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Abstract—A set S of vertices is a dominating set of G if
Ne[S]=V(G). The domination number y(G) of a graph G is the
minimum cardinality among all dominating sets of G. The
decision problem of determining the domination number for
arbitrary graphs is NP-complete. Here we focus on trees. If X and
X" are duplicated leaves adjacent to the same support vertex in a
tree T, then y(T - x')= y(T). If T' can be obtained from T by
adding some duplicated leaves, we can see that y(T' )= y(T ). So
the maximum order of a tree T, which is y(T)=k, is infinity. In this
paper, we focus on trees which are without duplicated leaves. For
k=1, we determine the minimum and maximum orders of the
trees T which are without duplicated leaves and 7y(T)=k.
Moreover, we characterize the trees of minimum and maximum
orders.
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I. INTRODUCTION

All graphs considered in this paper are finite, loopless, and
without multiple edges. For a graph G, V(G) and E(G) denote
the vertex set and the edge set of G, respectively. The
cardinality of V(G) is called the order of G, denoted by |G]|.
The (open ) neighborhood Ne(v) of a vertex Vv is the set of
vertices adjacent to V in G, and the close neighborhood Ng[V] is
N[v]=N(v)U{v}. For any subset AcV(G), denote
N(A =U,_,N(v) and N[A]=U,_, N[v] .The degree of v is the
cardinality of Ne(Vv), denoted by deg o(v)- Two distinct vertices

u and v are called duplicated in G if No(u)= Ne(v). A vertex X is
said to be leaf if deg,(v)=1. A vertex of G is a suppor vertex

if it is adjacent to a leaf in G. We denote by L(G) and U(G) the
collections of all leaves and support vertices of G, respectively.
For a subset AcV(G), the deletion of A from G is the graph

G- A obtained by removing all vertices in A and all edges
incident to these vertices. The union of two disjoint graphs Gi
and G: is the graph G: U G: with vertex set V(G U G2)=V(Gi)U
V(G:) and edge set E(Gi U G2)=E(Gi) U E(G:). A forest is a
graph with no cycles, and a tree is a connected forest. If u and v
are duplicated vertices in a tree, then they are both leaves. The
n-path Pn is a path of order n. For other undefined notions, the
reader is referred to [1] for graph theory.

A set S of vertices is a dominating set of G if
N.[S]1=V(G). The domination number y(G) of G is defined to

be the minimum cardinality among all dominating sets of G. A
dominating set of cardinality y(G) in G is said to be a y-set. A
y-set containing all support vertices of G is called a y, -set.

One of the fastest growing areas within graph theory is the
study of domination and related subset problems. A
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dominating set have been proposed as a virtual backbone for
routing in wireless ad hoc networks (see [6]). The topology of
such wireless ad hoc network can be modeled as a unit-disk
graph (UDG), a geometric graph in which there is an edge
between two vertices if and only if their distance is at most one.
A dominating set of a wireless ad hoc network is a dominating
set of the corresponding UDG. The discussion of domination in
graphs are initiated by Ore [5]. Several decades later,
domination and its variations in graphs are well studied, an
estimated thousand papers have been written on this topic (see

[21.[3],[4]).

The decision problem of determining the domination
number for arbitrary graphs is NP-complete. Here we focus on
trees. If X and X' are duplicated leaves adjacent to the same
support vertex in a tree T, then y(T- X')= y(T). If T' can be
obtained from T by adding some duplicated leaves, we can see
that (T") = y(T). So the maximum order of a tree T, which is
v(T)=k, is infinity. In this paper, we focus on trees which are
without duplicated leaves. For K>1, we determine the
minimum and maximum orders of the trees T which are
without duplicated leaves and vy(T)=k. Moreover, we
characterize the trees of minimum and maximum orders.

II.  PRELIMINARY
We need the following lemmas.

Lemma 2.1. If uv is an edge of a connected graph G and
G-uv=G UG, , then y (G)< y(Gi)+ y(G2).

Proof. Suppose uv is an edge of a connected graph G and
G-uv=G UG,. Let Si be a y-set of G, for i=1 and 2. Suppose
S=5,US, . then N[S]=N[S,US,]= N[S,JUN[S,]=V(G).
So S is a dominating of G, thus »(G)<|S|HS, |+]S, |
=7(G)+7(G,)-

Lemma 2.2. If G is a graph with at least three vertices, then
there exists a y, -set of G.

Proof. Suppose G is a graph with at least three vertices and
let S be a y-set S of G. If S is a y, -set of G, then we are done.

So we assume that A=U(T)—S = ¢, and let B=LT)N(A).
Then B<S and |B[>|A| . Let S'=(S—B)UA . Then
N[S']=V(G) , so S' is a dominating set of G. Thus
|S|=7(G)<|S'|HS|-|B|+| A< S|, the equalities hold and $'
isa y, -setof G.

Lemma 2.3. If x and X' are two duplicated leaves adjacent to
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the same support vertex in a graph G, then (G — x') = y(G).

Proof. Suppose x and X' are two duplicated leaves adjacent
to the same support vertex in a graph G, and let G' =G- x. If S is
a y, -set of G, then S is a y, -set of G". So y(G-x')=

7(G") =[S = 7(G).

