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Abstract—This paper develops a Dirichlet-Neumann (D-N) 
alternating algorithm to solve the mixed boundary value problem 
of Laplace equation in an infinite domain, and analyses the 
convergence of the algorithm.  By choosing a circle surrounding 
the original boundary as an artificial boundary to divide the 
unbounded domain into two sub-domains, we can make use of the 
natural boundary reduction (NBR) method in the infinite sub-
domain to solve a Dirichlet boundary value problem while use the 
finite element method in the finite sub-domain to solve a mixed 
boundary value problem. We prove that the algorithm is 
convergent geometrically for any relaxation factor between 0 and 
1. The numerical experiment results also display that the 
sequence of iterative solutions is geometrically convergent, the 
convergence rate is independent of the finite element mesh size 

h , and the maximum nodal error on 1  is roughly of 
2( )O h . 

Keywords-exterior Laplace problem; mixed boundary value 
conditions; D-N alternating algorithm; natural boundary reduction; 
Convergence analysis 

I. INTRODUCTION  

Many applications in science and engineering fields, such 
as hydrodynamics, electromagnetism, acoustics, etc., can be 
reduced to exterior boundary value problems of partial 
differential equations. It’s very effective to solve boundary 
value problems on bounded domains by the finite element 
method and the finite difference method, yet those methods 
are difficult to be applied to problems on unbounded domains 
directly. Therefore, a variety of numerical methods are 
proposed to solve the exterior problems [1,2,3]. Among them, 
the D-N alternating algorithm has been studied to solve 
problems on unbounded domains, for examples, Laplace 
equation, Poisson equation and anisotropic elliptic equation 
with Dirichlet boundary condition [4,5,6], Helmholtz equation 
with Neumann boundary condition [7,8], and the anisotropic 
problem with mixed boundary condition in an infinite domain 
with a concave angle [9].  

In this paper, we consider the exterior Laplace problem 
with mixed boundary value conditions: 
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where 
0D N    , 0  is the planar piecewise smooth 

closed curve, 
1

2
0 ( )Du H   and 

1

2 ( )Ng H


   are given 

functions.   is the unbounded domain outside 0 . 

( , )x yn n n  is the outward unit normal vector on 0 . Let 

meas 0D   and the function u  is bounded at infinity, then 

the problem (1) has unique solution. 

Section 2 designs the D-N alternating algorithm; Section 3 
analyzes the convergence of the D-N alternating algorithm; 
Section 4 displays some numerical results to check the 
accuracy and effectiveness of this algorithm. 

II. THE D-N ALTERNATING ALGORITHM BASED ON NBR  

For solving the problem (1), we make the artificial 

boundary to be a circle  2 2 2
1 ( , ) |x y x y R     to 

enclose 0  and dist 0 1( , ) 0   , divide   into two parts: 

inner subdomain 1  and outer subdomain 2 , and then 

propose the following D-N alternating algorithm: 

Step 1. For any initial value 
1

0 2
1( )H   , put 0k  . 

Step 2. Solve a Dirichlet boundary value problem in 

domain 2 : 

349 
This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/).

Copyright © 2017, the Authors.  Published by Atlantis Press.

Advances in Intelligent Systems Research (AISR), volume 141
International Conference on Applied Mathematics, Modelling and Statistics Application (AMMSA 2017)





2 ( ) 2 ( )
2 2

22 2

( ) ( )
2 1

0,             in ,

,                         on .

k k

k k

u u

x y

u 

 
    

  

 

Step 3. Solve a mixed boundary value problem in domain 

1 : 
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Step 4. Input a relaxation factor k  and set 


1

( 1) ( ) ( )
1 (1 ) ,         0 1.k k k

k k ku    
      

Step 5. Put 1k k   , go to Step 2. 

Noting that, only the normal derivative on boundary 1  of 

the solution of (2) is needed for solving (3). So, instead of 
solving problem (2), we use the natural integral equation in [2] 

to obtain 
( )
2
ku

n




 directly by using k  on boundary 1 : 
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III. THE DISCRETE VARIATIONAL FORM AND ITS 

CONVERGENCE 

Discrete variational form of the problem (2) and (3) is: find 
( )
1, 1( )k

h hu V  , such that 1, 1( )h hv V    


1
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From the problem (6), we can get algebraic equations as 
follows: 
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and 

 ( 1) ( ) ( )
1 (1 ) ,    ( 0,1, ),k k k

k kU k         

where the third-order block matrix on the left is a stiffness 
matrix obtained by finite element method in 1 , hK  on the 

right is gotten from the natural boundary element method on 

1 , 
( )k  is a vector which is constructed by the nodal values 

of 
( )k  on 1 ,  0F  is the total load vector on N .  ( )

1,
k
hU , 

( )
,
k

i hU  and ( )
0,

k
hU  are the functional vector to be solved on 1 ,  

in 1  and on N   respectively. 

Theorem 3.1 The discrete D-N alternating algorithm (7) 
and (8) is equivalent to the preprocessing Richardson iteration 
method: 
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1, 0( ) ( ),k k k
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Theorem 3.2 The condition number of the iterative matrix 
1

1,h hS S  of the discrete D-N alternating algorithm is 
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independent of the finite element mesh size h . 

Theorem 3.3 If 0 min max 1k k    , then the 

discrete D-N alternating algorithm (7) and (8) is convergent, 
and the convergence rate is independent of the finite element 
mesh size h . 

IV. NUMERICAL RESULTS 
Example. Consider to solve the problem (1), where   is 

the infinite domain outside of square [ 1,1] [ 1,1]   , 
{( , ) | 1, 1 1}N x y x y        and  0 \D N    . 

