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Abstract—In this paper, a Schwarz alternating algorithm is 
proposed by introducing two artificial boundaries for exterior 
mixed boundary value problems of Laplace equation. The 
theorem of the geometrical convergence is obtained for the 
algorithm. Two numerical examples confirm the theoretical 
results and demonstrate the advantage in accuracy and efficiency. 
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I.  INTRODUCTION 

Many physical phenomena develop elliptic problems in 
exterior regions, for examples, the flow of an incompressible 
irrotational fluid about a body and the study of electrostatics 
exterior to given surfaces are described by the Laplace equation 
(see, [1] and references therein). However, the unboundedness 
of the domains brings about the essential difficulty for solving 
these problems, and therefore, various methods known as 
coupling of BEM and FEM, the FEM with artificial boundary 
conditions and the domain decomposition method (DDM) had 
been constructed for the numerical solution of this kind of 
problems [2-4]. In particular, the DDM not only overcomes 
shortcoming of the stiffness matrix being not sparse banded in 
the coupling method, but allows the establishment of different 
mathematical models on different sub-regions and can achieve 
a high degree of parallel computing. 

In this paper, we propose an overlapping DDM for solving 
the exterior Laplace equation with mixed boundary conditions, 
which is more general than the usually considered Dirichlet 
boundary condition. In Section 2, we prove the geometric 
convergence for the Schwarz alternating method. The accuracy 
and efficiency of this method is demonstrated in Section 3. 
Final remarks are given in Section 4. 

II. SCHWARZ ALTERNATING ALGORITHM AND ITS 

CONVERGENCE 

Consider to solve the following exterior mixed boundary 
value problem of the Laplace equation:  
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where 0 D N      is a polygonal boundary surrounding 

the origin in 2R ,    is the unbounded domain outside 0 , 
1/2

0 ( )Du H  , 1/2 ( )Ng H   , and ( , )x yn n n  is the 

outward unit normal vector on N . As long as u is bounded at 

infinity, there is a unique solution u  of the problem (1), 
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The corresponding variational form of (1) is 
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Make a circle 2 , where dist 0 2( , ) 0  , such that 0  

is surrounded by 2 . Then make a closed circle 1  which 

surrounds 2 . Let 1  denotes the annular domain between 

0  and 1 . Define 2  as the exterior unbounded domain 

with boundary 2  . Let 

11 1 2( )c     12 1 2     22 2 1( )c    

where ( )c
i  represents the complement of  1, 2i i  . Set 

 (k) (k) | 1,2
iiu u i  . Then we construct the following 

Schwarz alternating algorithm: 

Step 1. Put any initial data 
1

(0) 2
2 1( )u H  , for an 

example, (0)
2 0u  , and k:=1. 

Step 2. Solve a Mixed boundary value problem in bounded 

domain 1 : 
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Step 3. Solve a Dirichlet boundary value problem in 

unbounded domain 2 : 
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Step 5. If ( )he k  is small enough, stop; else turn to Step 2. 
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Then (3) is equivalent to the following variational problem: 
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(4) is equivalent to the following variational problem: 
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Then (3) and (4) are equivalent to the following variational 
problems: 
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Let : (i 1, 2)
iV iP V V  denote the projection operators 

under the inner product ( , )iD    in V . Thus (7) and (8) are 

equivalent to  

1 1
( ) ( 1) ( 1)
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We obtain 
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This implies that, if  ( ) , 1, 2,k
ie i   are convergent, then 

their limits are in 1 2V V  . 

Similar to the proofs of Theorem 1 in [5], the following 
results are obtained. 

Lemma 1. Spaces V , 1V and 2V  satisfy: 1 2V V V  , 

1V    2 0V   . 

Lemma 2. If 1 2V V V  , then for any v V  there 

exists a positive constant 0C  such that 
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  denotes energy norm ( , ), (1, 2)iD i   . 
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Theorem 1 shows that the above Schwarz alternating 
algorithm is geometrically convergent and the contraction 
factor is  .  

III. NUMERICAL EXAMPLES 

Example 1. Consider to solve problem (1), 
where   0 ( , ) | 1, 1 ( , ) | 1,x y x y x y x     1 ,y 

  ( , ) | 1, 1 ( , ) | 1,D x y x y x y x     1y  , 

( ,N x   ) | 1, 1y x y   , and the boundary conditions 

are obtained by the exact solution 
2 2

x
u

x y



.  

The artificial boundaries 1  and 2  are circles with 

radiuses 1 4R   and 2 2R  , respectively. The initial mesh 

1h  consists of uniform triangular partitions with 8 points on 

0 , 1  and 2 , respectively. 