III. MAIN THEOREM

By Lemma 2.3, we can see that the maximum order of a
tree T, which is y(T) =Kk, is infinity. Thus we focus on trees

which are without duplicated leaves. First, we determine the
minimum order of the trees T which are without duplicated
leaves and y(T) =k . Moreover, we characterize the trees of

the minimum order.

Theorem 3.1. If T is a tree with at least two vertices and
y(T)=k,where k>1,then |T [>2k.

Proof. Suppose T is a tree with at least two vertices and
y(MT)=k , where K>1. Let S be a y-set of T. Then
N[S]=V(G)=N[V(T)-S], so §° =V (T)-S is a dominating
set of T. Hence | S° >k and |T |5/S|+|S° 2k +k =2k-

Lemma 3.2. Let T be a tree with at least two vertices and

y(T)=k, where kK >1.If | T |= 2k, then T has no duplicated
leaf.

Proof. Let T be a tree of order 2k and y(T) =k, where
k >1. Suppose that there exist two distinct leaves X and X'
adjacent to y in T, by Lemma 2.3, then »(T —x')=y(T) =k.
Note that T'=T — X' is a tree. By Theorem 3.1, | T'|> 2k . Thus
|T|=T'|+1>2k +1. This is a contradiction, we complete
the proof.

Theorem 3.3. Let T be a tree with at least two vertices and
y(T) =k, where kK > 1. If [T|= 2k, then V(T) =U(T)U L(T)
and|U(T) =k .

Proof. We prove this theorem by induction on K >1. If
k=1,then T=P,.IfK=2,then T =P,. It's true for K =1
and 2. Let k > 3. Assume that it's true for all K'< K . Suppose
that T is a tree of order 2k and y(T)=k Let
P:X,V:,Z,W,u,... be a longest path of T, where |P |=m>5
and i =1,...,a. By Lemma 3.2, then |N(y,)\L(T)|=1 for every
i. Let A={y,.,y,} . If m =35 then a=Kk—2. Thus
zeU(T) and U(T) =AU {z,w}. So it's true for m = 5. Thus
we assume that M > 6.

Claim 1. zeU(T) . Suppose that zgU(T) , then
N(z)=AU{w} and H=T-N[A] is tree of order
[HHT|-QRa+1)=2(k-a)-123 By Theorem 3.1,
y(H)<k—a—-1. Note that ze N(A) . By Lemma 2.1,
k=yT)<|Al+y(H)<a+(k-a-1)=k-1 . This is a
contradiction, so z e U (T).
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Let 7' be the leaf of zin T and T'=T — (N[A]U {z,z'}) and
T'=T-v(@"). Then T is a tree of order
IT'HT|-QRa+2)=2(k-a-1)>3 By Theorem 3.1,
y(T") <k —a—1. Note that zw is an edge of T such that

T—zw=T UT' , by Lemma 2.1,
k=yT)<yTH)+yTH< (a+l)+(k-a-1)=k. The
equalities hold, »(T')=k —a—1. Hence T' is a tree of order

IT'=2(k—a-1) and y(T')=k-a-1 , by induction
hypothesis,
V(T =u@HuLT").

Claim 2. weU(T'). Suppose that wgU(T") , then

wel(T') and T"=T'-{w} is a tree of order
|IT"HT'|-1=2(k —a—1)—1=2. Hence, by Theorem 3.1, we
have that »(T'")<k-a-2. Note that we N(z) and
T-wu=T-VT")Ut" By Lemma
2.1,

k=M <yT-VTN+7TM<@+D+(k-a-2)=k-1.
This is a contradiction, so we U (T").

By Claim 2, we can see that U (T) = AU {z} UU(T"). That
is V(T)=U[T)UL(T) and|U(T) |=k . Hence it's true for k,
we complete the proof.

Now we determine the maximum order of the trees T which
are without duplicated leaves and y(T)=k . Moreover, we
characterize the trees of the maximum orders. Let Q(K) be the
collection of trees T which hold the following properties.

(i) T has no duplicated leaf.
(i) y(M) =U(M)[=k.

(iii)For each veU(T), §(v) = min{d(u,v):u eU(T)} =3,
where d(u,v) is the distance between U and V.

Lemma 3.4. Suppose T € Q(K), then T is a tree without
duplicated leaves of order |T |=4k —2 and U(T) isa y, -set

of T, where »(T)=|U(T)|=k.

Theorem 3.5. Suppose T is a tree without duplicated leaves
and y(T)=k, where K>1. Then |T |<4k —2. The equality

holds if and only if T € Q(k) .

Proof. It's true for k =1, so we assume that K > 2. Suppose
that T is a tree without duplicated leaves and y(T) =Kk such

that | T | is as large as possible. By Lemma 3.4, then we obtain
that [T [> 4k —2. Let Sbe a y, -set of T. Since | T | is as large

as possible, we obtain that S =U (T) and N[u] N[v]=¢ for
U=V in S. Thus |V(T)-UT)ULT)2(S|-1)=2k 2.
Hence 4k —2<|T |=|UM)ULT)|+|V(T)-UT)ULT)
2k + (2k —2) =4k —2. The equalities hold, »(T)=U(T) =
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IL(M)[=k and |VT)-UTULT)=2(S|-1)=2k-2.
Thatis T € Q(K).
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