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Abstract—In this paper, long-time behavior of a class of 
non-autonomous viscoelastic equations with fading memory is 
investigated. We establish the existence of a compact uniform 
attractor together with its structure in

1 1 2 1
0 0 0( ) ( ) ( ; ( )).H H L R H

     The compact uniform 

attractor is bounded in
2( ) ( ) ( ; ( ))D A D A L R D A

  and attracts 

every bounded set of 
1 1 2 1
0 0 0( ) ( ) ( ; ( )).H H L R H

      

Keywords-non-autonomous wave equations; asymptotic 
regularity; uniform attractor; memory;viscoelasticity 

I. INTRODUCTION 

In this paper, we consider the dynamical behavior of the 
solutions for the following non-autonomous evolutionary 
equations with a fading memory 


0

( ) ( ) ( ) ( ) ,  t
tt t ttu u u u t s s ds f u g 


        

and 

t t
t s tu    . 

The problem is supplemented with the boundary condition 

( , ) 0     u x t    for all  ,t R    

and initial condition 

( , ) ( , ), ( , ) ( , )    t , .tu x t u x t u x t u x t R
t   

   


 

Where  is a bounded smooth domain in 3R , ( )g g t is 

a given external time-dependent forcing, f is the critical 
nonlinearity.  

Problem(1)is related to the following equations like 

0,tt xxt xx xxttu u u u     

Which appear as a class of nonlinear evolution equations, 
and that is used to represent the propagation problems of 

lengthways-wave in nonlinear elastic rods and Ion-sonic of 
space transformation by weak nonlinear effect (see for 
instance[1,3]). Since (1) contain terms ttu , it is essentially 
different from D’Alembert wave equation. 

Let us recall some results concerning the problem (1). In 
[10, 11] etc, authors studied this equations with Dirichlet 
boundary conditions as 0  . Recently, Ara jo et al.[5] and 
M. Conti [4], H. Yassine and A. Abbas [9] studied the well 
posedness for this equations. In particular, Qin[8] obtain the 
existence of uniform attractors as 0f  . 

Maybe, we could establish the existence of uniform 
attractors of (1) using the method in [16, 17], but the regularity 
and structure cannot obtain directly. In this paper, we will 
apply the techniques introduced in Sun [14] to overcome the 
difficulty due to the critical nonlinearity, and establish the 
asymptotic regularity of the solutions. Based on this regularity 
result, we obtain the asymptotic compactness of the 
non-autonomous system and prove the existence of a uniform 
attractor together with its structure in

1 1 2 1
0 0 0( ) ( ) ( ; ( )).H H L R H

     It is noteworthy that the 

compact uniform attractor is bounded in 
2( ) ( ) ( ; ( ))D A D A L R D A

  . 

For conveniences, hereafter let u be the modular (or 

absolute value) of u and 
p

 be the norm of ( )( 1).PL P 

Denote 1( )H   is the dual space of 1
0 ( )H  and 1H  be the 

norm of 1( )H   .Let ( , )


  be a Banach space, we denote 

respectively the inner product and norm of the weighted space
2 ( ; )L R  by 

, 0
, ( ) ( ), ( )s s s ds

  
    


   

and 

2 2

, 0
( ) ( ) .s s ds

  
  


   
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Denote A   with domain 2 1
0( ) ( ) ( ),D A H H    and 

for r R , let  
1

2( )
r

r D A


  and
r

 be the norm of r . We 

also define the system state space for  ( , , )tu u  as rH , 
together with a dense subspace :M  

2 ( ; ),r r r rH L R    
2 2 1

0( ) ( ) ( ( ; ( )) ( ; ( ))).M D A D A L R D A H R H 
       

We also define the norm of the product space rH as follows 

2 22 2 2

,

1
( , , ) ( ),

2r r r

t t

H r rH u
z u v u v


      

for any ( , , ) .t
rz u v H   

Let C be an arbitrarily positive constant, which may be 
differential from line to line, even in the same line. 

