

Asymptotic Regularity and Uniform Attractor for Non-autonomous Viscoelastic Equations with Memory

Ye Zeng^{*}, Yanan Li, Yongqin Xie and Shuangli Luo

School of Mathematics and Statistics, Changsha University of Science and Technology, Changsha, China

Abstract—In this paper, long-time behavior of a class of non-autonomous viscoelastic equations with fading memory is investigated. We establish the existence of a compact uniform attractor together with its structure in $H_0^1(\Omega) \times H_0^1(\Omega) \times L_{\mu}^2(R^+; H_0^1(\Omega))$. The compact uniform attractor is bounded in $D(A) \times D(A) \times L_{\mu}^2(R^+; D(A))$ and attracts every bounded set of $H_0^1(\Omega) \times L_{\mu}^1(\Omega) \times L_{\mu}^2(R^+; H_0^1(\Omega))$.

Keywords-non-autonomous wave equations; asymptotic regularity; uniform attractor; memory; viscoelasticity

I. INTRODUCTION

In this paper, we consider the dynamical behavior of the solutions for the following non-autonomous evolutionary equations with a fading memory

$$u_{tt} - \Delta u_{t} - \Delta u - \Delta u_{tt}(t) - \int_0^\infty \mu(s) \Delta \eta'(s) ds + f(u) = g, \qquad (1)$$

and

$$\eta_t^t = -\eta_s^t + u_t$$

The problem is supplemented with the boundary condition

$$u(x,t)\Big|_{\partial\Omega} = 0$$
 for all $t \ge \tau, \tau \in R$

and initial condition

$$u(x,t) = u_{\tau}(x,t), u_{\tau}(x,t) = \frac{\partial}{\partial t}u_{\tau}(x,t) \quad t \le \tau, \tau \in \mathbb{R}$$

Where Ω is a bounded smooth domain in R^3 , g = g(t) is a given external time-dependent forcing, f is the critical nonlinearity.

Problem(1) is related to the following equations like

$$u_{tt} - u_{xxt} - u_{xx} - u_{xxtt} = 0,$$

Which appear as a class of nonlinear evolution equations, and that is used to represent the propagation problems of

lengthways-wave in nonlinear elastic rods and Ion-sonic of space transformation by weak nonlinear effect (see for instance[1,3]). Since (1) contain terms Δu_u , it is essentially different from D'Alembert wave equation.

Let us recall some results concerning the problem (1). In [10, 11] etc, authors studied this equations with Dirichlet boundary conditions as $\mu = 0$. Recently, Araújo et al.[5] and M. Conti [4], H. Yassine and A. Abbas [9] studied the well posedness for this equations. In particular, Qin[8] obtain the existence of uniform attractors as f = 0.

Maybe, we could establish the existence of uniform attractors of (1) using the method in [16, 17], but the regularity and structure cannot obtain directly. In this paper, we will apply the techniques introduced in Sun [14] to overcome the difficulty due to the critical nonlinearity, and establish the asymptotic regularity of the solutions. Based on this regularity result, we obtain the asymptotic compactness of the non-autonomous system and prove the existence of a uniform together attractor with its structure in $H_0^1(\Omega) \times H_0^1(\Omega) \times L_u^2(\mathbb{R}^+; H_0^1(\Omega))$. It is noteworthy that the uniform attractor compact is bounded in $D(A) \times D(A) \times L^2_{\mu}(R^+; D(A))$.

For conveniences, hereafter let |u| be the modular (or absolute value) of u and $|\cdot|_p$ be the norm of $L^p(\Omega)(P > 1)$. Denote $H^{-1}(\Omega)$ is the dual space of $H_0^1(\Omega)$ and $||\cdot||_{H^{-1}}$ be the norm of $H^{-1}(\Omega)$. Let $(\mathcal{V}, ||\cdot||_{\mathcal{V}})$ be a Banach space, we denote respectively the inner product and norm of the weighted space $L^2_u(R^+; \mathcal{V})$ by

$$\left\langle \varphi, \psi \right\rangle_{\mu,\nu} = \int_0^\infty \mu(s) \left\langle \varphi(s), \psi(s) \right\rangle_{\nu} ds$$

and

$$\|\varphi\|_{\mu,\nu}^2 = \int_0^\infty \mu(s) \|\varphi(s)\|_{\nu}^2 ds.$$

Denote $A = -\Delta$ with domain $D(A) = H^2(\Omega) \cap H_0^1(\Omega)$, and for $r \in R$, let $\mathcal{E}_r = D(A^{\frac{r+1}{2}})$ and $\|\cdot\|_r$ be the norm of \mathcal{E}_r . We also define the system state space for (u, u_r, η) as H_r , together with a dense subspace M:

$$\begin{split} H_r &= \mathcal{E}_r \times \mathcal{E}_r \times L^2_\mu(R^+;\mathcal{E}_r), \\ M &= D(A) \times D(A) \times (L^2_\mu(R^+;D(A)) \cap H^2_\mu(R^+;H^1_0(\Omega))). \end{split}$$

We also define the norm of the product space H_r as follows

$$\left\|z\right\|_{H_{r}}^{2} = \left\|(u, v, \eta^{t})\right\|_{H_{r}}^{2} = \frac{1}{2}\left(\left\|u\right\|_{r}^{2} + \left\|v\right\|_{r}^{2} + \left\|\eta^{t}\right\|_{u,\varepsilon_{r}}^{2}\right),$$

for any $z = (u, v, \eta^t) \in H_r$.

Let C be an arbitrarily positive constant, which may be differential from line to line, even in the same line.

For the memory kernel $\mu(s)$, we assume the following hypotheses: for all $s \in \mathbb{R}^+$ and some $\delta > 0$

$$\mu \in C^{1}(R^{+}) \cap L^{1}(R^{+}), \ \mu(s) \ge 0, \ \mu'(s) \le 0 \ , \tag{2}$$

$$\mu'(\mathbf{s}) + \delta\mu(\mathbf{s}) \le 0 \tag{3}$$

We introduce a new variable of the system,

$$\eta = \eta^{t}(x,s) := u(x,t) - u(x,t-s), \ s \in R^{+},$$
(4)

which will be ruled by a supplementary equation. Denoting

$$\eta_t^t = \frac{\partial}{\partial t} \eta^t$$
, $\eta_s^t = \frac{\partial}{\partial s} \eta^t$

Then the following estimate holds(See[17])

$$\left\langle \eta^{\prime}, \eta^{\prime}_{s} \right\rangle_{\mu,\nu} \ge \frac{\delta}{2} \left\| \eta^{\prime} \right\|_{\mu,\nu}^{2}$$
 (5)

The past history $u_{\tau}(\tau - s)$ of the variable *u* satisfies the condition as follows: there exist two positive constants \Re and $\kappa \leq \delta$ such that

$$\int_0^\infty e^{-\kappa s} \left\| u_\tau(\tau - s) \right\|_0^2 ds \le \Re.$$
(6)

The nonlinearity $f \in C^1(R, R)$, fulfills f(0) = 0 satisfies the following decomposition

$$\left|f'(s)\right| \le c(1+\left|s\right|^4) \quad \text{for all} \quad s \in R \tag{7}$$

and

$$\liminf_{|s|\to\infty} \inf \frac{f(s)}{s} > -\lambda_1, \tag{8}$$

for any $s \in R$, where c, λ_1 are positive constants and λ_1 is the first eigenvalue of $-\Delta$ in $H_0^1(\Omega)$ with the Dirichlet boundary condition.

