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Abstract—In this paper, variational discretization approximation 
of bilinear elliptic optimal control problems is considered. Firstly, 
we construct a variational discretization method for the bilinear 
elliptic optimal control problem with control constraints. 
Secondly, we derive the convergence of the approximation 
scheme. Thirdly, we analyze the superconvergence. Finally, we 
present a numerical example to conform our theoretical results.  
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I. INTRODUCTION 

There has been so extensive research on convergence and 
super convergence analysis of finite element method for elliptic 
optimization that it is impossible to given a very brief review 
here. Convergence and super convergence for finite element 
approximation of linear or semi-linear elliptic optimization 
problems are investigated in [1, 2] and [3, 4], respectively. 

In recent years, much research has begun to examine finite 
element approximations of bilinear optimal control problems. 
A priori error estimates of finite element discretization for 
bilinear elliptic optimal control problems is established in [5]. 
Super convergence of finite element method for optimal control 
problems of bilinear type is obtained in [6].   

Hinze present a vatiational discretization (VD) concept for 
control constrained optimization problems in [7]. Its main 
feature is not directly to discretize the space of admissible 
controls but to obtain the control by utilizing the discretization 
of the state and co-state variables and the implicity solution of 
variational inequality. It can improve the convergent order 

from )(h to )( 2h . Recent years, VD are used to solve 
different kinds of constrained. In this paper, we consider the 
VD approximation of bilinear elliptic optimization problems 
with control constraints. 

We are interested in the following optimization problem: 
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where the set of admissible control  is defined by 
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and  ba0 are constants.

 
Let ( 1, 2, 3)d d    be a bounded open domain 

with a smooth boundary . The coefficient A is a symmetric 

matrix such that 2|| || ,T dA c     with 0.c   In 

this paper, we use the standard notation , ( )m qW   for Sobolev 
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II. VD APPROXIMATION FOR THE MODEL PROBLEM 

In this section, we present a VD approximation for the 
optimization problem (1.1)-(1.4). For ease of exposition, we set 
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It follows from the assumption on ,A we have that 
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Then a weak formula for the model problem reads: 
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It is well known (see, e.g., [8]) that the control problem (5) has 
a solution ),( uy , and that a pair ),( uy is the solution of (5), 

then there is a co-state Wp such that the triplet 

),,( upy satisfies the following optimality conditions: 
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As in [9], it is easy to prove the following lemma: 

Lemma 2.1  Let ),,( upy  be the solution of (6)-(8). Then 
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Let hT and h be regular triangulations of  and the mesh 
size, respectively. Moreover, we set 
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Where 1P  denotes  polynomials of total degree no more 

than 1.Thus a VD approximation of (6)-(8) is as follows: 
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The problem (10) again has a solution ),( hh uy  and that if 

KWuy hhh ),( is the solution of (10), then there is a co-

state hh Wp  , such that the triplet ),,( hhh upy  satisfies the 

following optimality conditions: 
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Similar to the Lemma 2.1, we can easily derive the 
following lemma: 

Lemma 2.2  Let ),,( hhh upy  be the solution of (11)-(13). 

Then, we have 
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Remark 2.1 We minimize over the infinite dimensional set 
K instead of minimizing over a finite dimensional subset of 
K in (13). Then we just need to solve the discrete equations 

(11)-(12) and obtain hu
from (14). 

III. ERROR ESTIMATES OF INTERMEDIATE VARIABLES 

Some intermediate variables and useful error estimation are 
introduced in this section. For any hhh WqwKv  ,, , let 

hhh Wvpvy )(),( satisfies the following system: 

 ),,()),(()),(( hhhhh wfwvvywvya   

 ).,)(()),(())(,( hdhhhhh qyvyqvvpvpqa  

If ),,( hhh upy  be the solution of (11)-(13) then we have 
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The elliptic projection operator hh WWR : defined as 

follows: for any W satisfies  

.,0),( hhhh WwwRa   

It has the following approximation property (see e.g., [10]) 

 .1,0),(,||||||-|| 2
2

2   sHChR s
sh   

Lemma 3.1  Let ),,( upy  be the solution of (6)-(8) and 

))(),(( upuy hh  be the solution of (15)-(16) with .uv   

Suppose )( Lu  and )(, 2 Hpy , then we have 
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Prof. Set uv  in (15), then from (6) and the definition of 

the elliptic projection operator hR , we have 
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By choosing uv  in (16), then from (7) and the definition 
of the elliptic projection operator, we get 
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Similarly, we can derive 
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Then (18) follows from (22) and (24). 

IV. CONVERGENCE ANALYSIS 

In this section, we will give the convergence analysis for 
the control variable. Just for ease of exposition, we set 
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It can be shown that 
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In many applications, the objective functional )(J is 
uniform convex near the solution u (see e.g., [11]). As in [12], 

we assume that there is a positive constant ,C such that 
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Theorem 4.1 Let ),,( upy  and ),,( hhh upy be the 

solutions of (6)-(8) and (11)-(13), respectively. Assume that 
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are valid. Then, we have 
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Let  be small enough, then (28) follows from (18) and 
(31). 

V. SUPER CONVERGENCE ANALYSIS 

In this section, we will analyze the super convergence of 
the state and co-state variables. 

Theorem 5.1 Let ),,( upy  and ),,( hhh upy be the 

solutions of (6)-(8) and (11)-(13), respectively. Suppose all the 
conditions in the Theorem 4.1 hold. We have 
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According to the definition of hR , we obtain 
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Selecting hhh yyRw  ,  (17), (28) and (34), we derive  
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Similarly, we can derive 
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Hence, (32) follows from (35) and (37). 

VI. NUMERICAL EXPERIMENT 

Let 1,0],1,0[]1,0[  bc and A is an unit matrix. 

We solve the following optimal control problem where 
codes developed based on AFEPack which is freely available. 

Example. The data are as follows: 
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The errors 11 ||||,||||||,|| pRpyRyuu hhhhh  based 

on a sequence of uniform refined meshes are shown in table I. 

 

TABLE I. THE ERRORS ON UNIFORM MESH 

Mesh 
nodes 

Errors 

|||| huu   1|||| yRy hh   1|||| pRp hh   

100  4.97429e-02 8.36251e-03 7.42735e-03 

400  1.31232e-02 2.30218e-03 2.00054e-03 

1600  3.31625e-03 5.91429e-04 5.10980e-04 

6400  8.31263e-04 1.48953e-04 1.28457e-04 

The superconvergence phenomenon can be observed 
clearly from the Table I. 
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