For the memory kernel ( )s , we assume the following 

hypotheses: for all s R and some 0   

 1 1( ) ( ),   ( ) 0,   (s) 0 C R L R s        

 (s) (s) 0     

We introduce a new variable of the system, 

 ( , ) : ( , ) ( , ),   ,t x s u x t u x t s s R        

which will be ruled by a supplementary equation. Denoting 

   ,        .t t t t
t st s

    
 
 

 

Then the following estimate holds(See[17]) 


2

, ,
,

2
t t t

s    

    

The past history ( )u s   of the variable u satisfies the 
condition as follows: there exist two positive constants and 

  such that 


2

00
( ) .se u s ds

 
      

The nonlinearity 1( , )f C R R , fulfills (0) 0f  satisfies 
the following decomposition 

 4
( ) (1 )f s c s    for all s R  (7) 

and 

 1

( )
lim inf
s

f s

s



   

for any s R , where 1,c  are positive constants and 1 is the first 

eigenvalue of  in 1
0 ( )H  with the Dirichlet boundary 

condition. 

Calling 
0

( ) ( )
s

F s f y dy  . Notice that by (8), the 

following inequalities hold for some 10    and 0 0c   


2

02
2 ( ) 2 ( )f u u F u u c

 
     

For the time-dependent forcing g , we assume the following 

hypotheses: 2 2( ; ( ))bg L R L   (translation bounded in 
2 2

, ( ; ( )))w locL R L  , and with the norm 

2

12 2

2
sup ( )

b

t

L tt R
g g s ds




   . 

II. PRELIMINARIES 

We will complete our task exploiting the transitivity 
property of exponential attraction[15], that we recall below for 
the readers convenience. 

Lemma 2.1.[15] Let ( ; )H d  be an abstract metric space,

( ; )U t  be a Lipschitz continuous dynamical process in H ,  

0
1 2 0 1 2( , ) ( , ) v t

H H
U t z U t z L e z z        , 

for appropriate constants 0 0v   and 0 0L  which are 

independent of ,iz   and t . We further assume that there 

exist three subsets 1 2 3, , H     such that  

1
1 2 1( ( , ) , ) v t

Hdist U t L e      , 
2

2 3 2( ( , ) , ) v t
Hdist U t L e      , 

for some 1 2, 0v v   and 1 2, 0L L  . Then it follows that  

1 3( ( , ) , ) vt
Hdist U t Le      , 

where 1 2

0 1 2

v v
v

v v v


 
 and 0 1 2L L L L   

Lemma 2.2. [12] Let X H Y  be Banach spaces, with
X reflexive. Suppose that nu is a sequence that is uniformly 

bounded in 2 (0, ; )L T X  and ndu

dt
 is uniformly bounded in

(0, ; )pL T Y , for some 1p  . Then there is a subsequence of 

nu  that converges strongly in 2 (0, ; )L T H . 
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III. UNIFORM ATTRACTOR IN 0H  

Throughout the paper, we assume 2 2
0 ( ; ( ))bg L R L  and

is the hull of 0g  in  2 2
, ( ; ( ))w locL R L  and g  . Assume 

further that (2)-(3) and (6)-(8). 

A. The Well-Posedness 

By the standard Faedo-Galerkin methods, it easy to obtain 
the following result. 

Lemma 3.1. for any 0T  and 0( , , )z u v H
     . 

problem (1.1) admits a unique week solution 

0( ( , ), ( , ), ) ([ , ], ),t
tz u x t u x t C T H    

satisfying 

1 1
0 0

2 1 2 1
0 0

( ; ( )), ( ; ( )),

([ , ]; ( )), ( ; ( ; ( )))

t

tt

u L R H u L R H

u L T H L R L R H

 

  

 

 

   

   
 

The proof of Lemma3.1 is similar to that of Theorem 2.1 of 
Ara jo et al.[5] and hence is omitted. 

