

Domination Numbers of Trees

Min-Jen Jou^{*} and Jenq-Jong Lin Ling Tung University, Taichung 40852, Taiwan *Corresponding author

Abstract—A set S of vertices is a dominating set of G if $N_G[S]=V(G)$. The domination number $\gamma(G)$ of a graph G is the minimum cardinality among all dominating sets of G. The decision problem of determining the domination number for arbitrary graphs is NP-complete. Here we focus on trees. If x and x' are duplicated leaves adjacent to the same support vertex in a tree T, then $\gamma(T - x') = \gamma(T)$. If T' can be obtained from T by adding some duplicated leaves, we can see that $\gamma(T') = \gamma(T)$. So the maximum order of a tree T, which is $\gamma(T)=k$, is infinity. In this paper, we focus on trees which are without duplicated leaves. For $k \ge 1$, we determine the minimum and maximum orders of the trees T which are without duplicated leaves and $\gamma(T)=k$. Moreover, we characterize the trees of minimum and maximum orders.

Keywords- domination number; tree; order; duplicated leaves

I. INTRODUCTION

All graphs considered in this paper are finite, loopless, and without multiple edges. For a graph G, V(G) and E(G) denote the vertex set and the edge set of G, respectively. The cardinality of V(G) is called the *order* of G, denoted by |G|. The (open) neighborhood $N_G(v)$ of a vertex v is the set of vertices adjacent to v in G, and the close neighborhood $N_{G}[v]$ is $N[v] = N(v) \cup \{v\}$. For any subset $A \subseteq V(G)$, denote $N(A) = \bigcup_{v \in A} N(v)$ and $N[A] = \bigcup_{x \in A} N[v]$. The degree of v is the cardinality of $N_G(v)$, denoted by $\deg_G(v)$. Two distinct vertices u and v are called *duplicated* in G if $N_G(u) = N_G(v)$. A vertex x is said to be *leaf* if $\deg_G(v) = 1$. A vertex of G is a suppor vertex if it is adjacent to a leaf in G. We denote by L(G) and U(G) the collections of all leaves and support vertices of G, respectively. For a subset $A \subseteq V(G)$, the *deletion* of A from G is the graph G-A obtained by removing all vertices in A and all edges incident to these vertices. The *union* of two disjoint graphs G_1 and G_2 is the graph $G_1 \cup G_2$ with vertex set $V(G_1 \cup G_2)=V(G_1) \cup$ $V(G_2)$ and edge set $E(G_1 \cup G_2) = E(G_1) \cup E(G_2)$. A forest is a graph with no cycles, and a *tree* is a connected forest. If u and v are duplicated vertices in a tree, then they are both leaves. The *n*-path P_n is a path of order *n*. For other undefined notions, the reader is referred to [1] for graph theory.

A set S of vertices is a *dominating set* of G if $N_G[S] = V(G)$. The *domination number* $\gamma(G)$ of G is defined to be the minimum cardinality among all dominating sets of G. A dominating set of cardinality $\gamma(G)$ in G is said to be a γ -set. A γ -set containing all support vertices of G is called a γ_U -set. One of the fastest growing areas within graph theory is the study of domination and related subset problems. A

dominating set have been proposed as a virtual backbone for routing in wireless ad hoc networks (see [6]). The topology of such wireless ad hoc network can be modeled as a unit-disk graph (UDG), a geometric graph in which there is an edge between two vertices if and only if their distance is at most one. A dominating set of a wireless ad hoc network is a dominating set of the corresponding UDG. The discussion of domination in graphs are initiated by Ore [5]. Several decades later, domination and its variations in graphs are well studied, an estimated thousand papers have been written on this topic (see [2],[3],[4]).

The decision problem of determining the domination number for arbitrary graphs is NP-complete. Here we focus on trees. If x and x' are duplicated leaves adjacent to the same support vertex in a tree T, then $\gamma(T - x') = \gamma(T)$. If T' can be obtained from T by adding some duplicated leaves, we can see that $\gamma(T') = \gamma(T)$. So the maximum order of a tree T, which is $\gamma(T)=k$, is infinity. In this paper, we focus on trees which are without duplicated leaves. For $k \ge 1$, we determine the minimum and maximum orders of the trees T which are without duplicated leaves and $\gamma(T)=k$. Moreover, we characterize the trees of minimum and maximum orders.

II. PRELIMINARY

We need the following lemmas.

Lemma 2.1. If uv is an edge of a connected graph G and $G-uv=G_1 \bigcup G_2$, then $\gamma(G) \leq \gamma(G_1) + \gamma(G_2)$.

