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Abstract—The naming the equation 
dy/dx+{[(dg/dx)w+dψ/dx]/g(x)-q(x)F[g(x)w(y)+ψ(x)]}/(dw/dy)=0 
for Li-Fan Integrable Unified Equation is suggested. Several 
forms of the equation are given. 
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I. INTRODUCTION 

In 1982, Prof. Hongxiang Li gave a first order differential 
integrable equation in [1]: 
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                     (1) 

He pointed out that separable variable equation, linear 
equation, homogeneous equation and Bernoulli Equation are 
special cases of (1). In 1999, Prof. Li referred to (1) as unified 
equation of these integration equations in [2]. 

In 1987, Prof. Li and Xing Fan expanded (1) into the 
following form (Theorem 1.2 in [3]): 
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Its general integral is 
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where A is a arbitrary constant, 
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In 1990, Prof. Li and Z.F.Starc discussed a class of more 
general first order ordinary differential integration equations, 
and gave some theorems and their corollaries in [4]. Equation 
(2) is mentioned as a corollary.  

In order to facilitate the application, this paper simplifies 
(2), and give its several forms. 

II. THEOREM 

Suppose that q, F ∈C; g, w, ψ∈C1; g(x)≠0 and w(y)≠const, 
Equation  
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can be integrated. Its general integral is 
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where  
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C is a arbitrary constant.  
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It is a separable equation and its general solution is (7). 
Then the theorem is proved. 

Let ( ) ( ) ( )g x v x f x , ( ) ( ) ( )x v x x  , 

 ( ) ( ) ( )q x v x Q x
 , 1( ) ( )F u u F uu k  , 
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if the requirement (3) was founded, then (6) becomes (2), and 
(7) becomes (4).

 
IV. COROLLARIES 

Corollary 1  Suppose  that P, q, F ∈C; w, ψ∈C1; w(y)≠
const. Equation  
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is integration.  

Proof   In (6), taking 
( )d

( )=e
P x x

g x  , (6) becomes (9).  
According to Theorem the proof is ended.  

Corollary 2   Suppose that f, q, F ∈C;  g,  ψ∈C1;  g(x)≠0. 
Equation  
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is integration.  

Proof   In (6), taking 
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, (6) becomes (10). 
According to Theorem the proof is ended.  

Corollary 3   Suppose  that P, q, f, F ∈C;  ψ∈C1,  f(y)≠0. 
Equation  
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(11) 

Is integrable.  

Proof   In (6), taking 

1
d

( )( )=e
y

f yw y


, 
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g x  ,  
(6) becomes (11). According to Theorem the proof is ended.  

We suggest the naming (5), (9),(10) and (11) for Li-Fan 
Integrable Unified Equations

 

when the requirements in the 
theorem  or corollarys was founded.  

 

Corollary 4   Suppose  that P, q, F ∈C, ψ∈C1. Equation  
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is integrable.  

Proof In (11), let f(y)≡±1,if f(y)≡-1, then P(x) is  replaced 
by -P(x), (11) becomes (12). According to Corollary 3 the 
proof is ended.  

Corollary 5   Suppose  that P, q, F ∈C; ψ∈C1. Equation  
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(13) 

is integration.  

Proof   In (11), let f(y)=y, (11) becomes (13). According to 
Corollary 3 the proof is ended.  

Corollary 6   Suppose  that P, q, F ∈C, ψ∈C1. Equation  
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(14) 

is integration.  

Proof   In (11), let f(y)=-y, (11) becomes (14). According 
to Corollary 3 the proof is ended.  

In (14), let ψ(x)≡0, q(x) =Q(x)  exp ( )dn P x x , F(u) is 

replaced by F(u)u-n, (14) becomes (1). 

Corollary 7   Suppose that q, Φ ∈C; m, n∈C1. Equation  
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is integration.  

Proof   In (6), let w(y)=y, g(x)=m(x), ψ(x)=n(x), F(u)=Φ(u), 
(6) becomes (15).  According to Theorem the proof is ended. 
In fact, this corollary is Theorem in [5] by Prof. Luxiang Feng 
in 2013. 

Corollary 8   If equation  
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then it is integration.  

Proof   In (2), let w(y)=by+c, g(x)≡1, φ(x)≡0, v(x)=G(λ(x)), 
F1(u)=Φ(u), P(x)=-aλ(x), α=0, (3) is met. (2) becomes (16). 
According to the prove of Theorem the proof is ended. In fact, 
this corollary is Theorem in [6] by Prof. Feng in 2012 (d is 
replaced by k here). 

Corollary 9   Equation  
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Proof   In (6), let w(y)=y, g(x)=1/h(x), ψ(x)=f(x)/h(x), 
F(u)=Φ(u)+α, then 
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(6) becomes (17). According to Theorem the proof is 
ended. In fact, this corollary is Theorem in [7] by Prof. Zhilin 
Li in 2009 (g is replaced by h here). 

Corollary 10   Equation  
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is integration.  

Proof   In (9), let w(y)=y, P(x)=-p(x), 

 ( ) exp ( ) dg x p x x  ,  ( ) ( ) exp ( ) dq x Q x n p x x  , 

 ( ) ( ) exp ( ) dx f x p x x   , F(u)=un,  then 

   
   

( ) exp ( )d ( ) exp ( )d

( ) exp ( )d ( ) exp ( )d ( )

( ) ( ) ( ).

x P x x x p x x

x p x x x p x x p x

f x p x f x

 

 

   

    
 

 

   

(9) becomes (18). According to Corollary 1 the proof is 
ended. In fact, this corollary is Theorem 1 in [8] (q is replaced 
by Q here). 
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