Form Lemma 3.1 above, for each 2 2( ; ( ))bg L R L   we 
define a process 

0 0( , ) : ,

( , , ) ( ( ), ( ), ) ( , ) .

g

t
g

U t H H

z u v u t v t U t z
   



  



  
 

B. Dissipativity 

First of all, we can obtain the following theorem from [4] 

Theorem 3.2.There exists a positive constant 0M with 
following property: given any 0Y  there exist 

0 0 ( , )T T Y     such that, whenever
0H

z Y  it follows that 

0

2

0 0( , ) ,        .g H
U t z M t T     

Consequently, the set 

 
0

2

0 0 0:
H

B z H z M     

is a bounded uniformly (w.r.t   ) absorbing set for
( , )gU t   on 0H , that is, for any bounded (in 0H ) subsets

B ,there is a 
0

0 0 ( , )
H

T T B     such that  

0( , )g
g
U U t B B


  

for every 0t T . 

Combining Lemma 3.1, we know that for any ,  gR U 
maps the bounded set of 0H into a bounded set of 0H for all 
t  , that is  

Corollary 3.3.Given any 0R  , there is 

2( , )
b

R R L
M M R g such that for all 

0H
z R  , 

0

2
( , ) , .g RH

U t z M t     

Lemma 3.4. Given any 0R  , let 1 2 0,z z H  
2 2

1 2, ( ; ( ))bg g L R L  ,be two initial data, and 

0
( 1, 2)i H

z R i   .Then the following estimate holds, 

2
1 2 00

2 2 2( )
1 2 1 2 1 2( , ) ( , ) ( ) ( )

b

k t
g g H LH

U t z U t z Q R e z z g g
         

 

for any t  and some ( )k k R .  

C. Asymptotic Regularity 

For the nonlinear function ( )f u from[2], we know that f
has the following decomposition 

0 1f f f   

where 0 1, ( )f f C R and satisfy 

 0 ( ) 0f s s   for all s R  


5

0 ( ) (1 )f s c s   for all s R  

 1 ( ) (1 )f s c s
   for all s R  with some 5   

 1
1

( )
lim inf
s

f s

s



   

where 1,c  are positive constants and 1 is the first eigenvalue of 

 in 1
0 ( )H  with the Dirichlet boundary condition. Denote 


1 5

min{ , }
4 2

 
  

In order to obtain the regularity estimates later, we 
decompose the solution ( , ) ( ( ), ( ), )t

g tU t z u t u t   into the 

sum: 

( , ) ( , ) ( , )g gU t z S t z K t z      . 

( , ) ( ( ), ( ), )t
tS t z v t v t  , ( , ) ( ( ), ( ), )t

g tK t z w t w t   are 

the solutions the following equations respectively 
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

0

0

( ) ( ) ( ) 0,  

( ),

( ( ), ( ), ) ,   0, 0,

t
tt tt t

t t
t s t

t R

v v v v s s ds f v

v t

v v z v


 

 

    



 


        


   


  



 

and  


0

0

( ) ( ) ( ) ( ) ( , ),  

( ),

( ( ), ( ), ) 0,   0, 0.

t
tt tt t

t t
t s t

t R

w w w w s s ds f u f v g x t

w t

w w w

 

 

    



 


       


   


  





We will establish a priori estimates about the solutions of 
(16) and(17), which are the basis of our works. 

Lemma 3.5.For any initial data 0z H  , the solutions of 

(16) satisfy the following estimates: There exists constant 0k
such that for every t  , 

0

0 00

22 2 2 ( )
10 0 ,

( , ) ( ) ( ) ( ) k tt
tH H

S t z v t v t Q z e 
  

      

where 1( )Q  is an increasing function on [0, ) , 1Q  and 0k

only depend on the 0H - bound of z ,but both are 
independent of  . 

