 
employee training and safety culture. 

 
FIGURE IV.  NODES WITH OUTPUT DEGREE GREATER THAN 

OR EQUAL TO 2 

The cumulative degree distribution P(k) of the DRHCN is 
illustrated in Figure 5. As shown in Figure 5, the P(k) obeys 
power-law distribution with the approximate fit P(k) ~ 2.534k-

1.91. This indicates that the DRHCN can be treated as a kind of 
scale-free network. The average degree of nodes is 3.1, where 
the nodes with degree less or equal to 2 account for 51.3% of 
total 78 nodes. A small fraction of nodes have high degrees, 
such as the V-UC01 (degree is 15) and the V-UC03 (degree is 
11) that are related to vital computer. This scale-free network 
characteristic means that the DRHCN is robust to random 
occurrence of causation, but is vulnerable to the occurrence of 
nodes with high degrees due to deliberate attacks. Eliminating 
or controlling the nodes with high degrees, such as the V-UC01 
and the V-UC03, can cut off much of spread routes of causes. It 
has positive effects on the safety of the railways. 

 
FIGURE V.  CUMULATIVE DEGREE DISTRIBUTION 

B. Shortest Path Length 

The shortest path length from each node to the node Hazard 
is shown in TABLE I. All the shortest path lengths are less than 
5. It means that any cause could lead to the presence of the 
hazard within five steps. Besides, it is shown in TABLE I that 
some causes related to both the vital computer and the train 
driver have the shortest path lengths equal to 1. This conforms 
to the actual situation that both the vital computer and the train 
driver control the train directly. The occurrence of these causes 
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may lead to the hazard directly. This indicates that controlling 
these causal factors can play a direct role in preventing the 
hazard. 

TABLE I.  SHORTEST PATH LENGTHS 

Object 
Shortest path length from each node to the node 

Hazard 

Dispatcher 
D-UC01: 4 
D-UC02: 4 
D-UC03: 4 

D-UC04: 2 
D-UC05: 4 
DP01: 3 

DP02: 5 
DP03: 3 
DA01: 3 

DI01: 5
DI02: 5

DF01: 3
DF02: 5

centralized  
traffic control 

system 

C-UC01: 3 
C-UC02: 3 
C-UC03: 3 

C-UC04: 3 
C-UC05: 3 
CP01: 4 

CP02: 4 
CP03: 4 
CP04: 4 

CP05: 4
CA01:4 
CA02: 4

CA03: 4
CF01: 4

 

Radio Block 
Center 

R-UC01: 2 
R-UC02: 2 
R-UC03: 2 
R-UC04: 2 
R-UC05: 2 
R-UC06: 2 

R-UC07: 2 
R-UC08: 2 
R-UC09: 2 
R-UC010: 2 
RP01: 3 
RP02: 3 

RP03: 3 
RP04: 3 
RP05: 3 
RA01: 3 
RA02: 3 
RA03: 3 

RA04: 3
RA05: 3
RA06: 3
RI01: 3
RI02: 3
RI03: 3

RI04: 3
RI05: 3
RI06: 3
RT01:3
RT02:3

Vital Computer 
V-UC01: 1  
V-UC02: 1  
V-UC03: 1  

VP01: 2 
VP02: 2 
VP03: 2 

VA01: 2 
VA02: 2 
VA03: 2 

VI01: 2
VT01: 2
VT02: 2

VF01: 2

Train Driver 
T-UC01: 1  
T-UC02: 1  

TP01: 2 
TP02: 2 

TA01: 2 
TI01: 2 

TI02: 2
TI03: 2

 

C. Betweenness 

 
FIGURE VI.  BETWEENNESS OF THE DRHCN 

The betweenness of nodes in the DRHCN are calculated 
and illustrated in Figure 6. There are only 25 nodes having 
betweenness of more than zero. The values of the others are 
zero and invisible, because they do not play roles of 
intermediaries in the spread of the causes. There are 6 nodes 
having betweenness greater than 0.1. They are the C-UC01, the 
R-UC01, the R-UC06, the V-UC01, the V-UC02 and the V-
UC03 respectively. The total values of their betweenness are 
equal to 1.34 accounting for 62.4% of the sum of all 
betweenness. This means that 62.4% of all shortest paths go 
through these 6 nodes. Controlling these causes can increase 
the lengths of the shortest paths between the most nodes, which 
will slow down the spread efficiency of the causation. 

V. CONCLUSION 

In this paper, the complex network theory is employed to 
model the directed railway hazard causation network 
(DRHCN). Based on the DRHCN, four statistic characteristics 
of hazard causation are obtained. The statistic characteristic 
analysis of the hazard causation is performed to quantitatively 

evaluate the potential causes of the train collision. In the real 
case study, the key hazard causation, such as dispatcher errors, 
vital computer-related causes (V-UC01, V-UC03, et al.) and 
radio block center-related causes (R-UC01 and R-UC06) are 
identified. These causes should be preferentially prevented by 
control measures.  
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