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Abstract—In 2016, Ivan Gutman et al. proposed the conception of 
the Gutman index of graphs. In this paper, based on the Gutman 
index of graphs, the vertex Gutman index of graphs is defined. 
On this basis, we obtained the maximum values and rankings of 
the vertex Gutman index of extended double stars, the extremal 
values and rankings of the Gutman index of the family of the 
extended double stars with a fixed order, and characterized the 
corresponding extremal vertices and extremal graphs. 
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I. INTRODUCTION 

In graph theory, some topological indexes based on vertex 
degree-and-distance are well correlated with a variety of 
physico-chemical properties of organic compounds. In 1947, 
the American chemist Harold Wiener proposed the Wiener 
index based on the distance between vertices in order to 
estimate the boiling point of alkanes[1]. Since then, some 
researchers proposed many variants[2-6] of Wiener index based 
on the vertex degree and the distance. In 1994, Gutman, 
Dobrynin and Kochetova introduced a weighted Wiener index 
of connected graphs, which was later called the Schultz index[7-

8]. In 1997, Klavzar and Gutman further defined the improved 
Schultz index by replacing the sum of degrees in Schultz index 
by the product of degrees[9], which just was called the Gutman 
index[10]. 

In this paper, our aim is to determine the extremal values 
and rankings of the vertex Gutman index of the extended 
double stars and the Gutman index of the family of the 
extended double stars with a fixed order, and characterize the 
corresponding extremal vertices and extremal graphs. 

II. DEFINITIONS AND NOTATIONS 

Definition 1.[10] Let T=(V, E)be a graph, d(u)and d(u,v) 
denote the degree of the vertex u and the distance between the 

vertices u and v.
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called the Gutman index of the graph T. 

Definition 2. Let T=(V,E)be a graph. For any Vu , the 
Gutman index of the vertex u is defined as 
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By Definition 1 and Definition 2, the Gutman index of the 
graph T also can be expressed as 
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Definition 3. Let )2(21  rdddP rr  be a path, 0u  and 

0v  be the centers ofstar 1,1 nS
 and 2,1 nS

respectively. The graph 

(denoted as 
)(
, 21

r
nnS

) composed by connecting 1d  to 0u  and 

rd to 0v (see Figure 1) is called the extended double star, and 

the path rP is called the main path of
)(
, 21

r
nnS

. 
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FIGURE I.  THE EXTENDED DOUBLE STAR 

As shown in Figure 1, the leaves of 1,1 1nS
are denoted 

as 121 1
,,, nuuu 

, and the leaves of 1,1 2 nS
are denoted 

as 121 2
,,, nvvv 

. 

Definition 4.Let  
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to
),( )(
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nn PSG
as the contribution of the Gutman index of main 

path rP to extended double star
)(
, 21

r
nnS

. 

III. MAIN RESULTS AND PROOFS 

Theorem 1. 
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Proof. By Definition 2, we have: 
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Meanwhile, we also can get the Gutman index of the 

vertex )1,( rkZkPd rk  : 
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It is easy to see that )( kdG  takes the maximum value 

at 1k or rk  , and 
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We fist note that: 
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Therefore, )1,2,1)(()( 10  niuGuG i  . Similarly, 

there is
)1,,2,1)(()( 20  njvGvG j 

. 

Then, comparing the size of )( 0uG and )( 1dG : 
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Therefore, )()()( 10 rdGdGuG  . Similarly, there is 

0( )G v ( )(1 )kG d k r   . 

Eventually, since 
)3)(()()( 2

212100  rnnnnvGuG , we can get: 

(i) If 21 nn  , )()( 00 vGuG  ,the maximum value 

is )()( 00 vGuG  ; 

(ii) If 21 nn  , )()( 00 vGuG  , the maximum value 

is )( 0uG ; 

(iii) If 21 nn  , )()( 00 vGuG  , the maximum value 

is )( 0vG . 

Theorem 1 shows that the maximum values of the vertex 
Gutman index of the extended double stars are taken at the 
vertex with maximal degrees. 

