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Abstract—Genetic regulatory networks with delay on time scales 
is considered in this paper. Some sufficient conditions are 
obtained to ensure the existence and exponential stability of a 
unique equilibrium of Genetic regulatory networks. The app-
roaches are based on constructing Lyapunov functionals, the 
theory of calculus on time scales and the well-known Brouwer’s 
fixed point theorem. The obtained results are general and can be 
applied to corresponding continuous-time and discrete-time gen-
etic regulatory network. 
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I. INTRODUCTION 

Genetic regulatory networks is a combination of a great 
number of genes and gene products interacted directly or 
indirectly with each other in living cells which make up a 
dynamic networked complex system. The dynamic behaviors 
of the genetic regulatory networks in living organisms become 
an important new area of research and received increasing 
attention over past few years [1], [2], [3], [4] and [10]. In 
addition, time delays are unavoidable in the actual evolution of 
the gene system, especially in the transcription and translation 
process. It is well-known that time delays may result in 
oscillation and instability of the genetic regulatory networks 
system. Therefore, several important results for genetic reg- 
ulatory networks with time-delays have been reported in the 
existing literatures [5], [6]. Robust exponential stability for a 
class of stochastic genetic networks with uncertain parameters 
has been reported in [7]. According to literature [8], we know 
the gene interactions are characterized either in a discrete-time  
form or in a continuous-time case, and the topologies of the 
gene networks are described either deterministically or fully 
stochastically.Recently, the exponential stability of continuous-
time and discrete-time cellular neural networks with delays has 
been considered in [9]. However, to the best of our knowledge, 
there are few investigations dealing with the stability analysis 
of genetic regulatory networks with delay on time scales in the 
existing literature. It is significant to study the genetic regu-
latory networks on time scales [11] which can unify the 
continuous and discrete situations. 

Motivated by recent results [12], [13], we consider the 
following differential genetic regulatory networks model with 
delay on time scale: 
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tT , where )(),( tptm ii  are the concentrations of 

mRNA and protein of the ith gene at the time t , respectively. 

The parameters 0,0  ii ca denote, respectively, the 

degradation rates of the mRNA and the protein. id  is the 

translation rate. If transcription factor j is an activator of gene 

,i  ;ij ijw   if there is no link from node j to node 

,i 0ijw ; if transcription factor j is a repressor of 

gene ,i ijijw -  . Where 0ij is a bounded constant 

representing the dimensionless transcriptional rate of the 
transcription factor j to the ith gene. iu  is defined as a basal 

rate,   


1iVj ijiu  and 1iV  is the set of all the j which is a 

repressor of gene .i  The nonlinear function )(jg  :    

represents the feedback regulation of the protein in the 
transcription process with 

( ) ( / ) / (1 ( / ) ),j jH H

j j jg x x x    jH where is the hill 

coefficient, j is a positive constant. 

II. PRELIMINARIES 

Definition 1: A time scale T is an arbitrary nonempty 
closed subset of . The forward and backward jump operators 

, :  T T and the graininess :  T  are defined, 

respectively, by  ( ) : inf : ,t s s t   T:  

 ( ) : sup : ,t s s t   T: ( ) : = ( ) .t t t    

Definition 2: These jump operators enable us to classify the 
point t of a time scale as right-dense, right-scattered, left-
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dense,left-scattered depending on whether (t)=t,  (t)>t,  
(t)=t and (t)<t , respectively for any tT . 

Definition 3: (Lakshmikantham and Vatsala [16]). For each 
tT , let N be a neighborhood of t . Then,  we define the 

generalized derivative (or Dini derivative), ( )D u t 
to mean 

that, give 0,  there exists a right neighborhood ( )N   

N of  t  such that 

( ( )) ( )
( )

( , )

u t u s
D u t

u t s

  
 

 

for each ( )s N  , ,s t where ( , ) ( ) .u t s t s   

In case t  is right-scattered and u(t) is continuous at t , one 
gets 

( ( )) ( )
( )= .

