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Abstract—This paper discusses the problem of pricing on some 
multi-asset option European exchange option in jump-diffusion 
model by martingale method. By changing basic assumption of 
William Margrabe exchange option pricing model to the 
assumption that jump process is count process that more general 
than Poisson process, it is established that the behavior model of 
the stock pricing process is jump-diffusion process. The formula 
of European exchange option whose stock price with jump 
process is a count process that more general than Poisson process 
is deduced under the risk-neutral hypothesis, and it is extended 
that William Margrabe exchange option pricing model. 

Keywords-European exchange options; jump-diffusion; count 
process 

I. INTRODUCTION  

This Throughout the nineties, we have seen the synergistic 
union of mathematics, finance, the computer, and the global 
economy. Currency markets trade tow trillion dollars per day, 
and sophisticated financial derivatives such as options, swaps, 
and quantors are commonplace. Since the appearance of the 
Black-Scholes formula in 1973[1], the financial community has 
embraced an abundant and ever-expanding array of 
mathematical tolls and models. Continuous-time mathematics 
has become one of the essential tools of modern finance. The 
elegant mathematics of stochastic calculus simplifies the 
solution of a wide range of important problems in finance. 
William Margrabe(1978) [2] study an equation for the value of 
the option to exchange one risky asset for another. His theory 
grows out of the brilliant Black-Scholes(1973) solution to the 
longstanding call option pricing problem---which assumes that 
the price of a riskless discount bond grew exponentially at the 
riskless interest rate---and Merton’s(1973) [3] extension---in 
which the discount bond’s value is stochastic until maturity. 
But we show that real data cannot always be fit by a geometric 
Brownian motion model, and that more general models may 
need to be considered. The appearance of important 
information will cause the stock price to a kind of not continual 
jumps[4-6].A mass of finance practice has indicated that there is 
a serious warp between the hypothesis of Black-Scholes model 
about the underlying asset price and the realistic markets. 
Therefore, many scholars put forward many new kinds of 
option pricing models by relaxing some assuming conditions of 
Black-Scholes model. Option pricing theory with jump-
diffusion is one of them. In this paper, I develop an equation 
for the value of the option to exchange one risky asset for 
another. Establish the option-pricing model when exercise price 
is random variable. The option-pricing model is options to 
exchange one asset to another. Pricing formula of European 
option is also given. 

II. ASSUMPTIONS AND MODELS 

Let  0, , , ( )t t TF P F    be a probability space 

and  2 3, , 0t tW W t T  be a two-dimensional standard Wiener 

process given on a probability space  , ,F P . The market is 

built with a bond tB  and two risky assets 1
tS , 2

tS . We suppose 
that tB  is the solution of the equation 
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where risk-free interest rate r  and volatility 1 , 2 , are 

supposed to be constant.  1,0tW t T   

(  1 2 31 ,0t t tW W W t T      ),  2 ,0tW t T  are standard 

Wiener process on a suitable probability space  , ,F P .The 

correlation between the  1,0tW t T  and  2 ,0tW t T  is  , 

 ,0tN t T  is the compensated martingale of nonexplosive 

counting process[7]  , 0tN t T   with intensity parameter ( )t  
and 0 1 2, , ,

tNV V V V  0( 0, 0)iV V   ( iV is independent of jV , for 

i j ), 0 1 2, , ,
tNU U U U 0( 0, 0)iU U  ( iU is independent of 

jU ,for i j )are the random variable percentage change in the 

money supply if the count process occurs. The random 
variables  2 ,0tW t T  ,  3,0tW t T  ,  , 0tN t T   and 

 ,1i tV i N  ,  ,1i tU i N  are assumed to be mutually 
independent. 

We assume that the filtration  , 0tF t T  is generated by the 

martingale  , 0tN t T  and  1,0tW t T  ,  2 ,0tW t T  . 

Assumption 1 P  is risk-neutral martingale measure[8]. 

Assumption 2 2 2
1 1 2 22 0       . 
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If the jumps , 1iV i   have a lognormal distribution with mean 

parameter 0 and variance 2
0  under the martingale 
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III. MAIN RESULTS 

Before we want the formula for the value of a European-
type option. This option is simultaneously a call option on asset 

2
tS  with exercise price 

1
tS  and a put option on asset 

1
tS  with 

exercise price
2
tS . 

Proposition 1 Assume that the dynamics of a bond tB  and 

two risky assets 1
tS , 2

tS  are given by (1),(2),(3), respectively. 
Then the price of a European-type option with a call option on 
asset 2

tS  with exercise price 1
tS  and expiry date T  is given by 

the expression 
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It is not hard to check that 3
tW  and 2

2 (0 )tW t t T   follow 
one-dimensional standard Wiener processes under the 
martingale measure *P , and their mutually independent. Then it 
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is easy that 2 311 2
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Proposition 2 Assume that the dynamics of a bond tB  and 

two risky assets 1
tS , 2

tS  are given by (1),(2),(3), respectively. If 
,V U  have  lognormal distribution[11] with mean 
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Proof  Using Proposition 1 
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Proposition 3 Assume that the dynamics of a bond tB  and 

two risky assets 1
tS , 2

tS  are given by (1),(2),(3), respectively. 
Then the put-call parity relation may be rewritten as   

   1 2 1 2 2 1, , , ,T T T T t tC t S S P t S S S S  
. 

We can using put-call parity[12] to find the price of a 
European put option on a stock with the same parameters as 
earlier. 

IV. CONCLUDING REMARKS 

In this paper, we develop an equation for the value of the 
option to exchange one risky asset for another. Establish the 

option-pricing model when exercise price is random variable. 
The option-pricing model is options to exchange one asset to 
another. Because jumps do occur in practice, it is advantageous 
to consider a model for price evolution that superimposes 
random jumps on a geometric Brownian motion. By changing 
basic assumption of William Margrabe exchange option pricing 
model to the assumption that jump process is count process that 
more general than Poisson process, it is established that the 
behavior model of the stock pricing process is jump-diffusion 
process. Considering when the jump distribution is lognormal, 
we get European exchange call and put option pricing formula 
and their parity. 
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