Calling $F(s) = \int_0^s f(y) dy$. Notice that by (8), the following inequalities hold for some $0 < \lambda < \lambda_1$ and $c_0 \ge 0$

$$2\int_{\Omega} f(u)u \ge 2\int_{\Omega} F(u) - \lambda \left|u\right|_{2}^{2} - c_{0}$$
⁽⁹⁾

For the time-dependent forcing *g*, we assume the following hypotheses: $g \in L^2_b(R; L^2(\Omega))$ (translation bounded in $L^2_{w,loc}(R; L^2(\Omega))$), and with the norm

$$|g||_{L^{2}_{b}}^{2} = \sup_{t\in R} \int_{t}^{t+1} |g(s)|_{2}^{2} ds < \infty$$
.

II. PRELIMINARIES

We will complete our task exploiting the transitivity property of exponential attraction[15], that we recall below for the readers convenience.

Lemma 2.1.[15] Let (H;d) be an abstract metric space, $U(t;\tau)$ be a Lipschitz continuous dynamical process in H, *i.e.*

$$\left\| U(t+\tau,\tau) z_1 - U(t+\tau,\tau) z_2 \right\|_{H} \le L_0 e^{v_0 t} \left\| z_1 - z_2 \right\|_{H},$$

for appropriate constants $v_0 \ge 0$ and $L_0 \ge 0$ which are independent of z_i, τ and t. We further assume that there exist three subsets $K_1, K_2, K_3 \subset H$ such that

$$dist_{H}(U(t+\tau,\tau)\mathbf{K}_{1},\mathbf{K}_{2}) \leq L_{1}e^{-\nu_{1}t},$$

$$dist_{H}(U(t+\tau,\tau)\mathbf{K}_{2},\mathbf{K}_{3}) \leq L_{2}e^{-\nu_{2}t},$$

for some $v_1, v_2 \ge 0$ and $L_1, L_2 \ge 0$. Then it follows that

$$dist_H(U(t+\tau,\tau)\mathbf{K}_1,\mathbf{K}_3) \leq Le^{-\nu t}$$
,

where $v = \frac{v_1 v_2}{v_0 + v_1 + v_2}$ and $L = L_0 L_1 + L_2$

Lemma 2.2. [12] Let $X \subset H \subset Y$ be Banach spaces, with X reflexive. Suppose that u_n is a sequence that is uniformly bounded in $L^2(0,T;X)$ and $\frac{du_n}{dt}$ is uniformly bounded in $L^p(0,T;Y)$, for some p > 1. Then there is a subsequence of u_n that converges strongly in $L^2(0,T;H)$.

III. UNIFORM ATTRACTOR IN H_0

Throughout the paper, we assume $g_0 \in L^2_b(R; L^2(\Omega))$ and \sum is the hull of g_0 in $L^2_{w,loc}(R; L^2(\Omega))$ and $g \in \Sigma$. Assume further that (2)-(3) and (6)-(8).

A. The Well-Posedness

By the standard Faedo-Galerkin methods, it easy to obtain the following result.

Lemma 3.1. for any T > 0 and $z_{\tau} = (u_{\tau}, v_{\tau}, \eta^{\tau}) \in H_0$. problem (1.1) admits a unique week solution

$$z = (u(x,t), u_t(x,t), \eta^t) \in C([\tau,T], H_0),$$

satisfying

$$u \in L^{\infty}(R_{\tau}; H_{0}^{1}(\Omega)), u_{t} \in L^{\infty}(R_{\tau}; H_{0}^{1}(\Omega)),$$

$$u_{t} \in L^{2}([\tau, T]; H_{0}^{1}(\Omega)), \eta \in L^{\infty}(R_{\tau}; L_{u}^{2}(R^{+}; H_{0}^{1}(\Omega)))$$

The proof of *Lemma3.1* is similar to that of *Theorem 2.1* of Ara \hat{u} jo et al.[5] and hence is omitted.

Form *Lemma 3.1* above, for each $g \in L^2_b(R; L^2(\Omega))$ we define a process

$$U_g(t,\tau): H_0 \to H_0,$$

$$z_r = (u_r, v_r, \eta^r) \to (u(t), v(t), \eta^t) = U_g(t,\tau) z_r.$$

B. Dissipativity

First of all, we can obtain the following theorem from [4]

Theorem 3.2. There exists a positive constant M_0 with following property: given any $Y \ge 0$ there exist $T_0 = T_0(Y, \tau) \ge \tau$ such that, whenever $\|z_r\|_{H_0} \le Y$ it follows that

$$\left\| U_{g}(t,\tau) z_{\tau} \right\|_{H_{0}}^{2} \leq M_{0}, \qquad \forall t \geq T_{0}$$

Consequently, the set

$$B_{0} = \left\{ z_{\tau} \in H_{0} : \left\| z_{\tau} \right\|_{H_{0}}^{2} \le M_{0} \right\}$$

is a bounded uniformly (w.r.t $\sigma \in \Sigma$) absorbing set for $U_{g}(t,\tau)$ on H_{0} , that is, for any bounded (in H_{0}) subsets B, there is a $T_{0} = T_{0}(\|B\|_{H_{0}}, \tau) \ge \tau$ such that

$$\bigcup_{g\in\Sigma}U_g(t,\tau)B\subset B_0$$

for every $t \ge T_0$.

Combining Lemma 3.1, we know that for any $\tau \in R$, U_g maps the bounded set of H_0 into a bounded set of H_0 for all $t \ge \tau$, that is

Corollary 3.3. Given any R > 0, there is $M_R = M_R(R, \|g\|_{L^2_r})$ such that for all $\|z_r\|_{H_r} \le R$,

$$\left\|U_{g}(t,\tau)z_{\tau}\right\|_{H_{0}}^{2}\leq M_{R},\,\forall t>\tau.$$

Lemma 3.4. Given any R > 0, let $z_{1\tau}, z_{2\tau} \in H_0$ $g_1, g_2 \in L^2_b(R; L^2(\Omega))$, be two initial data, and $||z_{i\tau}||_{H_0} \leq R(i = 1, 2)$. Then the following estimate holds,

$$\left\| U_{g_1}(t,\tau) z_{1\tau} - U_{g_2}(t,\tau) z_{2\tau} \right\|_{H_0}^2 \le Q(R) e^{k(t-\tau)} \left(\left\| z_{1\tau} - z_{2\tau} \right\|_{H_0}^2 + \left\| g_1 - g_2 \right\|_{L_b^2}^2 \right)$$
(10)

for any $t \ge \tau$ and some k = k(R).