The exact solution is 
2 2

x
u

x y



,   and consequently g and 

0u  are determined by u .  

Choosing the artificial boundary as 1 {( , ) |r r R   , 

2}R  ,  and making uniform partitions on 0 ,  1  and  , 

we have four meshes: :  8 2;  /2: 16 4;  / 4 :  32 8;h h h    

/8: 64 16h  , and then use the discrete D-N alternating 
algorithm (7) and (8). 

( )he k  denotes the maximum nodal error on 1 :  

1

( )
1,( ) sup | ( ) ( ) |

i

k
h i h i

P
e k u P u P


  ; 

( )hd k  denotes the maximum nodal error of the adjacent two-

steps: 

1

( ) ( 1)
1, 1,( ) sup | ( ) ( ) |;

i

k k
h h i h i

P
d k u P u P


   

( )hq k  denotes the approximation of the convergence rate:  

( 1)
( )

( )
h

h
h

d k
q k

d k


 .

 

The numerical results are as follows (Table 1, Table 2 and 
Table 3): 

TABLE I. THE RATIOS OF ERRORS BETWEEN 

( )
1,

k
hu

 AND u  W.R.T. 

h . 

Ratio k  
2 3 4 5 

/2( )/ ( )h he k e k 1.72693 1.70784 1.70310 1.70189 

/2 /4( )/ ( )h he k e k 2.84887 2.72295 2.69462 2.68784 

/4 /8( )/ ( )h he k e k 3.62506 3.55190 3.41010 3.37851 

TABLE II. THE RELATIONSHIP BETWEEN MESH SIZE AND CONVERGENCE RATE (R=4, Θ=0.4) 

mesh  k  0 1 2 3 4 5 6 7

h  ( )he k
 

0.33029  0.25084 0.25705 0.25873 0.25919 0.25931  0.25935 0.25936 

( )hd k
 

 0.18062 0.05057 0.01417 0.00397 0.00112  0.00034 0.00010 

( )hq k
 

 3.57187 3.56970 3.56604 3.56097  3.29301 3.24789 

/ 2h  ( )he k
 

0.23615  0.13866 0.14885 0.15150 0.15219 0.15237  0.15242 0.15243 

( )hd k
 

 0.16664 0.04237 0.01096 0.00289 0.00076  0.00020 0.00005 

( )hq k
 

 3.93341 3.86506 3.78821 3.78758  3.78615 3.78412 

/ 4h  ( )he k
 

0.22805  0.05928 0.05225 0.05564 0.05648 0.05669  0.05674 0.05675 

( )hd k
 

 0.17702 0.04258 0.01032 0.00253 0.00064  0.00016 0.00004 

( )hq k
 

 4.15739 4.12677 4.07897 3.95567  3.95830 3.96027 

/ 8h  ( )he k
 

0.24045  0.05468 0.01441 0.01566 0.01656 0.01678  0.01683 0.01684 

( )hd k
 

 0.18578 0.04315 0.01011 0.00238 0.00058  0.00014 0.00004 

( )hq k
 

 4.30508 4.27046 4.23996 4.09522  4.06111 4.06448 
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TABLE III. THE RELATIONSHIP BETWEEN RELAXATION FACTOR Θ AND CONVERGENCE RATE (R=4, N=16, P=4) 

θ k 0 1 2 3 4 5 6 7 

0.45 ( )he k
 

0.23615  0.14358  0.15094  0.15218  0.15239  0.15243  0.15243  0.15243  

( )hd k
 

 0.18747  0.03044  0.00523  0.00090  0.00016  0.00003  0.00001  

( )hq k
 

  6.15826  5.81721  5.81448  5.80546  5.79278  5.77763  

0.5 ( )he k
 

0.23615  0.14850  0.15212  0.15241  0.15243  0.15243  0.15243  0.15243  

( )hd k
 

 0.20830  0.01575  0.00125  0.00010  0.00001  0.00000  0.00000  

( )hq k
 

  13.22463  12.57553  12.35673  11.82296  10.41002  8.95196  

0.55 ( )he k
 

0.23615  0.15342  0.15239  0.15244  0.15243  0.15243  0.15243  0.15243  

( )hd k
 

 0.22913  0.00583  0.00029  0.00002  0.00000  0.00000  0.00000  

( )hq k
 

  39.32322  20.27816  14.78793  12.86079  13.97590  10.39517  

0.6 ( )he k
 

0.23615  0.15834  0.15175  0.15252  0.15242  0.15243  0.15243  0.15243  

( )hd k
 

 0.24996  0.02966  0.00370  0.00049  0.00007  0.00001  0.00000  

( )hq k
 

  8.42807  8.01647  7.56591  7.11229  6.71366  6.38820  

0.65 ( )he k
 

0.23615  0.16326  0.15019  0.15290  0.15233  0.15246  0.15243  0.15243  

( )hd k
 

 0.27079  0.05737  0.01239  0.00273  0.00062  0.00014  0.00003  

( )hq k
 

  4.71983  4.63229  4.53461  4.42881  4.31954  4.21179  

 
From the numerical results, we can see that: 

(1) Table 1 shows that the sequence of iterative solutions 
is geometrically convergent according to the decrease rate 

( )hq k  of ( )hd k ; moreover, when using different mesh size, 

the convergence speed with the same relaxation factor is 
approximately same, which is consistent with Theorem 3.2. 

(2) Table 2 shows the finer the mesh size is, the smaller 
the error between the iterative convergence solution and the 

accurate solution will be, and the maximum nodal error on 1  

is roughly of 2( )O h ; 

(3) Table 3 shows that when   closes to 0.55, the 
convergence rate of the iterative algorithm will be faster. 
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