Proof  Repeating word by word the proof of Theorem 3.2, 
that applies to the present case with ( , )S t z in place of

( , )gU t z (with the further simplification that 0C  , for now

1 0f  and 0g  ), It follows that 

0

0 00

22 2 2 ( )
10 0 ,

( , ) ( ) ( ) ( ) k tt
tH H

S t z v t v t Q z e 
  

        

For the solution of (17), we have 

Lemma 3.6.For any R  ,the solutions of (17) satisfy the 
following estimates: There exists constant such that for 
every t  , 

1
2

0

22 2 2

,

2( )
2

( , ) ( ) ( )

                    ( ) (1 )
b

t
g tH

k t

H L

K t z w t w t

Q z e g

 
    




 



  

 
, 

where 2 ( )Q   is an increasing function on [0, ) ,and  is 
given in (15). 

Proof.  Multiplying(17) by ( )tA w t , and integrating in dx
over ,we get that  

2
2 2 22

0
2

1
( ) ( ) ( ) ( ) ( ) ( ) , ( )

2
t

t t t t

d
A w t w t w t w t s s ds A w t

dt




  
 

 
     
 
 



0( ) ( ), ( ) ( ), ( , ) .t tf u f v A w t A w t g x t       

Similar to that in Theorem 3.2 above, we get 


2

,0

1
( ) ( ) ( )

2
t t

t

d
s s A s dsdx

dt 



 
   




      

and 


2

,0
( ) ( ) ( )

2
t t t

ss s A s dsdx




 

   



     

Next we deal with the nonlinearity, we have 

0 1( ) ( ), ( ) ( ) ( ), ( ) ( ), ( )t t tf u f v A w t f u f v A w t f v A w t     

 and by Corollary (3.3) and Lemma (3.5), we have 


2 2

10 0
( ) ( )u t v t M   for all ,t   

where the constant
1

M depends on
0H

z but independent of  . 

From (7), (21) and Hölder’s inequality, then we have 


1

2 21
( ) ( ), ( ) ( ) ( ) .

4t M tf u f v A w t C w t w t
 

    

Note that
5

2

 
 ,so we can get the following estimates 


2

1

1
( ), ( ) ( ) .

4t tf v A w t C w t


   

Moreover, 


2 2

2

1
( ), ( ) ( ) ( )

2t tA w t g t C g t w t


   

Combined with (19)-(20) and(22)-(23), by (18), we have 
that 

1

2
22 2 2 22

2,
2

( ) ( ) ( ) (1 ( ) ) ( ) .t
t t M

d
A w t w t w t C g t C w t

dt 



   


 
      
 
 

Applying the Gronwall’s inequality, we deduce that 

1
2

0

2
22 22

,
2

2( )
2

           ( ) ( ) ( )

       Q ( ) (1 )
b

t
t t

k t

H L

A w t w t w t

z e g





   








  

 
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here 
11 Mk C and

1MC depend on
0H

z . 

Lemma 3.7.For any 0  ( )tu t  is decomposed as  

1 1( ) ( ) ( )u t v t w t  , 

1( )v t satisfies: there is a positive constant
0

1 1 ( )M M z 
  

such that the following estimates are true 

2

1 10
( )v t M , 

and  


2

1 0
( ) ( )

t

s
v d t s C      for all t s    

As well as 1( )w t satisfies the following estimate 


2

1 ( )w t K
  for all t   

with the constants C and K depending on
0

,
H

z and 2
bL

g , 

but both being independent of  . 

The proof of this lemma is similar to that in Sun [14]. 

In what follows we begin to establish the asymptotic 
regularity of the solutions of (1). 

Lemma 3.8. There exists constant 0 which depends only 

on the 0H -bounds of 0( )B H ,such that for any R   

2

0( , )g H
K t z


    for all t   and ,z B  

where  is given in (15).  

Proof. Taking inner product of the first equation of (17) 
and ( )tA w w  ( is an positive undetermined constant), we 
get that 



0

0

  ( ) ( ) , ( ) 

( ) ( ), ( ) ( , ), ( ) ,

t t
tt t tt t

t t

w w w w s s ds A w w

f u f v A w w g x t A w w



 

  

 

     

     





In the following, we will deal with the left side of (27) one 
by one. Similar to that (19) and (20), we get that  

2 2

, , ,0

1
( ) ( ) , ( ) .

