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Abstract—Background: Individual SNP often only exhibit a 
small effect, but combinations of SNPs are assumed to be 
strongly influence the risk of disease. Obviously, selecting an 
optimal subset of SNPs, which most associated with disease, is a 
NP-hard problem. Results: To obtain a higher performance of 
predicting power for disease status and a higher computing 
efficiency, we proposed a double-filter-wrapper (DFW) 
algorithm to identify the optimal subset of SNPs. Moreover, few 
studies have been carried out to solve the SNPs encoding issues. 
On the basis of the differences of statistical properties between 
case and control, three types of encoding methods were proposed 
to generate the input for the DFW. Conclusion: We used five 
complex disease datasets to verify the effectiveness of our 
algorithm. The experimental results showed that our method 
appears more promising than other current methods for 
identifying the associated SNPs. In addition, the results also 
indicate that the encoding method proposed in this paper can 
much more accurately reflect the real situation. 
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I.  INTRODUCTION  

Due to the rapid development of genotyping technology, 
genome-wide association studies (GWAS) have been 
increasingly used to decipher DNA variations that are 
responsible for complex diseases[1]. Common DNA variations, 
in the form of single nucleotide polymorphisms (SNPs), hold 
much promise as a basis of disease association studies.  

In the past few decades, thousands of SNPs were 
genotyped, and studies showed that only a portion of SNPs are 
strongly indicative of a targeted disease[2]. Thus, it is vital to 
select an optimal subset of SNPs that are more influential than 
the others, thereby allowing researchers to focus on the most 
promising SNPs for diagnostics and therapeutics. 

Actually, finding association between SNPs and a disease 
can be viewed as a feature selection (FS) problem, that is, use a 
relevance criterion that decides whether a set of SNPs is 
significantly representative of the disease. Some algorithms 
have been proposed to identify disease associated SNPs using 
FS algorithm[3]. These algorithms can be split in two basic 
aspects: filter and wrapper. The advantages of filter methods 
are that they can easily scale up to high-dimensional datasets 
and computationally fast[4]. On the other hand, the wrapper 

methods have better classification performance than filter ones. 
Whereas, the major disadvantage of the wrapper methods is 
that the computation requirement is huge[5]. Combining the 
two algorithms seems to be a feasible way to overcome the 
disadvantages of the both of them. However, different filters 
may be yield different subsets that may leave out some 
potential relevant SNPs in the filter stage, which consequently 
do not have the chance to be considered in the wrapper 
evaluation. Therefore, this paper proposes a double-filter-
wrapper (DFW) algorithm, in which two filter algorithms are 
used in the pre-select stage. Two filters ensure that the 
potential disease associated SNPs have a low probability to be 
filtered out in the initial stage. Recently, many wrapper 
algorithms have been proposed, which can be divided into two 
classes: the sequential search (SS) and the evolutionary 
algorithm (EA)[6]. Kudo and Sklansky found that the SS is 
suitable for the small and medium-sized problems, while the 
EA is better at large-sized problems. Thus, univariate marginal 
distribution algorithm (UMDA) is used in this paper and the 
support vector machine (SVM) is adopted as the evaluator. 
However, in UMDA, lack of diversity is the dominant factor 
converging to local optimum solutions[7]. Therefore, a novel 
dynamic elite selection strategy is proposed to overcome this 
problem.  

In addition, in the most of previous studies, the encoding of 
SNP was usually limited to three types (0 and 1 stand for 
homozygous sites with major and minor allele, respectively, 
and 2 stands for heterozygous sites). The number of types is 
too small to express the abundant information. However, few 
of studies were devoted to solving the issues of SNP encoding. 
In this paper, three types of encoding methods, mono-SNP 
(MS) encoding, MS with frequency difference between the 
cases and controls (FDCC) encoding and MS_FDCC with 
distribution information, are used to generate the input for the 
DFW. The proposed method was tested on five complex 
disease datasets, and the results showed that our algorithm can 
identify the most disease associated SNPs.  

II. METHOD 

A two steps feature selection method is proposed in this 
paper. In the first step, two filter methods are used to remove 
irrelevant SNPs and reduce computational complexity. Then, 
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in the second step, a wrapper method is used to search the most 
associated SNPs.  

A. Filter Algorithm 

Two of the most popular filter methods F-score and Relief 
are used in this paper. 

1) F-score: F-score is a simple filter algorithm which 
measures the distinction between two classes with real values 
[8]. Given training vectors , 1,...,kx k n , if the number of 
positive and negative instances is n  and n , respectively, 
then the F-score of the ith feature is defined as follows: 


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ix  are the average value of the ith feature 
for the whole, positive, and negative data sets, respectively; 

( )
,k ix  is the ith feature of the kth positive instance, and ( )

,k ix   is 

the ith feature of the kth negative instance.  

