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Abstract—If real constants α, β (at least one is not zero) let 
g(y)d(f(y)/g(y))/dy=α+βf/g, then the naming the equation 
dy/dx=P(x)f(y)+Q(x)g(y) for Bernoulli-Deng Equation is suggested. 
The equation can be integrated and its general integral is given. 
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I. INTRODUCTION 

In 1695, J. Bernoulli proposed the question of solution of 
equation 
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Equation (1) was named Bernoulli Equation. In 1696, 
Leibniz pointed out that Bernoulli Equation can be integrated. 
As a special kind of first order nonlinear ordinary differential 
equation, Bernoulli Equation have very extensive applications 
in mechanical engineering, etc. The study of Bernoulli 
Equation has important theoretical significance and extensive 
application value. 

In 1985, Professor Cong Deng extended the definition of 
Bernoulli Equation in [1], in which an ample condition for the 
equation 
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to be integrated was proposed, and the general integral of (2) 
meeting requirement  
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(α≠0 is a constant) is follow 
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C is a arbitrary constant. 

Prof. Deng proposed that (2) with the requirement (3) be 
named Generalized Bernoulli Equation, and gave its general 
integral. Obviously, Bernoulli Equation is special example of 
(2) while f(y)=y, g(y)=yn, α=1-n.  

In 2002, Prof. Deng discussed some literature about 
extension of Bernoulli Equation and proposed two questions in 
[2], one of is: if g(y)d(f(y)/g(y))/dy=H(y) isn’t constant, can (2) 
be integrated to some special function H(y)? He thought that 
when we got some result in that two questions, we should 
extend the definition of Bernoulli Equation really and 
essentially. Another question is:  when the condition (3) was 
founded, can the equation 

)()()()()()(
d

d
ygxRyfxQyhxP

x

y
  

be integrated for some special R(x) or h(y)? This question was 
discussed in [3] by Prof. Deng. 

In 2010, Professor Ailian Hu extended Bernoulli Equation 
to a kind of nonlinear equation  
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and got its elementary integral method (1/f(y) can be integrated) 
in [4]. 

In fact, (5) is still Generalized Bernoulli Equation named by 
Prof. Deng in 1985.  
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1-n is a constant. 
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In the following, we answer the first question of Prof. Deng. 
We first give a theorem, and then give its proofs, and then give 
two examples in the last part. 

II. THEOREM 

Equation (2) can be integrated, if real constants α, β meet 
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If β isn’t 0, the general integral of Equation (2) is as 
follows: 
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C is a constant of integration.  

If α≠0 but β=0, then the general integral of (2) is (4). 

III. PROVE 

When both constants α and β are 0, g(y)≡0 or f(y)/g(y) is 
constant, (2) is separable variable equation. Therefore, it can 
be integrated. 

Obviously, when β=0, (2) is Generalized Bernoulli 
Equation named by Prof. Deng. We have known it can be 
integrated and its general integral is (4). 
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Now, (2) become: 
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Because f/g=(1/u)-α/β, so the above equation is 
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It is a linear equation and its general integral is 
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Then the theorem is proved. 

We suggest the naming (2) for Bernoulli-Deng Equation 
when the requirement (6) (α≠0 or β≠0) was founded.  

IV. EXAMPLES 

Example 1. Solve the equation: 
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Solving: Change the equation into: 
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This is a Bernoulli-Deng Equation and its general integral 
is 
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C is a arbitrary constant. 

Example 2. Solve the equation: 
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Solving: Change the equation into: 
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This is a Bernoulli-Deng Equation and its general integral 
is 

.2

d4
3

exp)2(

4
3

exp

d4
3

exp)2(
3

4exp
2

1

d4
3

exp)2(
3

4exp
44

2

3

3

33

33

2


























































































xx
x

xC

x
x

y

，xx
x

xC
x

x
y

，xx
x

xC
x

x
yy

y

C is a arbitrary constant. 
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