2 2
t t t t

t

d
s s ds A w w w

dt   


     

      


     
 Now we rewrite (27) as 

2 2 0( ) ( ) ( ) ( ), ( ) ( , ), ( ) t t

d
E t I t f u f v A w w g x t A w w

dt
        


  

here 



2
222

2 ,
2

2

1 1 1
( ) ,

2 2 2

1
                                  ,

2

t
t t

t t

E t A w w A w w

w Aw A w






  




 




   

 

 

and  



2
2 2 22

2

2

2 2

, ,

( )

         
2

t t t

t t

I t A w w w w

w
 



  

   

  

   

    

 

 

Applying the Hölder’s inequality in (29), we get that  


22 2

2 1 ,
( ) ( ),t

tE t w w
   

     

where 1
1 1

1 1 1 2
max{ (1 ), }.

2 2 2

  
 

 
    

On the other hand, we have  


2

22 2

2 ,
1

1 1 1
( ) (1 ) (1 ) .

2 2 2
t

tE t w w


   

  


      

choose 

 1

1
min{1, }.

2
   

Let
2

1
1

1 1
min{ (1 ), (1 )} 0

2 2

 


    ,then  


22 2

2 1 ,
( ) ( ).t

tE t w w
   

     

Toward 2 ( )I t , we have  


22 2

2 ,
1

1 1
( ) (1 (1 ) ) ( )

2 2
t

tI t w w


   

    


       

Combined with (31), choose 

1
1

1

1
min{ , , }.

2 1


  





 

Let 2
1

1 1
min{ , 2(1 (1 ) ), }

2
    


    . 


22 2

2 2 ,
( ).t

tI w w
   

     
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From Corollary 3.3 and Lemma 3.5, there is a positive 
constant

0
2 2 ( )M M z 
 such that  

0

2

2( , )g t z M 
   

holds for any R  . 

Since
1

1
2


 , employing the interpolation inequality, we 

can get that  


2

2 2 22
2

( ), ( ) ( ) ( ),
8t tg t A w w C g t w w

  


     

and employing Lemma 3.7 to deal with the nonlinear term:
 

 
0

1

( ) ( ), ( )

( ) ( ), ( ) ( ), ( ) .

t

t t

f u f v A w w

f u f v A w w f v A w w



 



 

 

    
 (38) 

From (7) and Lemma 3.5, we have 

 4 4

2

( ) ( ), ( )

( ( ) ( ) ) ( ) ( ) .

t

t

f u f v A w w

CM C u t v t w t A w w










 

   
 

Using Lemma 3.7, we have 

4 4 4

1 1( ) ( ) ( ) ( ( ) ( ) ) ( ) ( )t tu t w t A w w v t w t w t A w w  
 

     
  

and 


4 2 2 2

1 1 1 0
( ) M ( ).t tv w A w w v w w

 



    

Therefore, note that
1 5

min{ , }
4 2

 
 ,we have

12 6
6

5 1 6
 


, and then  


8 2

4 2 22 2
1

2

2
( ) ( ).

4t t

K M
w w A w w w w 

 





     

where K is given in (26). 


0

4 2 2 2

1 0
( ) 2Q ( ) ( ).t tH

v w A w w z v w w
  




    

where 
0

1Q ( )
H

z  from Lemma 3.5. 

Substitute (40)-(43) into (39), we get that 



2 2 2 2

10 0

2 22
1

( ) ( ), ( ) ( )( )

                                           ( )
4

t t

t

f u f v A w w C v v w w

w w K


 

 





    

  
 

where
8 2

2
1 2

2

2
.

CK M
K CM 


   

Similarly, 


2 22

1 2( ), ( ) ( ),
8t tf v A w w K w w

 

     

Moreover, it follows Lemma 3.7, 

0
12

0
0

Q ( )
( )

H
z

v s ds
k






  , 

then for any 0   

0
12 2

10 0
0

Q ( )
( ( ) ( ) ) ( )

t H

s

z
v s v s ds t s C

k



     . 