2) Relief: Relief is one of the most successful methods 
among the existing feature weighting algorithms. Its main 
advantage over others is that it takes into account the effect of 
interacting among attributes [9]. Given a sample x, the Relief 
searches for its two nearest neighbors including one from the 
same class, called nearest hit NH(x), and the other from the 
opposite class, called nearest miss NM(x), and the Euclidean 
distance measure is defined as follows: 


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where rx and sx are two vectors representing samples r and s 

and rsd  is Euclidean distance between them. 

The weight of ith feature iW  is updated according to the 
following equation: 


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where ( )ix , ( ) ( )iNM x and ( ) ( )iNH x  represent the ith feature 
of the selected sample x, NM(x) and NH(x), respectively; I is 
the number of candidate input features.  

B. Wrapper Algorithm 

In UMDA, lack of diversity, particularly during the later 
stages of evolution, is the dominant factor converging to local 
optimum. Therefore, we propose a novel UMDA (NUMDA), 
in which the number of elite individuals selected at each 
iteration is not static but dynamical, to overcome the drawback 
that standard UMDA presents. 

The main steps of NUMDA are given as follows: Firstly, 
M individuals are generated randomly. Secondly, individuals 
are ranked according to the fitness values from high to low, 
and the best tN ( tN <M) of them are selected as the elites.  
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where iter is the current iterations; maxiter  is the maximum 

number of iterations; maxN  and minN  represent the upper 
bound and the lower bound of the number of elites. The 
dynamical mechanism ensures that the algorithm not only has 
a fast convergence speed in the earlier iterations, but also 
keeps diversity in the later stages. 

Then, the selected individuals are used to estimate the 
probability distribution  tp x . Afterwards, the  tp x  is used 

to generate the next population. The probability distribution of 
the tth iteration is defined as follows: 
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C. Double-Filter-Wrapper Algorithm 

F-score and Relief have their own characteristics, and there 
is a proportion of overlap among the lists of removed SNPs. In 
this study, the actual removed SNPs in the filter stage are 
formed by taking the intersection of the above two lists. The 
SNP(s) in the remove-list of F-score or Relief but not in the 
intersection set is (are) given a lower probability in the 
corresponding bit of NUMDA (see Fig.1). 

 
FIGURE I.  SCHEMATIC DIAGRAM OF HYBRID FILTER ALGORITHM 

The NUMDA-SVM contains two steps. The first step 
entails selection of a set of SNPs and the parameters of SVM 
by NUMDA. Then, in the second step, the selected SNPs and 
parameters are passed to the SVM to acquire a fitness value for 
each individual.   

An individual of NUMDA comprises two parts: the feature 
mask and the SVM parameters, which is shown as follows. 
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In Eq.6, 1 2, ,..., nx x x  correspond to the n SNPs (the bit with 
value ‘1’ indicates the SNP is selected and ‘0’ indicates not). 

1,...,n jx x  are used to encode the γ and penalty parameter C. 

Based on the above analysis, the procedure of DFW is 
given as follows: 

FILTER 

1) Calculate the score of each SNP by F-score and Relief, 
respectively. 

2) Generate RD  and FD , where RD  and FD  are the list of 
pre-selection SNPs obtained by Relief and F-score, 
respectively. 

3) Take the intersection of 
R

D  and 
F

D . 
FR F R

D D D I , 

RR
D D D  , FF

D D D  , where D  is the original dataset. 

4) Remove 
FR

D  from D , p FR
D D D  . 

WRAPPER 

1) Initialize probability vector 1 2[ , ,...]P x x , 

{0.2,0.5}ix  . 0.2 for the SNP(s) in 
F FR

D D  or 
R FR

D D  

and 0.5 for the others (see Fig.1). 

2) Generate M individuals by sampling from P . 

3) Decode each individual to get the parameters of SVM 
and the SNPs subset. 

4) Calculate the fitness value (Acc) of each individual.  

5) Sort the individuals according to their fitness values 
from high to low. 

6) Select tN  individuals with higher fitness value from 
population. 

7) Estimate the probability distribution by (5) and generate 
the next population. 

8) If the termination criterion is satisfied, stop. Otherwise, 
go to Step 3. The maximum number of iterations is the 
termination criterion. 

III. ENCODING METHODS 

A. MS Encoding 

Each of SNP is given an integer number (0, 1, 2). 0 and 1 
stand for homozygous sites with major and minor allele, 
respectively, and 2 stands for heterozygous sites. 

B. MS_FDCC Encoding 

Most previous studies were based on the differences of 
statistical properties between case and control. The results 
suggested there is a prominent difference between case and 
control. The FDCC method captures this character very well. 
A position weight matrix is derived from the case set by 

tabulating the frequency of each genotype occurs at each 
position. 
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, n is the number of samples in the 

case set, l is the number of SNPs in each sample and 
{0,1, 2}kjS  . In the same way, a position weight matrix can 

be obtained for the control set. A FDCC encoding matrix is 
obtained by subtracting the case coding matrix from the 
control one.  