C. Asymptotic Regularity

For the nonlinear function f(u) from[2], we know that f has the following decomposition

$$f = f_0 + f_1$$

where $f_0, f_1 \in C(R)$ and satisfy

$$f_0(s)s \ge 0 \quad \text{for all} \quad s \in \mathbb{R}, \tag{11}$$

$$|f_0(s)| \le c(1+|s|^5)$$
 for all $s \in \mathbb{R}$, (12)

$$|f_1(s)| \le c(1+|s|^{\gamma})$$
 for all $s \in R$ with some $\gamma < 5$, (13)

$$\lim_{|s| \to \infty} \inf \frac{f_1(s)}{s} > -\lambda_1 ,$$
(14)

where c, λ_1 are positive constants and λ_1 is the first eigenvalue of $-\Delta$ in $H_0^1(\Omega)$ with the Dirichlet boundary condition. Denote

$$\sigma = \min\{\frac{1}{4}, \frac{5-\gamma}{2}\} .$$
 (15)

In order to obtain the regularity estimates later, we decompose the solution $U_g(t,\tau)z_\tau = (u(t), u_t(t), \eta^t)$ into the sum:

$$U_{\varrho}(t,\tau)z_{\tau} = S(t,\tau)z_{\tau} + K_{\varrho}(t,\tau)z_{\tau}.$$

 $S(t,\tau)z_{\tau} = (v(t), v_t(t), \xi^t), K_g(t,\tau)z_{\tau} = (w(t), w_t(t), \zeta^t)$ are the solutions the following equations respectively

$$\begin{cases} v_{tt} - \Delta v_{tt} - \Delta v_{t} - \Delta v - \int_{0}^{\infty} \mu(s) \Delta \xi^{t}(s) ds + f_{0}(v) = 0, \\ \xi_{t}^{t} = -\xi_{s}^{t} + v_{t}(t), \\ (v(\tau), v_{t}(\tau), \xi^{\tau}) = z_{\tau}, \quad v \Big|_{\partial \Omega} = 0, \xi \Big|_{\partial \Omega \times R^{+}} = 0, \end{cases}$$
(16)

and

$$\begin{aligned} w_{tt} - \Delta w_{tt} - \Delta w_{t} - \Delta w - \int_{0}^{\infty} \mu(s) \Delta \zeta'(s) ds + f(u) - f_{0}(v) &= g(x, t), \\ \zeta_{t}^{\prime} &= -\zeta_{s}^{\prime} + w_{t}(t), \\ (w(\tau), w_{t}(\tau), \zeta^{\tau}) &= 0, \quad w \Big|_{\partial \Omega} &= 0, \zeta \Big|_{\partial \Omega \times R^{*}} &= 0. \end{aligned}$$

$$(17)$$

We will establish a priori estimates about the solutions of (16) and (17), which are the basis of our works.

Lemma 3.5. For any initial data $z_{\tau} \in H_0$, the solutions of (16) satisfy the following estimates: There exists constant k_0 such that for every $t \ge \tau$,

$$\left\|S(t,\tau)z_{\tau}\right\|_{H_{0}}^{2} = \left\|v(t)\right\|_{0}^{2} + \left\|v_{t}(t)\right\|_{0}^{2} + \left\|\xi^{t}\right\|_{\mu,\varepsilon_{0}}^{2} \le Q_{1}\left(\left\|z_{\tau}\right\|_{H_{0}}\right)e^{-k_{0}(t-\tau)}$$

where $Q_1(\cdot)$ is an increasing function on $[0,\infty)$, Q_1 and k_0 only depend on the H_0 - bound of z_{τ} , but both are independent of τ .

Proof Repeating word by word the proof of *Theorem 3.2*, that applies to the present case with $S(t,\tau)z_{\tau}$ in place of $U_g(t,\tau)z_{\tau}$ (with the further simplification that C = 0, for now $f_1 \equiv 0$ and $g \equiv 0$), It follows that

$$\left\|S(t,\tau)z_{\tau}\right\|_{H_{0}}^{2} = \left\|v(t)\right\|_{0}^{2} + \left\|v_{t}(t)\right\|_{0}^{2} + \left\|\xi^{t}\right\|_{\mu,\varepsilon_{0}}^{2} \leq Q_{1}\left(\left\|z_{\tau}\right\|_{H_{0}}\right)e^{-k_{0}(t-\tau)}$$

For the solution of (17), we have

Lemma 3.6. For any $\tau \in R$, the solutions of (17) satisfy the following estimates: There exists constant k_1 such that for every $t \ge \tau$,

$$\begin{split} \left\| K_{g}(t,\tau) z_{\tau} \right\|_{H_{\sigma}}^{2} &= \left\| w(t) \right\|_{\sigma}^{2} + \left\| w_{t}(t) \right\|_{\sigma}^{2} + \left\| \xi^{t} \right\|_{\mu,\varepsilon_{\sigma}}^{2} \\ &\leq Q_{2}(\left\| z_{\tau} \right\|_{H_{0}}) e^{k_{1}(t-\tau)} (1 + \left\| g \right\|_{L_{b}^{2}}^{2}) \end{split}$$

where $Q_2(\cdot)$ is an increasing function on $[0,\infty)$, and σ is given in (15).

Proof. Multiplying(17) by $A^{\sigma}w_{i}(t)$, and integrating in dx over Ω , we get that

$$\frac{1}{2} \frac{d}{dt} \left(\left| A^{\frac{\sigma}{2}} w_{i}(t) \right|_{2}^{2} + \left\| w_{t}(t) \right\|_{\sigma}^{2} + \left\| w_{i}(t) \right\|_{\sigma}^{2} \right) + \left\| w_{i}(t) \right\|_{\sigma}^{2} - \left\langle \int_{0}^{\infty} \mu(s) \Delta \zeta^{*}(s) ds, A^{\sigma} w_{i}(t) \right\rangle$$
$$= -\left\langle f(u) - f_{0}(v), A^{\sigma} w_{i}(t) \right\rangle + \left\langle A^{\sigma} w_{i}(t), g(x,t) \right\rangle.$$
(18)

Similar to that in Theorem 3.2 above, we get

$$-\int_{\Omega}\int_{0}^{\infty}\mu(s)\Delta\zeta^{t}(s)A^{\sigma}\zeta_{t}(s)dsdx = \frac{1}{2}\frac{d}{dt}\left\|\zeta^{t}\right\|_{\mu,\varepsilon_{\sigma}}^{2},\qquad(19)$$

and

$$-\int_{\Omega}\int_{0}^{\infty}\mu(s)\Delta\zeta'(s)A^{\sigma}\zeta'_{s}(s)dsdx \geq \frac{\delta}{2}\left\|\zeta'\right\|_{\mu,\varepsilon_{\sigma}}^{2}.$$
 (20)

Next we deal with the nonlinearity, we have

 $\left|\left\langle f(u) - f_0(v), A^{\sigma} w_i(t)\right\rangle\right| \le \left|\left\langle f(u) - f(v), A^{\sigma} w_i(t)\right\rangle\right| + \left|\left\langle f_1(v), A^{\sigma} w_i(t)\right\rangle\right|$ and by *Corollary (3.3)* and *Lemma (3.5)*, we have

$$\|u(t)\|_{0}^{2} + \|v(t)\|_{0}^{2} \le M_{1} \text{ for all } t \ge \tau,$$
 (21)

where the constant M_1 depends on $\|z_{\tau}\|_{H_0}$ but independent of τ .