Hence, combining the above estimates into (28), we see 
that for all t  , 

2 22
2 2 1 2 1 20 0

1 1

( ) ( ) ( ( ) ( ) ) ( ) .
2

d C
E t E t v t v t E t K K

dt


 

      

Then Gronwall’s inequality yields, for any t T    

( )
2 2( ) ( ) ,t TE t E T e      

here 0  is a constant which depended on initial data and
,  are positive constants which depended on initial data. 

At the last, by Lemma 3.6, (31), (34) and noting that T  is 
fixed, then the proof is completed. 

Lemma 3.9.Assume B is bounded in H .Then there exists 

a constant ( 0)M   which only depends on the H -bounds 

of B such that for any R   

( , )g H
U t z M


    for all t   and z B  . 

Proof  Multiply (1) by ( )tA u u  (  is a positive 
undetermined constant), we get that  

 3 3( ) ( ) ( ), ( ) ( , ), ( ) ,t t

d
E t I t f u A u u g x t A u u

dt
       

here 
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

2
22

3

2

2 2

,

1 1
( ) ,

2 2

1 1
       , ,

2 2

t t

t
t t

E t A u u A u u

u Au A u








 



 


  

  

 

and 

2
2 2 22

3

2

( ) t t tI t A u u u u


  
        


2 2

, ,
       .

2
t t u

 
   

      

Applying the Hölder’s inequality in (48), we get that 


22 2

3 1 ,
( ) ( ),t

tE t u u


   
     

where 1 from (31). 

On the other hand, we have 


2

22 2

3 ,
1

1 1 1
( ) (1 ) (1 ) .

2 2 2
t

tE t u u


   

  


      

choose 

 1

1
min{1, }.

2
   

then 


22 2

3 1 ,
( ) ( ).t

tE t u u


   
     

where
2

1
1

1 1
min{ (1 ), (1 )} 0

2 2

 


     (from (34)).  

Toward 3 ( )I t , we have 


22 2

3 ,
1

1 1
( ) (1 (1 ) ) ( )

2 2
t

tI t u u


   

    


       

Combined with (52), choose 

1
1

1

1
min{ , , }.

2 1


  





 

Similar to (36), let 2
1

1 1
min{ , 2(1 (1 ) ), }

2
    


    . 


22 2

3 2 ,
( ).t

tI u u


   
     

From Corollary 3.3, there is a positive constant

0
( )

H
Y Y z  such that 

0

2
( , )g H

U t z Y   

holds for any R  . 

Since 
1

1
2


 , employing the interpolation inequality, we 

can get that 


2 2 22

1 2
( ), ( ) ( ) ( ).

6t tg t A u u C g t u u
 


      

where 1C is a constant which depends on 2 and the measure 
of  .Next, we deal with the nonlinear term, 

5 5
( ), (1 ) .f u A v c u A v c A v c u A v   

  
       

Using the Hölder inequality and the Sobolev embedding 
theorem, it follows 


2 22

2 ( ).
6 tc A v C u u

 




    

where 1C  is a constant which depends on 2 , c (from (7)) 
and the measure of   

On the other hand, by Lemma 3.7, we get 

5 2 2 2 2 22
1 30

( ) ( ) .
6M t tc u A v C v u u u u C

   




     

  

where MC is a constant which depends on c (from (7)) and the

H -bounds of initial data (see Corollary 3.3). 

So we have  

2 22 2
3 3 1 3 1 2 30 2

1 1

( ) ( ) ( ) ( ) ( ) ,
2

MCd
E t E t v t E t C g t C C

dt

 
 

    

   

where the positive constants , 1, 2,3iC i  depend on , K  and 

0H
z . 

Using Lemma 3.1 and integrating over[ , ]T , we get that 


1

1
2 ( ) 2

3 1( ) ,
1

w m
w t m

wH

m e
E t z e

e





  

 


 (60) 
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where  

2
1

1

  ,  
4 ww m C



  (from (25)), 2

2

2 2 3 .
bL

m C C g    

We then complete the proof. 