Proof. Suppose uv is an edge of a connected graph G and $G-uv=G_1 \cup G_2$. Let S_i be a γ -set of G_i for i=1 and 2. Suppose $S = S_1 \cup S_2$, then $N[S] = N[S_1 \cup S_2] = N[S_1] \cup N[S_2] = V(G)$. So S is a dominating of G, thus $\gamma(G) \le |S| = |S_1| + |S_2| = \gamma(G_1) + \gamma(G_2)$.

Lemma 2.2. If *G* is a graph with at least three vertices, then there exists a γ_U -set of *G*.

Proof. Suppose *G* is a graph with at least three vertices and let *S* be a γ -set *S* of *G*. If *S* is a γ_U -set of *G*, then we are done. So we assume that $A = U(T) - S \neq \phi$, and let $B = L(T) \cap N(A)$. Then $B \subseteq S$ and $|B| \ge |A|$. Let $S' = (S - B) \cup A$. Then N[S'] = V(G), so *S'* is a dominating set of *G*. Thus $|S| = \gamma(G) \le |S'| = |S| - |B| + |A| \le |S|$, the equalities hold and *S'* is a γ_U -set of *G*.

Lemma 2.3. If x and x' are two duplicated leaves adjacent to

the same support vertex in a graph G, then $\gamma(G - x') = \gamma(G)$.

Proof. Suppose x and x' are two duplicated leaves adjacent to the same support vertex in a graph G, and let G' = G-x. If S is a γ_U -set of G, then S is a γ_U -set of G'. So $\gamma(G - x') = \gamma(G') = |S| = \gamma(G)$.

III. MAIN THEOREM

By Lemma 2.3, we can see that the maximum order of a tree T, which is $\gamma(T) = k$, is infinity. Thus we focus on trees which are without duplicated leaves. First, we determine the minimum order of the trees T which are without duplicated leaves and $\gamma(T) = k$. Moreover, we characterize the trees of the minimum order.

Theorem 3.1. If T is a tree with at least two vertices and $\gamma(T) = k$, where $k \ge 1$, then $|T| \ge 2k$.

Proof. Suppose *T* is a tree with at least two vertices and $\gamma(T) = k$, where $k \ge 1$. Let *S* be a γ -set of *T*. Then N[S] = V(G) = N[V(T) - S], so $S^c = V(T) - S$ is a dominating set of *T*. Hence $|S^c| \ge k$ and $|T| = |S| + |S^c| \ge k + k = 2k$.

Lemma 3.2. Let *T* be a tree with at least two vertices and $\gamma(T) = k$, where $k \ge 1$. If |T| = 2k, then *T* has no duplicated leaf.

Proof. Let *T* be a tree of order 2k and $\gamma(T) = k$, where $k \ge 1$. Suppose that there exist two distinct leaves *x* and *x'* adjacent to *y* in *T*, by Lemma 2.3, then $\gamma(T - x') = \gamma(T) = k$. Note that T' = T - x' is a tree. By Theorem 3.1, $|T'| \ge 2k$. Thus $|T| = |T'| + 1 \ge 2k + 1$. This is a contradiction, we complete the proof.

Theorem 3.3. Let *T* be a tree with at least two vertices and $\gamma(T) = k$, where $k \ge 1$. If |T| = 2k, then $V(T) = U(T) \bigcup L(T)$ and |U(T)| = k.

Proof. We prove this theorem by induction on $k \ge 1$. If k = 1, then $T = P_2$. If k = 2, then $T = P_4$. It's true for k = 1 and 2. Let $k \ge 3$. Assume that it's true for all k' < k. Suppose that T is a tree of order 2k and $\gamma(T) = k$. Let $P_i : x_i, y_i, z, w, u, ...$ be a longest path of T, where $|P_i| = m \ge 5$ and i = 1, ..., a. By Lemma 3.2, then $|N(y_i) \cap L(T)| = 1$ for every *i*. Let $A = \{y_1, ..., y_a\}$. If m = 5, then a = k - 2. Thus $z \in U(T)$ and $U(T) = A \cup \{z, w\}$. So it's true for m = 5. Thus we assume that $m \ge 6$.

Claim 1. $z \in U(T)$. Suppose that $z \notin U(T)$, then $N(z) = A \bigcup \{w\}$ and H = T - N[A] is tree of order $|H| = |T| - (2a+1) = 2(k-a) - 1 \ge 3$. By Theorem 3.1, $\gamma(H) \le k - a - 1$. Note that $z \in N(A)$. By Lemma 2.1, $k = \gamma(T) \le |A| + \gamma(H) \le a + (k - a - 1) = k - 1$. This is a contradiction, so $z \in U(T)$.