From (7), (21) and Hölder's inequality, then we have

$$\left|\left\langle f(u) - f(v), A^{\sigma} w_{t}(t)\right\rangle\right| \leq C_{M_{1}} \left\|w(t)\right\|_{\sigma}^{2} + \frac{1}{4} \left\|w_{t}(t)\right\|_{\sigma}^{2}.$$
 (22)

Note that $\sigma \leq \frac{5-\gamma}{2}$, so we can get the following estimates

$$\left|\left\langle f_{1}(v), A^{\sigma} w_{t}(t)\right\rangle\right| \leq C + \frac{1}{4} \left\|w_{t}(t)\right\|_{\sigma}^{2}.$$
(23)

Moreover,

$$\left|\left\langle A^{\sigma}w_{t}(t),g(t)\right\rangle\right| \leq C\left|g(t)\right|_{2}^{2} + \frac{1}{2}\left\|w_{t}(t)\right\|_{\sigma}^{2}.$$
 (24)

Combined with (19)-(20) and(22)-(23), by (18), we have that

$$\frac{d}{dt}\left(\left|A^{\frac{\sigma}{2}}w_{i}(t)\right|_{2}^{2}+\left\|w_{i}(t)\right\|_{\sigma}^{2}+\left\|w(t)\right\|_{\sigma}^{2}+\left\|\zeta^{*}\right\|_{\mu,\varepsilon_{\sigma}}^{2}\right)\leq C(1+\left|g(t)\right|_{2}^{2})+C_{M_{1}}\left\|w(t)\right\|_{\sigma}^{2}$$

Applying the Gronwall's inequality, we deduce that

$$\begin{split} \left| A^{\frac{\sigma}{2}} w_t(t) \right|_2^2 + \left\| w_t(t) \right\|_{\sigma}^2 + \left\| w(t) \right\|_{\sigma}^2 + \left\| \zeta^t \right\|_{\mu,\varepsilon_{\sigma}}^2 \\ \leq Q_2(\left\| z_t \right\|_{H_0}) e^{k_1(t-\tau)} (1 + \left\| g \right\|_{L_b^2}^2) \end{split}$$

here $k_1 = C_{M_1}$ and C_{M_1} depend on $\|z_{\tau}\|_{H_0}$.

Lemma 3.7. For any $\varepsilon > 0$ $u_t(t)$ is decomposed as

$$u(t) = v_1(t) + w_1(t)$$
,

 $v_1(t)$ satisfies: there is a positive constant $M_1 = M_1(||z_r||_{c_0})$ such that the following estimates are true

$$\|v_1(t)\|_0^2 \le M_1$$
,

and

$$\int_{s}^{t} \left\| v_{1}(v) \right\|_{0}^{2} dv \leq \varepsilon(t-s) + C_{\varepsilon} \quad \text{for all} \quad t \geq s \geq \tau \;.$$
(25)

As well as $w_1(t)$ satisfies the following estimate

$$\left\|w_1(t)\right\|_{\sigma}^2 \le K_{\varepsilon} \quad for \ all \quad t \ge \tau , \tag{26}$$

with the constants C_{ε} and K_{ε} depending on ε , $\|z_{\tau}\|_{H_0}$ and $\|g\|_{L^2_{\varepsilon}}$, but both being independent of τ .

The proof of this *lemma* is similar to that in Sun [14].

In what follows we begin to establish the asymptotic regularity of the solutions of (1).

Lemma 3.8. There exists constant Υ_0 which depends only on the H_0 -bounds of $B(\subset H_0)$, such that for any $\tau \in R$

$$\left\|K_{g}(t,\tau)z_{\tau}\right\|_{H_{\sigma}}^{2} \leq \Upsilon_{0} \text{ for all } t \geq \tau \text{ and } z_{\tau} \in B,$$

where σ is given in (15).

Proof. Taking inner product of the first equation of (17) and $A^{\sigma}(w_t + \varepsilon w)$ (ε is an positive undetermined constant), we get that

$$\left\langle w_{tt} - \Delta w - \Delta w_{t} - \Delta w_{tt} - \int_{0}^{t} \mu(s) \Delta \zeta^{t}(s) ds, A^{\sigma}(w_{t} + \varepsilon w) \right\rangle$$
$$= -\left\langle f(u) - f_{0}(v), A^{\sigma}(w_{t} + \varepsilon w) \right\rangle + \left\langle g(x, t), A^{\sigma}(w_{t} + \varepsilon w) \right\rangle,$$
(27)

In the following, we will deal with the left side of (27) one by one. Similar to that (19) and (20), we get that

$$-\left\langle \int_{0}^{\infty} \mu(s) \Delta \zeta^{*}(s) ds, A^{\sigma}(w_{t} + \varepsilon w) \right\rangle \geq \frac{1}{2} \frac{d}{dt} \left\| \zeta^{*} \right\|_{\mu,\varepsilon_{\sigma}}^{2} + \frac{\delta}{2} \left\| \zeta^{*} \right\|_{\mu,\varepsilon_{\sigma}}^{2} - \varepsilon \left\| \zeta^{*} \right\|_{\mu,\varepsilon_{\sigma}} \left\| w \right\|_{\sigma}$$

Now we rewrite (27) as

$$\frac{d}{dt}E_2(t) + I_2(t) = -\left\langle f(u) - f_0(v), A^{\sigma}(w_t + \varepsilon w) \right\rangle + \left\langle g(x, t), A^{\sigma}(w_t + \varepsilon w) \right\rangle$$
(28)

here

$$E_{2}(t) = \frac{1}{2} \left| A^{\frac{\sigma}{2}} w_{t} \right|_{2}^{2} + \varepsilon \left\langle w_{t}, A^{\sigma} w \right\rangle + \frac{1+\varepsilon}{2} \left\| w \right\|_{\sigma}^{2} + \frac{1}{2} \left\| \zeta^{t} \right\|_{\mu,\varepsilon_{\sigma}}^{2} + \frac{1}{2} \left\| w_{t} \right\|_{\sigma}^{2} + \varepsilon \left\langle A w_{t}, A^{\sigma} w \right\rangle$$

$$(29)$$

and

$$I_{2}(t) = -\varepsilon \left| A^{\frac{\sigma}{2}} w_{t} \right|_{2}^{2} + \varepsilon \left\| w \right\|_{\sigma}^{2} + \left\| w_{t} \right\|_{\sigma}^{2} - \varepsilon \left\| w_{t} \right\|_{\sigma}^{2} + \frac{\delta}{2} \left\| \zeta^{t} \right\|_{\mu,\varepsilon_{\sigma}}^{2} - \varepsilon \left\| \zeta^{t} \right\|_{\mu,\varepsilon_{\sigma}}^{2} \left\| w \right\|_{\sigma}$$

$$(30)$$

Applying the Hölder's inequality in (29), we get that

$$E_{2}(t) \leq \alpha_{1}(\|w_{t}\|_{\sigma}^{2} + \|w\|_{\sigma}^{2} + \|\zeta^{t}\|_{\mu,\varepsilon_{\sigma}}^{2}), \qquad (31)$$

where $\alpha_1 = \max\{\frac{1+\varepsilon}{2}(1+\frac{1}{\lambda_1}), \frac{\varepsilon}{2\lambda_1}+\frac{1+2\varepsilon}{2}\}.$

On the other hand, we have

$$E_{2}(t) \geq \frac{1}{2}(1-\frac{\varepsilon^{2}}{\lambda_{1}}) \left\| w \right\|_{\sigma}^{2} + \frac{1}{2}(1-\varepsilon) \left\| w_{t} \right\|_{\sigma}^{2} + \frac{1}{2} \left\| \zeta^{\sigma} \right\|_{\mu,\varepsilon_{\sigma}}^{2}.$$
 (32)

choose

$$\varepsilon \le \frac{1}{2} \min\{1, \sqrt{\lambda_1}\}.$$
(33)

Let
$$\beta_1 = \min\{\frac{1}{2}(1-\varepsilon), \frac{1}{2}(1-\frac{\varepsilon^2}{\lambda_1})\} > 0$$
, then
 $E_2(t) \ge \beta_1(\|w_t\|_{\sigma}^2 + \|w\|_{\sigma}^2 + \|\zeta^t\|_{u,\varepsilon}^2).$ (34)

Toward $I_2(t)$, we have

$$I_{2}(t) \geq \frac{\varepsilon}{2} \left\| w \right\|_{\sigma}^{2} + \left(1 - \left(1 + \frac{1}{\lambda_{1}}\right)\varepsilon\right) \left\| w_{t} \right\|_{\sigma}^{2} + \frac{1}{2} \left(\delta - \varepsilon\right) \left\| \zeta' \right\|_{\mu,\varepsilon_{\sigma}}^{2}$$
(35)