Lemma 3.10. For each [ ,1]  , let B be any bounded 

subset of H . Then there exists a constant M which only 

depends on the H -bounds of B , such that for any R  , 

( , )g H
U t z M


    for all t   and z B  . 

Lemma 3.11.  For each [ ,1 ]    , if the initial data 

set B be any bounded subset of H , then the decomposed 

ingredient ( ( ), ( ))tw t w t (the solutions of (17)) satisfies, for any
R  , 

( , )g H
K t z

 
 



    for all t   and ,z B   

where the constant   only depends on the H -bounds of B . 

Theorem 3.12.There exist a bounded (in 1H ) set 1 1B H , 
a positive constants and a monotonically increasing function

( )Q   such that: For any bounded (in 0H ) set 0B H , any

g   , R   and t  , the following estimate holds: 

 0 0

( )
1( ( , ) , ) ( ) .t

H g H
dist U t B B Q B e      

where 
0
( , )Hdist   denotes the usual Hausdorff semi-distance in

0H . 

Proof  Let 0B be the bounded uniformly (w.r.t   ) 

absorbing set in 0H  (see Theorem 3.2). 

By Lemma 3.5 and Lemma 3.8, set 

0{ : }
H

A z H z


     then  

0

0 0 0

( )
0 0 1 0( ( , ) , ) ( ( , ) , ) ( ) ,k t

H g H H
dist U t B A dist S t B A Q B e 

     

where 0  is a constant from Lemma 3.8 corresponding to 0B . 

Using A to replace 0B in Lemma 3.11 and Lemma 3.5, then 

there is 2 0A H  which is bounded in 2H  such that 

0

0 0 0

( )
2 2 1( ( , ) , ) ( ( , ) , ) ( ) ,k t

H g H H
dist U t A A dist S t A A Q A e 

        

for two appropriate constants C and 0k  . 

Since
1 5

min{ , }
4 2

 
 is fixed, by finite steps, we can 

infer that there is a bounded (not only in 0H ,but also 1H ) set

1 1B H such that  

 0 0

( )
0 1 0( ( , ) , ) ( ) .t

H g H
dist U t B B Q B e       

Note further that all the constants in (62) only depend on 

0
0 H

B and 2
bL

g . 

Now, for any bounded (in 0H ) B , from Theorem 3.2 There 

is 0T  such that 

0( , )gU t B B





  for all  0t T  

Combined with Lemma 3.4, it follows that 

 0

0

( )
0( ( , ) , ) ,T t

H gdist U t B B Qe e      (63) 

where
0

0sup{ ( , ) : , } .g H
Q U t B g t T        

Finally, we apply Lemma 2.1, again to (62) and (63), and 
the proof of Theorem is completed.  

IV. UNIFORMLY ATTRACTORS 

Now collecting Theorem 3.2, Lemma 3.5, and Theorem 
3.12, we establish that { ( , )},gU t g  corresponding to (1) 

is asymptotically compactness. Therefore, by means of 
well-known results of the theory of dynamical systems we get 
that the family of processes{ ( , )},gU t g  corresponding to 

(1), posses a compact (in 0H )uniform (w.r.t g  ) attractor 

, and 0H . We remark that the above existence does not 
require any continuity of the family of processes. However, in 
order to obtain the explicit form of , we need some continuity. 
Moreover, since the symbol space   now has only weak 
compactness, we need to verify the corresponding of weak 
continuity. First, by the results of Chepyzhov and Vishik[6], 
we see thatwith the local weak convergence topology of 

2 2( ; ( ))locL R L  forms a sequentially compact and  metrizable 
complete space. We denote the equivalent metric by . 
Thus ( , )d is a compact metric space. Moreover, through 
Lemma 4.1, Chapter V[6], we also have the following 
conclusion. 