( )

u t u t
D u t

t t




  
  

For simplicity, we denote rdC  by the set of all right-dense 

continuous functions. If ( ) rdp t C and 1+ ( ) ( ) 0,t p t   

then ( )p t  is said to be a positive regressive function. 

Denote R  by the set of all regressive function. Next we give 
the definition of the exponential function and list its useful 
properties. 

Definition 4: (Bohner and Peterson [14]). If p   is a 
regressive function, then the generalized exponential function 

( , )pe t s is defined by 
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t

p s
e t s p s t     T  
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Definition 5: The equilibrium 1 1( , ) ( , , , , )i i n nm p m m p p        of 

system (1) is said to be exponentially stable if there exist 

a 0,   p R and ( ) 0p    such that every solution 

1 1( , , , )n nm m p p       of system (1) satisfying 
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Lemma 1: (Bohner and Peterson [15]) If , ,p q R then 

(i) ( ( ), ) (1 ( ) ( )) ( , );p pe t s t p t e t s    
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( , ),

( , ) p
p

e t s
e t s  where 

( )
( , ) ;

1 ( ) ( )p

p t
e t s

t p t  
  

(iii) ( , ) ( , ) ( , );p p pe t s e s r e t r  

(iv) ( , ) ( , ) ( , );p q p qe t s e t s e t s  

(v)
q

( , )
( , );

( , )
p

p q

e t s
e t s

e t s    
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p t

e s e s


 

     

where  : :1 ( ) ( ) 0 .rdp C t p t     

Finally, we state Brouwer’s fixed point theorem which 
enables us to prove the existence of a unique equilibrium of (1). 

Theorem 1: If nK   is a bounded closed convex set. 

( , ),C K K  then there exists a x K   with 

= .x x   

Throughout this paper, we make basic assumption as 
follows: 

1( ) :H : , ( ) ( ) ,i i i ig g x g y L x y      

( ) , , .i ig x M for all x y   

III. EXISTENCE AND UNIQUENESS OF A EQUILIBRIUM 

Theorem 2: Suppose 1( )H hold, then system (1) has a 

unique equilibrium state if 

 1

1, 1, 2, , .
n

i
ji i

j i i

d
w L i n

a c

  
 
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Proof: An equilibrium 1 2 1 2( , , , , , , )n nm m m p p p        of 

(1) is a solution of the system 

1

( ) =0,

0, 1, 2,..., ,

n
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which leads to 

1

( ) , 1, 2, , .
n

i
i ij j j i
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d
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

 
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Due to the boundedness of the activations, we have 
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dd
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Define a function : n nh  
 
as follows: 
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Then it will follow that 1 2( , , , )nh h h h    maps the 

bounded closed convex set 1 2 nD D D D    into itself 

where  = , .i i iD A A  By Brouwer’s fixed point theorem, 

there exists a fixed points say p  of  h  such that ( )p h p   
or equivalently  
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we can now define , 1, 2, ,i
i i

i

c
m p i n

d
    so that 

1 2 1 2( , , , , , , )n nm m m p p p            is an equilibrium of (1). 

Suppose that there are two equilibrium solutions of (1) 

say 1( ,m 
2 1 2, , , , , )n nm m p p p          and 
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So we have  
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(2) implies that , 1, 2, , .i ip p i n
     And we have im  

, 1, 2, , .im i n


    The proof is completed.  

III. EXPONENTIAL STABILITY OF THE EQUILIBRIUM 

Let 1 2 1 2( , , , , , , )n nm m m p p p       be the equilibrium of 

the system (1). Let ( ) ( ) , ( ) ( ) , 1,2, , .i i i i i ix t m t m y t p t p i n        
Then we can rewrite the system (1) as  

1

( ) ( ) ( ( ) ) ( ) ,
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
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for all 0 .t T
 

It is thus sufficient to establish the stability of the trivial 
solution of (3) in order to establish the stability of the 

equilibrium 1 2 1 2( , , , , , , )n nm m m p p p           of our 

original system. 