Combined with (31), choose

$$\varepsilon = \frac{1}{2} \min\{\frac{\lambda_1}{1+\lambda_1}, \delta, \sqrt{\lambda_1}\}.$$

Let
$$\alpha_2 = \frac{1}{2} \min\{\varepsilon, 2(1 - (1 + \frac{1}{\lambda_1})\varepsilon), \delta - \varepsilon\}.$$

 $I_2 \ge \alpha_2(\|w_t\|_{\sigma}^2 + \|w\|_{\sigma}^2 + \|\zeta^t\|_{\mu,\varepsilon_{\sigma}}^2).$ (36)

From *Corollary 3.3* and *Lemma 3.5*, there is a positive constant $M_2 = M_2(||z_r||_{e_0})$ such that

$$\left\|\boldsymbol{\mathcal{K}}_{g}(t,\tau)\boldsymbol{z}_{\tau}\right\|_{\boldsymbol{\varepsilon}_{0}}^{2} \leq \boldsymbol{M}_{2}$$

holds for any $\tau \in R$.

Since $\frac{1+\delta}{2} < 1$, employing the interpolation inequality, we can get that

$$\left|\left\langle g(t), A^{\sigma}(w_t + \varepsilon w)\right\rangle\right| \le C_{\alpha_2} \left|g(t)\right|_2^2 + \frac{\alpha_2}{8} \left(\left\|w_t\right\|_{\sigma}^2 + \left\|w\right\|_{\sigma}^2\right), \quad (37)$$

and employing Lemma 3.7 to deal with the nonlinear term:

$$\left| \left\langle f(u) - f_0(v), A^{\sigma}(w_t + \varepsilon w) \right\rangle \right| \\
\leq \left| \left\langle f(u) - f(v), A^{\sigma}(w_t + \varepsilon w) \right\rangle \right| + \left| \left\langle f_1(v), A^{\sigma}(w_t + \varepsilon w) \right\rangle \right|.$$
(38)

From (7) and Lemma 3.5, we have

$$\left| \left\langle f(u) - f(v), A^{\sigma}(w_t + \varepsilon w) \right\rangle \right|$$

$$\leq CM_2 + C \int_{\Omega} \left\langle |u(t)|^4 + |v(t)|^4 \right\rangle |w(t)| \left| A^{\sigma}(w_t + \varepsilon w) \right|.$$

$$(39)$$

Using Lemma 3.7, we have

$$\int_{\Omega} \left| u(t) \right|^{4} \left| w(t) \right| \left| A^{\sigma}(w_{t} + \varepsilon w) \right| \leq \int_{\Omega} \left(\left| v_{1}(t) \right|^{4} + \left| w_{1}(t) \right|^{4} \right) \left| w(t) \right| \left| A^{\sigma}(w_{t} + \varepsilon w) \right|$$

$$\tag{40}$$

and

$$\int_{\Omega} |v_1|^4 |w| |A^{\sigma}(w_t + \varepsilon w)| \le \mathbf{M}_1 ||v_1||_0^2 (||w_t||_{\sigma}^2 + ||w||_{\sigma}^2).$$
(41)

Therefore, note that $\sigma = \min\{\frac{1}{4}, \frac{5-\gamma}{2}\}$, we have $\frac{12}{5} < \frac{6}{1+6\sigma} < 6$, and then

$$\int_{\Omega} |w_1|^4 |w| |A^{\sigma}(w_t + \varepsilon w)| \le \frac{2K_{\varepsilon}^8 M_2^2}{\alpha_2} + \frac{\alpha_2}{4} (||w_t||_{\sigma}^2 + ||w||_{\sigma}^2).$$
(42)

where K_{ε} is given in (26).

$$\int_{\Omega} |v|^4 |w| |A^{\sigma}(w_t + \varepsilon w)| \le 2\mathbf{Q}_1 (||z_t||_{H_0}) ||v||_0^2 (||w_t||_{\sigma}^2 + ||w||_{\sigma}^2).$$
(43)

where $Q_1(||z_\tau||_{H_0})$ from Lemma 3.5.

Substitute (40)-(43) into (39), we get that

$$\left| \left\langle f(u) - f(v), A^{\sigma}(w_{t} + \varepsilon w) \right\rangle \right| \leq C(\|v\|_{0}^{2} + \|v_{1}\|_{0}^{2})(\|w_{t}\|_{\sigma}^{2} + \|w\|_{\sigma}^{2}) + \frac{\alpha_{2}}{4}(\|w_{t}\|_{\sigma}^{2} + \|w\|_{\sigma}^{2}) + K_{1}$$

$$(44)$$

where $K_1 = CM_2 + \frac{2CK_{\varepsilon}^8M_2^2}{\alpha_2}$.

Similarly,

$$\left|\left\langle f_{1}(v), A^{\sigma}(w_{t}+\varepsilon w)\right\rangle\right| \leq K_{2} + \frac{\alpha_{2}}{8} \left(\left\|w_{t}\right\|_{\sigma}^{2} + \left\|w\right\|_{\sigma}^{2}\right), \quad (45)$$

Moreover, it follows Lemma 3.7,

$$\int_{\tau}^{\infty} \|v(s)\|_{0}^{2} ds \leq \frac{Q_{1}(\|z_{\tau}\|_{H_{0}})}{k_{0}}$$

then for any $\varepsilon > 0$

$$\int_{s}^{t} (\|v(s)\|_{0}^{2} + \|v_{1}(s)\|_{0}^{2}) ds \leq \varepsilon(t-s) + \frac{Q_{1}(\|z_{\tau}\|_{H_{0}})}{k_{0}} + C_{\varepsilon}.$$

Hence, combining the above estimates into (28), we see that for all $t \ge \tau$,

$$\frac{d}{dt}E_{2}(t) + \frac{\alpha_{2}}{2\alpha_{1}}E_{2}(t) \le \frac{C}{\beta_{1}}(\|v(t)\|_{0}^{2} + \|v_{1}(t)\|_{0}^{2})E_{2}(t) + K_{1} + K_{2}.$$
 (46)

Then Gronwall's inequality yields, for any $t \ge T > \tau$

$$E_2(t) \le \beta E_2(T) e^{-\gamma(t-T)} + \rho,$$

here $\beta > 0$ is a constant which depended on initial data and γ, ρ are positive constants which depended on initial data.

At the last, by *Lemma 3.6*, (31), (34) and noting that $T > \tau$ is fixed, then the proof is completed.