Lemma 4.1. [13] The translation semigroup 0{ ( )}tT t  acts 

on  (i.e.), ( ) ( , ) ( , )T t g x s g x t s   for any g  and any 

0t  is invariant and continuous in  with respect to the local 

weak convergence topology of 2 2( ; ( ))locL R L  , equivalently, 

with respect to the metric d . 

In the following, we also recall an useful lemma, whose 
proof is simple and we omit it.  
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Lemma 4.2.  [13] Let  be a reflexive Banach and 

0nx 弱  in X . then for each compact (in *X ) subset 
*B X , the uniform convergence hold: For any 0  there is 

a N , depending only on , such that 

 *,  n X
f x     for all   n N and all f B  

Theorem 4.3.  The family of processes { ( , )},U t    , 

corresponding to (1.1), has a compact uniform (w.r.t.   ) 
attractor   in 0H . Moreover, this attractor is bounded in 

1H  and can be decomposed as follows 

 (0)





    

where  is the kernel of the process  , and (0)  is the 
kernel section at time . 

Proof  We only need to verify continuity claim on the 
attractor  in 0H , i.e., for the attractor   in 0H , 0H  

any fixed R  and t  , if nz z  in  and ng g with 
respect to the local weak convergence topology of 

2 2( ; ( ))locL R L  , then ( , )
ng nU t z   converges to ( , )gU t z in

  . 

Denoted 

1 2   ,( (t), (t), )=U ( , ) ( 1,2)
i

t
i it g iz z z u u t z i        and

1 1 2 2( (t), (t), )=U ( , ) U ( , ) , , 1,2.t
t g g iw w t z t z z i       Then

( ( ), ( ), )t
tw t w t   satisfies the following equation 

1 2 1 20
( ) ( ) ( ) ( ) ( , ) ( , ),t

tt t ttw w w w s s ds f u f u g x t g x t 


         
  

and 

( ) ( ) ( ), ( ( ), ( ), ) , | 0.t
ts w t w t s w w z w

          

Since is bound in 1H , following Theorem 3.12, then there 

is a positive constant 0R such that 


1

2

0supsupsup ( , )g Hg R t
t R

 


  
     

Multiplying (66) by ( )tw t and using (67), it follows that 

0 0

0

2 22 2 2 2

2 0 0 0, ,

22 2 2

1 22 0 0 ,

( ( ) ( ) ( ) ) 2 ( )

( ( ) ( ) ( ) ) 2 ( ) ( ), ( ) ,

t t
t t t

t
t t t

d
w t w t w t w t

dt

C w t w t w t g t g t w t

   

 

  



    

       

 (68) 

and by integrating over [ , ]t  , then we get, for each 
t T   , 


0

0

22 2 2

2 0 0 ,

2( )
1 2

( ) ( ) ( )

( ( ) ( ), ( ) ).

t
t t

TC T
tH

w t w t w t

e z g s g s w s ds

 


 





  

    
 (69)

By Theorem 3.2, then we have  

2{ ( , ) : [ , ], }
g g

t z t T z  

    is bounded in 2 1

0( , ; ( ))L T H    

and  

2{ ( , ) : [ , ], }t
g g

t z t T z  

     is bounded in 2 1

0( , ; ( ))L T H   

then 

2{ ( , ) : [ , ], }t
g g

t z t T z  

     is bounded in 2 1( , ; ( ))L T H    

where 2  is the projector from X Y  to Y . Then by 
Lemma 2.2, we get 

2{ ( , ) : [ , ], }
g g

t z t T z  

    is compact in 2 2( , ; ( ))L T L   

By Lemma 4.2, it does show that if ng g  in 
2 2

, ( ; ( ))w locL R L  , then 

 1 2( ) ( ), ( ) 0
t

tg s g s w s ds

     

uniformly on a compact subset of 2 2( , ; ( ))L t L  . 

Based on the continuity claim above, and by constructing a 
skew-product flow on   and applying Theorem 5.1,IV[6], 
then the structure equality (65)is proved. So the proof is 
completed.  
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