Theorem 3: Assume that 1( )H holds, suppose further that: 
2( ) :H  If there exist some constants 0, 0i i    and 

p +  such that 

 (1 ( )) (1 ( )) ( , ) 0,i i i i pp a p t d p t e t t           

 
1

(1 ( )) (1 ( )) ( , ) 0,
n

i i j ji i p
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p c p t w L p t h e t h t   


      


For all 1, 2, , ,i n  0 .t T  Then the trivial solution of 

(3) is exponentially stable. 

Proof: It follows the Theorem 2 that the trivial solution of 
(3) is a unique equilibrium of (3). Now we construct the 
Laypunov functional 1 2 3 4( ) ( ) ( ) ( ) ( ),V t V t V t V t V t   

 
where 
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Calculating ( )D V t  along (3), we can get  
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From (4) and (5), we can get 

 
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By using 2( ),H we can conclude that ( ) (0)V t V for 

.t T  On the other hand, we have 

1 1[ ,0] [ ,0]

(0) ( ) ( ) ( ) ,sup sup
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i i
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V p x s y s
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 
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

where  1 2( ) max , ,p     

 0

1 (1 ( )) ( ,0) ,max i i i p
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d p s e s s


    
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



 
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 
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which means that 

 
1 1

min , ( ,0) ( ) ( ) ( ) (0).
n n

i i p i i
i i

e t x t y t V t V 
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 
   

 
 
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Thus, we finally get 

 1 1 1 [ ,0]

( ) ( ,0)
( ) ( ) ( )

min ,
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n n n
p

i i i
i i ii i s

p e t
x t y t x s

 
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    
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  
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1 [ ,0]

( ) .sup
n

i
i s h

y s
  


 




T 

Therefore, the trivial solution of (3) is exponentially stable. 

The proof is completed. 

From Theorem 2 and Theorem 3 we can obtain the 
following result. 

Corollary 1: Suppose 1( )H  and (2) holds, and there exist 

some constants 0, 0i i    and 0p   such that 

 1

( ) e <0,

( ) e L <0, 1,2,..., ,

p
i i i i

n
ph

i i j ji i
j

p a d

p c w i n

 

 


  



  



 

0 .t T  then system (1) exists a unique equilibrium which 

is exponentially stable. 

From Theorem 2 and Theorem 3 we can also obtain the 
following corollary. 

Remark 1: Conditions (6) can be replaced by 

<0,i i i ia d  
1

L 0.
n

i i j ji i
j

c w 


    

Remark 2: If the time scales ( ( ) 1)t T =  then 
system (1) also includes the discrete-time delayed genetic 
regulatory networks model as its special cases: 
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1

( 1) ( ) ( ) ( ( )),

( 1) ( ) ( ) ( ), 1, 2,..., ,

n

i i i i i ij j j
j

i i i i i i

m k m k a m k u w g p k h

p k p k c p k d m k i n



      


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where  0,1, . ,k  h  and  are positive integers.  

Corollary 2: Suppose 1( )H  and (2) holds, and there exist 

some constants 0, 0i i    and 0p   such that 

  1(1 ) (1+p) <0,i i i ip a p d       

  1

1

(1 ) (1 ) L <0, 1,2, , .
n

h
i i j ji i

j

p c p p w i n 



     
 

0 .t T  then system (1) exists a unique equilibrium which 

is exponentially stable. 

IV. CONCLUDING REMARKS 

In this paper, we studied exponential stability of the genetic 
regulatory networks model with delay on time scales an 
obtained some more generalized results to ensure the existence, 
uniqueness and global exponential stability of the equilibrium. 
These results can give a significant insight into the complex 
dynamical structure of genetic regulatory networks model. The 
conditions are easily checked in practice by simple algebraic 
methods. 
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