Lemma 3.9. Assume B_{σ} is bounded in H_{σ} . Then there exists a constant $M_{\sigma}(>0)$ which only depends on the H_{σ} -bounds of B_{σ} such that for any $\tau \in R$

$$\left\| U_{g}(t,\tau)z_{\tau} \right\|_{H} \leq M_{\sigma} \text{ for all } t \geq \tau \text{ and } z_{\tau} \in B_{\sigma}.$$

Proof Multiply (1) by $A^{\sigma}(u_t + \varepsilon u)$ (ε is a positive undetermined constant), we get that

$$\frac{d}{dt}E_{3}(t)+I_{3}(t)=-\left\langle f(u),A^{\sigma}(u_{t}+\varepsilon u)\right\rangle +\left\langle g(x,t),A^{\sigma}(u_{t}+\varepsilon u)\right\rangle,$$
(47)

here

$$E_{3}(t) = \frac{1}{2} \left| A^{\frac{\sigma}{2}} u_{t} \right|_{2}^{2} + \varepsilon \left\langle u_{t}, A^{\sigma} u \right\rangle + \frac{1 + \varepsilon}{2} \left\| u \right\|_{\sigma}^{2}$$

$$+ \frac{1}{2} \left\| \xi^{t} \right\|_{\mu,\varepsilon_{\sigma}}^{2} + \frac{1}{2} \left\| u_{t} \right\|_{\sigma}^{2} + \varepsilon \left\langle A u_{t}, A^{\sigma} u \right\rangle,$$

$$(48)$$

and

$$I_{3}(t) = -\varepsilon \left| A^{\frac{\sigma}{2}} u_{t} \right|_{2}^{2} + \varepsilon \left\| u \right\|_{\sigma}^{2} + \left\| u_{t} \right\|_{\sigma}^{2} - \varepsilon \left\| u_{t} \right\|_{\sigma}^{2}$$
$$+ \frac{\delta}{2} \left\| \xi^{t} \right\|_{\mu,\varepsilon_{\sigma}}^{2} - \varepsilon \left\| \xi^{t} \right\|_{\mu,\varepsilon_{\sigma}}^{2} \left\| u \right\|_{\sigma}.$$
(49)

Applying the Hölder's inequality in (48), we get that

$$E_{3}(t) \leq \alpha_{1}(\|u_{t}\|_{\sigma}^{2} + \|u\|_{\sigma}^{2} + \|\xi^{t}\|_{\mu,\varepsilon_{\sigma}}^{2}),$$
(50)

where α_1 from (31).

On the other hand, we have

$$E_{3}(t) \geq \frac{1}{2} (1 - \frac{\varepsilon^{2}}{\lambda_{1}}) \left\| u \right\|_{\sigma}^{2} + \frac{1}{2} (1 - \varepsilon) \left\| u_{t} \right\|_{\sigma}^{2} + \frac{1}{2} \left\| \xi^{t} \right\|_{\mu, \varepsilon_{\sigma}}^{2}.$$
(51)

choose

$$\varepsilon \le \frac{1}{2} \min\{1, \sqrt{\lambda_1}\}.$$
 (52)

then

$$E_{3}(t) \geq \beta_{1}(\|u_{t}\|_{\sigma}^{2} + \|u\|_{\sigma}^{2} + \|\xi^{t}\|_{\mu,\varepsilon_{\sigma}}^{2}).$$
(53)

where $\beta_1 = \min\{\frac{1}{2}(1-\varepsilon), \frac{1}{2}(1-\frac{\varepsilon^2}{\lambda_1})\} > 0$ (from (34)).

Toward $I_3(t)$, we have

$$I_{3}(t) \geq \frac{\varepsilon}{2} \left\| u \right\|_{\sigma}^{2} + \left(1 - \left(1 + \frac{1}{\lambda_{1}} \right) \varepsilon \right) \left\| u_{t} \right\|_{\sigma}^{2} + \frac{1}{2} \left(\delta - \varepsilon \right) \left\| \xi^{t} \right\|_{\mu,\varepsilon_{\sigma}}^{2}$$
(54)

Combined with (52), choose

$$\varepsilon = \frac{1}{2} \min\{\frac{\lambda_1}{1+\lambda_1}, \delta, \sqrt{\lambda_1}\}.$$

Similar to (36), let $\alpha_2 = \frac{1}{2} \min\{\varepsilon, 2(1-(1+\frac{1}{\lambda_1})\varepsilon), \delta-\varepsilon\}$.

$$I_{3} \geq \alpha_{2}(\|u_{t}\|_{\sigma}^{2} + \|u\|_{\sigma}^{2} + \|\xi^{t}\|_{\mu,\varepsilon_{\sigma}}^{2}).$$
(55)

From *Corollary 3.3*, there is a positive constant $Y = Y(||z_r||_{H_0})$ such that

$$\left\|U_{g}(t,\tau)z_{\tau}\right\|_{H_{0}}^{2}\leq Y$$

holds for any $\tau \in R$.

Since $\frac{1+\delta}{2} < 1$, employing the interpolation inequality, we can get that

$$\left|\left\langle g(t), A^{\sigma}(u_{t} + \varepsilon u)\right\rangle\right| \le C_{1} \left|g(t)\right|_{2}^{2} + \frac{\alpha_{2}}{6} \left(\left\|u_{t}\right\|_{\sigma}^{2} + \left\|u\right\|_{\sigma}^{2}\right).$$
 (56)

where C_1 is a constant which depends on α_2 and the measure of Ω .Next, we deal with the nonlinear term,

$$\left|\left\langle f(u), A^{\sigma}v\right\rangle\right| \leq c \int_{\Omega} (1+|u|^{5}) \left|A^{\sigma}v\right| \leq c \int_{\Omega} \left|A^{\sigma}v\right| + c \int_{\Omega} \left|u\right|^{5} \left|A^{\sigma}v\right|.$$

Using the Hölder inequality and the Sobolev embedding theorem, it follows

$$c\int_{\Omega} \left| A^{\sigma} v \right| \le C_2 + \frac{\alpha_2}{6} \left(\left\| u_t \right\|_{\sigma}^2 + \left\| u \right\|_{\sigma}^2 \right).$$
 (57)

where C_1 is a constant which depends on α_2 , *c* (from (7)) and the measure of Ω

On the other hand, by Lemma 3.7, we get

$$c\int_{\Omega} |u|^{5} |A^{\sigma}v| \le C_{M} ||v_{1}||_{0}^{2} (||u_{t}||_{\sigma}^{2} + ||u||_{\sigma}^{2}) + \frac{\alpha_{2}}{6} (||u_{t}||_{\sigma}^{2} + ||u||_{\sigma}^{2}) + C_{3}.$$
(58)

where C_M is a constant which depends on *c* (from (7)) and the H_{σ} -bounds of initial data (see *Corollary 3.3*).

So we have

$$\frac{d}{dt}E_{3}(t) + \frac{\alpha_{2}}{2\alpha_{1}}E_{3}(t) \leq \frac{C_{M}\alpha_{2}}{\beta_{1}}\left\|v_{1}(t)\right\|_{0}^{2}E_{3}(t) + C_{1}\left|g(t)\right|_{2}^{2} + C_{2} + C_{3},$$
(59)

where the positive constants C_i , i = 1, 2, 3 depend on δ , K_{ε} and $||z_{\tau}||_{H_{0}}$.

Using *Lemma 3.1* and integrating over $[\tau, T]$, we get that

$$E_{3}(t) \leq \alpha_{1} \left\| z_{\tau} \right\|_{H_{\sigma}}^{2} e^{-w(t-\tau)+m_{1}} + \frac{m_{2}e^{w+m_{1}}}{1-e^{-w}}, \tag{60}$$

where

$$w = \frac{\alpha_2}{4\alpha_1}$$
, $m_1 = C_w$ (from (25)), $m_2 = C_2 + C_3 + \|g\|_{L^2_b}^2$.

We then complete the proof.