Let z' be the leaf of z in T and $T'=T-(N[A] \cup \{z,z'\})$ and $T^*=T-V(T')$. Then T is a tree of order $|T'|=|T|-(2a+2)=2(k-a-1) \ge 3$. By Theorem 3.1, $\gamma(T') \le k-a-1$. Note that zw is an edge of T such that

 $T-zw=T^* \cup T$, by Lemma 2.1, $k = \gamma(T) \le \gamma(T^*) + \gamma(T') \le (a+1) + (k-a-1) = k$. The equalities hold, $\gamma(T') = k - a - 1$. Hence *T* is a tree of order |T'|= 2(k-a-1) and $\gamma(T') = k - a - 1$, by induction hypothesis,

 $V(T') = U(T') \cup L(T').$

Claim 2. $w \in U(T')$. Suppose that $w \notin U(T')$, then $w \in L(T')$ and $T''=T'-\{w\}$ is a tree of order $|T''|=|T'|-1=2(k-a-1)-1\geq 2$. Hence, by Theorem 3.1, we have that $\gamma(T'')\leq k-a-2$. Note that $w \in N(z)$ and $T-wu = (T-V(T'')) \cup T''$. By Lemma 2.1, $k = \gamma(T) \leq \gamma(T-V(T'')) + \gamma(T'') \leq (a+1) + (k-a-2) = k-1$. This is a contradiction, so $w \in U(T')$.

By Claim 2, we can see that $U(T) = A \cup \{z\} \cup U(T')$. That is $V(T) = U(T) \cup L(T)$ and |U(T)| = k. Hence it's true for k, we complete the proof.

Now we determine the maximum order of the trees *T* which are without duplicated leaves and $\gamma(T) = k$. Moreover, we characterize the trees of the maximum orders. Let $\Omega(k)$ be the collection of trees *T* which hold the following properties.

(i) T has no duplicated leaf.

(ii)
$$\gamma(T) = |U(T)| = k$$
.

(iii)For each $v \in U(T)$, $\delta(v) = \min\{d(u, v) : u \in U(T)\} = 3$, where d(u, v) is the distance between u and v.

Lemma 3.4. Suppose $T \in \Omega(k)$, then T is a tree without duplicated leaves of order |T| = 4k - 2 and U(T) is a γ_U -set

of T, where $\gamma(T) = |U(T)| = k$.

Theorem 3.5. Suppose *T* is a tree without duplicated leaves and $\gamma(T) = k$, where $k \ge 1$. Then $|T| \le 4k - 2$. The equality holds if and only if $T \in \Omega(k)$.

Proof. It's true for k = 1, so we assume that $k \ge 2$. Suppose that T is a tree without duplicated leaves and $\gamma(T) = k$ such that $|T| \ge 4k - 2$. Let S be a γ_U -set of T. Since |T| is as large as possible. By Lemma 3.4, then we obtain that $|T| \ge 4k - 2$. Let S be a γ_U -set of T. Since |T| is as large as possible, we obtain that S = U(T) and $N[u] \cap N[v] = \phi$ for $u \ne v$ in S. Thus $|V(T) - (U(T) \cup L(T))| \le 2(|S| - 1) = 2k - 2$. Hence $4k - 2 \le |T| = |U(T) \cup L(T)| + |V(T) - (U(T) \cup L(T))| \le 2k + (2k - 2) = 4k - 2$. The equalities hold, $\gamma(T) = |U(T)| = 0$.

|L(T)| = k and $|V(T) - (U(T) \cup L(T)| = 2(|S| - 1) = 2k - 2$. That is $T \in \Omega(k)$.

References

- J.A. Bondy, USR Murty and Graph Theory with Application, New York, 1976.
- [2] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of domination in graphs, Marcel Dekker Inc., New York, 1998.
- [3] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of domination in graphs: Advanced Topics, Marcel Dekker Inc., New York, 1998.
- [4] M.J. Jou, "Dominating sets and independent sets in a tree," to appear in Ars Combinatoria.
- [5] O. Ore, Theory of graphs, in: Amer. Math. Soc. Colleq., Vol. 38, Providence, RI, 1962.
- [6] Peng-Jun Wan, Khaled M. Alzoubi and Ophir Frieder, "Distributed Construction of Connected Dominating Set in Wireless Ad Hoc Networks," Mobile Networks and Applications, Vol. 9, Issue 2, pp 141-149, April 2004.