Theorem 2. If )3,( 2121  nnnn , the rankings of the 

vertex Gutman index of the extended double star
)(
, 21

r
nnS

can be 
shown that: 
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Proof. If ),3,( 2121  nnnn in view of Theorem 1, there 

is )()( 00 vGuG  and
)()( ji vGuG 

. Let 

]3)42()1(22[2)( 2
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Let 0)(  xf , Then we get the stagnation 

point 2)1(*  rx . Since 04)(  xf , so we get 
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Note that ),,2,1)(()( ridGif i  , there is 
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(1) From Theorem 1, we have: 
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i.e., 
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Case 1. For odd r, there is
1 1 1

2 2 2

r r r             . From Theorem 1, 
we have: 
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Case 2. For even r, there is
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2 2 2 2 2

r r r r r                , 

and )2)2(()2(  rGrG . From Theorem 1, we can get: 
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Theorem 3. For 10 12  rnn , the rankings of the 

vertex Gutman index of the extended double star
)(
, 21

r
nnS

can be 
shown that: 
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Proof. If 21 nn  , from Theorem 1, there is 0( )G u  0( )G v  

and 
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. Let 
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(1) From Theorem 1, we can get: 
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i.e., ).()( 10 dGuG   

(2) Since r and 112  nn are the symmetric points about 

the symmetric axis 2)1( 12  nnrx  of the quadratic 
function f(x), so 

).()()()(
1212 mnnrm dGmnnrfmfdG 



holds for any 2)1(1: 1212  nnrmnnm . 

Corollary 1. For 112  rnn , the rankings of the vertex 

Gutman index of the extended double star
)(
, 21

r
nnS

are as follows: 
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Corollary 2. For 012 nn , the rankings of the vertex 

Gutman index of the extended double star
)(
, 21

r
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are as follows: 
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Theorem 4. The Gutman index of the extended double 

star
)(
, 21

r
nnS

is: 
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Proof. By Definition 4, the Contribution of the Gutman 

index of main path rP to extended double star
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is: 
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In the view of Definition 1 and Theorem 1, eventually, we 
can achieve: 
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Let 21 nnn  , then the family of the extended double 

stars with a fixed order can be expressed as 

1 1 1

( ) 3
, 3{ }r n

n n n nS 
  ( 6, 2)n r  . 

Theorem 5. The extremal values of the Gutman index of the 
family of the extended double starswith a fixed order n are: 
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Proof. By Theorem 4, we have: 

1 1

( ) 2 2
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For 33  nx , let 
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By the property of the quadratic function, there are: 
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(2) If n is odd, )(xh takes maximum value 

at 2)1(  nx or 2)1(  nx . So, 
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Theorem 5 shows that, in the family of the extended double 

starswith a fixed order n, 

)(

2
,

2

r
nnS

 is the extremal graphwith the 

maximum Gutman index for even n, 
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) for odd 

n; and
( )
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r
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( )
3,3( )r

nS 
isthe extremal graphwith the minimum 

Gutman index. 
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Corollary 3. The rankings of the Gutman index of the 
family of the extended double stars with a fixed order n are as 
follows: 

(1) If n is odd: 
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(1) Left equality holds if and only if
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r
n

r
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(2) Right equality holds if and only if
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Corollary 4 shows that the graph with maximum of the 

family of the extended double stars with a fixed order n 

is

)(

2
,

2

r
nnS
and the graph with minimum is

)(
3,3

r
nS  (

)(
3,3

r
nS  ). 

IV. CONCLUDING REMARKS 

In this paper, we discussed the vertex Gutman index for a 

typical kind of tree structure -- extended double stars. We 
obtained the extremal distribution of the vertex Gutman index 
of the extended double stars. For the family of the extended 

double stars with a fixed ordern,we got that 

)(

2
,

2

r
nnS

 is the 
extremal graphwith the maximum Gutman index for even n, 

)(

2

1
,

2

1
r

nnS 

( 
1 1
,

2 2

( )
n n

rS  

) for odd n; and
( )
3, 3

r
nS 

( )
3,3( )r

nS 
isthe extremal 

graphwith the minimum Gutman index. These results revealed 
the relationship between the extremal values and the vertex 
degrees, which provided a new idea for the studying of the 
extremal values and extremal graphs of the Gutman index of 
other similar graphs. 
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