Lemma 3.10. For each $\theta \in [\sigma, 1]$, let *B* be any bounded subset of H_{θ} . Then there exists a constant M_{θ} which only depends on the H_{θ} -bounds of *B*, such that for any $\tau \in R$,

$$\left\| U_{g}(t,\tau)z_{\tau} \right\|_{H_{\theta}} \leq M_{\theta} \text{ for all } t \geq \tau \text{ and } z_{\tau} \in B$$

Lemma 3.11. For each $\theta \in [\sigma, 1-\sigma]$, if the initial data set *B* be any bounded subset of H_{θ} , then the decomposed ingredient (w(t), w_i(t)) (the solutions of (17)) satisfies, for any $\tau \in R$,

$$\left\|K_{g}(t,\tau)z_{\tau}\right\|_{H_{0,\tau}} \leq \Upsilon_{\theta} \quad for \ all \quad t \geq \tau \quad and \quad z_{\tau} \in B,$$

where the constant Υ_{θ} only depends on the H_{θ} -bounds of B.

Theorem 3.12. *There exist a bounded* (in H_1) set $B_1 \subset H_1$, *a positive constants v and a monotonically increasing function* $Q(\cdot)$ such that: For any bounded (in H_0) set $B \subset H_0$, any $g \in \Sigma$, $\tau \in R$ and $t \ge \tau$, the following estimate holds:

$$dist_{H_0}(U_g(t,\tau)B, B_1) \le Q(\|B\|_{H_0})e^{-\nu(t-\tau)}.$$
(61)

where $dist_{H_0}(\cdot, \cdot)$ denotes the usual Hausdorff semi-distance in H_0 .

Proof Let B_0 be the bounded uniformly (w.r.t $\sigma \in \Sigma$) absorbing set in H_0 (see *Theorem 3.2*).

By Lemma 3.5 and Lemma 3.8, set $A_{\sigma} = \{ z \in H_{\sigma} : ||z||_{H_{\sigma}} \le \Upsilon_0 \}$ then

$$dist_{H_0}(U_g(t,\tau)B_0,A_{\sigma}) \leq dist_{H_0}(S(t,\tau)B_0,A_{\sigma}) \leq Q_1(\|B_0\|_{H_0})e^{-k_0(t-\tau)}$$

where Υ_0 is a constant from *Lemma 3.8* corresponding to B_0 .

Using A_{σ} to replace B_0 in Lemma 3.11 and Lemma 3.5, then there is $A_{2\sigma} \subset H_0$ which is bounded in $H_{2\sigma}$ such that

$$dist_{H_0}(U_g(t,\tau)A_{\sigma}, A_{2\sigma}) \le dist_{H_0}(S(t,\tau)A_{\sigma}, A_{2\sigma}) \le Q_1(\|A_{\sigma}\|_{H_0})e^{-k_0^{\prime}(t-\tau)}$$
for two appropriate constants *C* and k_0'' .

Since $\sigma = \min\{\frac{1}{4}, \frac{5-\gamma}{2}\}$ is fixed, by finite steps, we can infer that there is a bounded (not only in H_0 , but also H_1) set $B_1 \subset H_1$ such that

$$dist_{H_0}(U_g(t,\tau)B_0,B_1) \le Q(\|B_0\|_{H_0})e^{-\nu(t-\tau)}.$$
(62)

Note further that all the constants in (62) only depend on $\|B_0\|_{H_0}$ and $\|g\|_{L^2_0}$.

Now, for any bounded (in H_0) B, from *Theorem 3.2* There is $T_0 \ge \tau$ such that

$$\bigcup_{\sigma \in \Sigma} U_g(t,\tau) B \subset B_0 \quad \text{for all} \quad t \ge T_0$$

Combined with Lemma 3.4, it follows that

$$dist_{H_0}(U_g(t,\tau)B, B_0) \le Q e^{\nu T_0} e^{-\nu(t-\tau)}, \tag{63}$$

where $Q = \sup\{\left\|U_g(t,\tau)B\right\|_{H_0} : g \in \Sigma, \tau \le t \le T_0\} < \infty$.

Finally, we apply *Lemma 2.1*, again to (62) and (63), and the proof of *Theorem* is completed.

IV. UNIFORMLY ATTRACTORS

Now collecting Theorem 3.2, Lemma 3.5, and Theorem 3.12, we establish that $\{U_g(t,\tau)\}, g \in \Sigma$ corresponding to (1) is asymptotically compactness. Therefore, by means of well-known results of the theory of dynamical systems we get that the family of processes $\{U_g(t,\tau)\}, g \in \Sigma$ corresponding to (1), posses a compact (in H_0)uniform (w.r.t $g \in \Sigma$) attractor \mathcal{A} , and $\mathcal{A} \subset H_0$. We remark that the above existence does not require any continuity of the family of processes. However, in order to obtain the explicit form of \mathcal{A} , we need some continuity. Moreover, since the symbol space Σ now has only weak compactness, we need to verify the corresponding of weak continuity. First, by the results of Chepyzhov and Vishik[6], we see that \sum with the local weak convergence topology of $L^{2}_{loc}(R; L^{2}(\Omega))$ forms a sequentially compact and metrizable complete space. We denote the equivalent metric by d(,). Thus (Σ, d) is a compact metric space. Moreover, through Lemma 4.1, Chapter V[6], we also have the following conclusion.

Lemma 4.1. [13] The translation semigroup $\{T(t)\}_{t\geq 0}$ acts on \sum (i.e.), T(t)g(x,s) = g(x,t+s) for any $g \in \sum$ and any $t \geq 0$ is invariant and continuous in \sum with respect to the local weak convergence topology of $L^2_{loc}(R; L^2(\Omega))$, equivalently, with respect to the metric d.

In the following, we also recall an useful lemma, whose proof is simple and we omit it.

Lemma 4.2. [13] Let X be a reflexive Banach and $x_n \xrightarrow{\boxtimes} 0$ in X. then for each compact (in X^*) subset $B \subset X^*$, the uniform convergence hold: For any $\varepsilon > 0$ there is a N_{ε} , depending only on ε , such that

$$|\langle f, x_n \rangle_{\chi^*}| \leq \varepsilon$$
 for all $n \geq N_{\varepsilon}$ and all $f \in B$ (64)

Theorem 4.3. The family of processes $\{U_{\sigma}(t,\tau)\}, \sigma \in \Sigma$, corresponding to (1.1), has a compact uniform (w.r.t. $\sigma \in \Sigma$) attractor \Im in H_0 . Moreover, this attractor is bounded in H_1 and can be decomposed as follows

$$\Im = \bigcup_{\sigma \in \Sigma} \kappa_{\sigma}(0) \tag{65}$$

where κ_{σ} is the kernel of the process \bigcup_{σ} , and $\kappa_{\sigma}(0)$ is the kernel section at time 0.

Proof We only need to verify continuity claim on the attractor \Im in H_0 , i.e., for the attractor \Im in H_0 , $\Im \subset H_0$ any fixed $\tau \in R$ and $t \ge \tau$, if $z_{n\tau} \to z_{\tau}$ in \Im and $g_n \to g$ with respect to the local weak convergence topology of $L^2_{loc}(R; L^2(\Omega))$, then $U_{g_n}(t, \tau)z_{n\tau}$ converges to $U_g(t, \tau)z_{\tau}$ in \Im .