The finite element solution is obtained for problem (3) by 

linear FEM on 1h . The numerical integral solution is 

obtained for problem (4) by composite trapezoidal formula on 

2 . ( )e k  denotes the maximal nodal error between the exact 

solution and iterative solution, ( )he k  denotes the maximal 

nodal error of successive iterative solutions, and ( )hq k  

represents the iterative convergence rate, i.e., 
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The numerical results are given in Table 1 and Figure 1. 
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TABLE I.  THE RELATION BETWEEN CONVERGENCE RATE AND MESH 

N meshes k  1 2 3 4 5 6 7 

8 h ( )e k  

 1.7025E-1 9.6678E-2 8.3441E-2 8.1248E-2 8.0932E-2 8.0906E-2 8.0914E-2 

    ( )he k  

 3.9545E-1 7.6610E-2 1.3957E-2 2.6150E-3 5.2500E-4 1.1900E-4 3.1000E-5 

    ( )hq k     5.161879  5.489068  5.336852  4.980439  4.430905  3.780227  

16 h/2 ( )e k  

 1.4098E-1 5.8287E-2 4.1711E-2 3.8303E-2 3.7539E-2 3.7341E-2 3.7280E-2 

    ( )he k  

 4.0531E-1 8.2695E-2 1.6576E-2 3.4080E-3 7.6400E-4 1.9800E-4 6.1000E-5 

    ( )hq k     4.901341  4.988825  4.863690  4.461336  3.861971  3.241780  

32 h/4 ( )e k  

 1.2912E-1 3.9048E-2 1.9014E-2 1.4164E-2 1.2795E-2 1.2333E-2 1.2153E-2 

    ( )he k  

 4.0717E-1 9.0069E-2 2.0034E-2 4.8490E-3 1.3700E-3 4.6200E-4 1.8000E-4 

    ( )hq k     4.520673  4.495819  4.131305  3.540690  2.965827  2.568918  

64 h/8 ( )e k  

 1.2772E-1 3.4223E-2 1.2187E-2 6.4080E-3 4.6170E-3 3.9530E-3 3.6750E-3 

    ( )he k  

 4.0747E-1 9.3498E-2 2.2036E-2 5.7890E-3 1.8040E-3 6.6800E-4 2.8000E-4 

    ( )hq k     4.358076  4.243033  3.806701  3.208026  2.701405  2.388426  

 

 
FIGURE I.  THE RELATION BETWEEN RELATIVE ERRORS AND 

MESHES 

The accurate finite element solution hu  for problem (3) on 

1h  is obtained with exact boundary condition 
1

1

1
| cosu

R
 

. 

0e  denotes the maximal nodal error 
2

0 sup
h

he u u


  . Take 0e  as 

a reference to examine the error ( )e k , then, from another 
point of view, show the accuracy of iterative solution and the 
validity of the algorithm, see Table 1 and 2. 

TABLE II.  THE COMPARISON OF (10)he , (10)e  AND 0e  

(10)he
 

(10)e  ratio 0e  ratio 

h 1.0000E-6 8.0925E-2 6.7550E-2 

h/2 4.0000E-6 3.7246E-2 2.1727 2.8174E-2 2.3976 

h/4 1.5000E-5 1.2027E-2 3.0969 8.6720E-3 3.2488 

h/8 2.7000E-5 3.4660E-3 3.4700 2.4140E-3 3.5924 

h/16 3.7000E-5 9.6500E-4 3.5917 6.4000E-4 3.7719 

The ( )hq k  in Table 1 shows that ( )he k  decreases geometr-

ically as the number of iterations k  increases and gradually 
tends to zero. The finer the mesh is, the smaller the error will 

be. The comparison between (10)e  and 0e  in Table 2 shows 

that the iterative solution is almost as accurate as the accurate 
finite element solution is. Although the accurate finite element 
solution is quadratically convergent with respect to h , it is a 
impractical solution. Moreover, Figure 1 shows that maximal 
errors with different meshes dwindle quickly until approach to 
stable states.  

Example 2.To show the relation between convergence rate 
and overlapping degree, we compute on mesh / 4h  with 

different 1R  and 2R  in Example 1. 

TABLE III.  THE RELATION BETWEEN CONVERGENCE RATE AND 
OVERLAPPING DEGREE 

2R  

1R  (7)hq  (8)hq  (9)hq  (9)he  (9)e  

2 4 2.5689 2.3526 2.2494  3.3970E-5 1.2043E-2

2 8 3.4042 3.3464 3.3373  1.2586E-7 3.5529E-2

4 8 1.9467 1.7193 1.6004  8.2031E-5 1.4731E-2
2 12 3.9891 3.9906 3.9908  6.9561E-8 6.6899E-2

Table 3 indicates that the larger the overlapping of 
subdomains is, the faster the convergence rate is. 

IV. CONCLUSIONS 

In this work, we propose a Schwarz alternating algorithm 
for solving the Laplace equation with the mixed boundary 
conditions in the unbounded domain, and prove the corresp-
onding geometric convergence. By means of this algorithm, a 
large scale multidimensional problem can be turned into two 
smaller discrete subproblems, which can reduce computing 
scale greatly. Moreover, its parallel computation in different 
subspaces can improve the efficiency. This algorithm gives a 
necessary complement to other methods in accordance with the 
feature of exterior problems. Two examples confirm the 
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theoretical results and demonstrate the advantage in accuracy 
and efficiency. 
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