Denoted

 $z_{\tau} = z_{1\tau} - z_{2\tau} , (u_{i}(t), u_{it}(t), \eta') = U_{g_{i}}(t, \tau) z_{i\tau} (i = 1, 2)$ and $(w(t), w_{i}(t), \zeta') = U_{g_{1}}(t, \tau) z_{1\tau} - U_{g_{2}}(t, \tau) z_{2\tau}, z_{i\tau} \in \Im, i = 1, 2.$ Then $(w(t), w_{i}(t), \zeta')$ satisfies the following equation

$$w_{tt} - \Delta w - \Delta w_{t} - \Delta w_{tt} - \int_{0}^{\infty} \mu(s) \Delta \zeta^{*}(s) ds + f(u_{1}) - f(u_{2}) = g_{1}(x,t) - g_{2}(x,t),$$
(66)

and

$$\zeta^{t}(s) = w(t) - w(t-s), \quad (w(\tau), w_{t}(\tau), \zeta^{\tau}) = z_{\tau}, \quad w|_{\partial\Omega} = 0.$$

Since \Im is bound in H_1 , following *Theorem 3.12*, then there is a positive constant R_0 such that

$$\sup_{g \in \Sigma} \sup_{\tau \in R} \sup_{t \ge \tau} \left\| \bigcup_{g} (t, \tau) \mathfrak{I} \right\|_{H_{1}}^{2} \le R_{0} < \infty$$
(67)

Multiplying (66) by $w_t(t)$ and using (67), it follows that

$$\frac{d}{dt} \left(\left\| w_{t}(t) \right\|_{2}^{2} + \left\| w(t) \right\|_{0}^{2} + \left\| w_{t}(t) \right\|_{0}^{2} + \left\| \zeta^{t} \right\|_{\mu,\varepsilon_{0}}^{2} \right) + 2 \left\| w_{t}(t) \right\|_{0}^{2} + \delta \left\| \zeta^{t} \right\|_{\mu,\varepsilon_{0}}^{2} \\
\leq C \left(\left\| w_{t}(t) \right\|_{2}^{2} + \left\| w(t) \right\|_{0}^{2} + \left\| w_{t}(t) \right\|_{0}^{2} + \left\| \zeta^{t} \right\|_{\mu,\varepsilon_{0}}^{2} \right) + 2 < g_{1}(t) - g_{2}(t), w_{t}(t) >,$$
(68)

and by integrating over $[\tau,t]$, then we get, for each $\tau \leq t \leq T$,

$$\begin{aligned} & \left\|w_{t}(t)\right\|_{2}^{2} + \left\|w(t)\right\|_{0}^{2} + \left\|w_{t}(t)\right\|_{0}^{2} + \left\|\zeta^{t}\right\|_{\mu,\varepsilon_{0}}^{2} \\ & \leq e^{C(T-\tau)} \left(\left\|z_{\tau}\right\|_{H_{0}}^{2} + \left|\int_{\tau}^{T} < g_{1}(s) - g_{2}(s), w_{t}(s) > ds\right|\right). \end{aligned}$$
(69)

By Theorem 3.2, then we have

$$\bigcup_{g\in\Sigma} \{\prod_{g} \bigcup_{g} (t,\tau) z_{\tau} : t \in [\tau,T], z_{\tau} \in \mathfrak{I}\} \text{ is bounded in } L^{2}(\tau,T;H_{0}^{1}(\Omega))$$

and

$$\bigcup_{g\in\Sigma} \{\partial_t \prod_2 \bigcup_g (t,\tau) z_\tau : t \in [\tau,T], z_\tau \in \mathfrak{I}\} \text{ is bounded in } L^2(\tau,T;H^1_0(\Omega))$$

then

$$\bigcup_{g\in\Sigma} \{\partial_{\tau} \prod_{2} \bigcup_{g} t, \tau) z_{\tau} : t \in [\tau, T], z_{\tau} \in \mathfrak{I}\} \text{ is bounded in } L^{2}(\tau, T; H^{-1}(\Omega))$$

where \prod_2 is the projector from $X \times Y$ to Y. Then by *Lemma 2.2*, we get

$$\bigcup_{g \in \Sigma} \{\prod_{g} \bigcup_{g} (t, \tau) z_{\tau} : t \in [\tau, T], z_{\tau} \in \mathfrak{I}\} \text{ is compact in } L^{2}(\tau, T; L^{2}(\Omega))$$

By Lemma 4.2, it does show that if $g_n \to g$ in $L^2_{w,loc}(R; L^2(\Omega))$, then

$$\left|\int_{\tau}^{t} \langle g_{1}(s) - g_{2}(s), w_{t}(s) \rangle ds\right| \to 0$$
(70)

uniformly on a compact subset of $L^2(\tau, t; L^2(\Omega))$.

Based on the continuity claim above, and by constructing a skew-product flow on $\Im \times \Sigma$ and applying *Theorem 5.1*,IV[6], then the structure equality (65) is proved. So the proof is completed.

ACKNOWLEDGMENT

This work was supported by National Natural Science Foundation of China(Nos71471020) and Hunan Provincial Innovation Foundation for Postgraduate (No.CX2017B491).

REFERENCES

- [1] L. Bogolubsky, Some examples of inelastic soliton interaction, Computer Physics Communications 13(1977): 149-155.
- [2] J. Arrieta, A. N. Carvalho and J. K. Hale, A damped hyperbolic equations with critical exponents, Comm. Partial Differential Equations, 17(1992): 841-866.
- [3] C. E. Seyler and D. L. Fanstermacher, A symmetric regularized long wave equation, Phys. Fluids 27(1)(1984): 58-66.
- [4] M. Conti, E. M. Marchini, V. Pata, A well posedness result for nonlinear viscoelastic equation with memory. Nonlinear Appl-TMA. 94(2014): 206-216.
- [5] R. O. Araujo, T. F. Ma, Y. Qin, Long-time behavior of a quasilinear viscoelastic equation with past history, J. Diff. Eqs. 254(10)(2013): 4066-4087.

- [6] V.V. Chepyzhov, M.I. Vishik, Attractors for equations of mathematical physics, Amer. Math. Soc. Colloq. Publ., Vol. 49, Amer. Math. Soc., Providence, RI, 2002.
- [7] M. Grasselli, V. Pata, Asymptotic behavior of a parabolic-hyperbolic system. Commun. Pure Appl.Anal.,3(4)(2004): 849-881.
- [8] Y. Qin, B. Feng, M. Zhang, Uniform attractors for a non-autonomous viscoelastic equation with a past history, Nonlinear Anal-TMA. 101(2014):1-15.
- [9] H. YassineA. Abbas, Long-time stabilization of solutions to a nonautonomous semilinear viscoelastic equation, Appl. Math. Optim., 73(2016): 251-269.
- [10] Y. Xie, C. Zhong, Asymptotic behavior of a class nonlinear evolution equation, Nonlinear Anal-TMA. 71 (2009): 5095-5105.
- [11] V. Pata and S. Zelik, Smooth attractors for strongly damped wave equations, Non linearity, 19(2006), 1495-1506.
- [12] J. C. Robinson, Infinite-dimensional dynamical dystems, Cambridge University Press, 2001.
- [13] C. Sun, D. Dao, J. Duan, Non-autonomous wave dynamics with memory-asymptotic regularity and uniform attractor, Disc. Cont. Dyna. Syst., 9(3)(2008): 743-761.
- [14] C. Sun and M. Yang, Dynamics of the nonclassical diffusion equations, Asympt. Anal. 59 (2008): 51-81.
- [15] P. Fabrie, C. Galushinski, A. Miranville and S. Zelik, Uniform exponential attractors for a singular perturbed damped wave equation, Disc. Cont. Dyn. Sys., 10(1-2)(2004): 211-238.
- [16] Y. Xie, Q. Li and K. Zhu, Attractors for nonclassical diffusion equations with arbitrary polynomial growth nonlinearity, Nonlinear Anal-RWA. 31(2016): 23-37.
- [17] Y. Xie, Y. Li and Y. Zeng, Uniform attractors for nonclassical diffusion equations with memory, J. Func. Space, 2016(2016):5340489.