C. MS_FDCC_DI Encoding 

However, FDCC method has its limit. For example, the 
frequency of genotype 0 is 0.8 in case set and 0.7 in control set. 
The frequency of genotype 1 is 0.2 in case set and 0.1 in 
control set. When the MS_FDCC encoding method is used, 
these two features have the same value. However, the 
contribution of 0 and 1 to the disease may be different. 
Therefore, the distribution information (DI) is added to (7). 


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where ( | )j kj tp S c  is the frequency of kjS  in the class tc ; 

{ , }tc case control . 

IV. EXPERIMENTAL RESULTS 

A. Datasets  

In this paper, five datasets (Autoimmune disorder (AD), 
Crohn’s disease (CD), Lung cancer (LC), Rheumatoid arthritis 
(RA) and Tick-borne encephalitis (TE)) are used to evaluate 
the effectiveness of our algorithm. All the datasets were 
supplied by Brinza [10].The characteristics are presented in 
Table 1. 

TABLE I.  THE DATASET DESCRIPTION. 

Data
set 

Number 
of SNPs

Number 
of cases 

Number of 
controls 

AD 108 384 652 
CD 103 144 243 
LC 141 322 273 
RA 2300 460 460 
TE 41 21 54 

B. Results 

Firstly, the effects of the three encoding methods are 
analyzed. The proposed algorithm with different encoding 
methods was used to predict the disease statuses and the results 
are showed in Table2. From the table we can see that the MS 
obtained the worst Acc for all of the five datasets. On the other 
hand, the MS_FDCC_DI reached the best results comparing 
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with other two encoding methods. Therefore, it can be 
concluded that the MS_FDCC_DI encoding method can more 
accurately reflect the difference between cases and controls.  

TABLE II.  THE PERFORMANCE OF DFW_SVM WITH DIFFERENT 
ENCODING METHODS. 

Dataset Encoding  Sn Sp Acc 
AD MS 0.6642 0.7462 0.7159

MS_FDCC 0.6854 0.7926 0.7530
MS_FDCC_DI 0.5449 0.9304 0.7881

CD MS 0.8273 0.9835 0.9252
MS_FDCC 0.8961 0.9717 0.9509

MS_FDCC_DI 0.8963 0.9876 0.9535
LC MS 0.8818 0.8240 0.8553

MS_FDCC 0.9163 0.8826 0.9009
MS_FDCC_DI 0.9317 0.8865 0.9110

RA MS 0.7217 0.7583 0.7400
MS_FDCC 0.7391 0.7648 0.7519

MS_FDCC_DI 0.8022 0.8149 0.8085
TE MS 0.7600 1.0000 0.9313

MS_FDCC 0.9500 1.0000 0.9857
MS_FDCC_DI 1.0000 1.0000 1.0000

Secondly, for further comparison, we executed IBPSO [11], 
PA [12] and HPG [13] on the five datasets. Table 3 shows the 
Sn, Sp and Acc obtained by these algorithms. From the table, 
we can see that the best classification result on the TE dataset 
was 1.00 using the DFW_SVM, whereas, only 0.9465, 0.9181 
and 0.9599 were obtained by the three comparison methods. 
For the AD, CD, LC and RA datasets, the classification 
accuracy obtained by our method were also better than that of 
other algorithms. This means that the proposed algorithm has a 
higher ability to select the feature subsets to discriminate the 
cases and controls.  

TABLE III.  THE PERFORMANCE OF OUR ALGORITHM COMPARED 
WITH SOME PUBLISHED METHODS. 

Dataset  Method Sn  Sp  Acc  
AD IBPSO 0.3703 0.9180 0.7158

PA 0.7039 0.7756 0.7491
HPG 0.6853 0.7911 0.7520
DFW 0.5449 0.9304 0.7881

CD IBPSO 0.8478 0.9588 0.9174
PA 0.8682 0.9713 0.9328

HPG 0.8611 0.9548 0.9198
DFW 0.8963 0.9876 0.9535

LC IBPSO 0.8977 0.8426 0.8724
PA 0.9068 0.8570 0.8840

HPG 0.9192 0.8607 0.8924
DFW 0.9317 0.8865 0.9110

RA IBPSO 0.7848 0.7910 0.7878
PA 0.7761 0.8127 0.7944

HPG 0.7913 0.8018 0.7965
DFW 0.8022 0.8149 0.8085

TE IBPSO 0.9000 0.9636 0.9465
PA 0.9000 0.9236 0.9181

HPG 0.9600 0.9618 0.9599
DFW 1.0000 1.0000 1.0000

Figure 2 shows the number of iterations of NUMDA versus 
Acc and the number of SNPs selected. For most of datasets, 
the numbers of SNPs selected converged at later stages; 
however, the classification accuracy kept improving. This can 
be explained by two facts: 1) the actual selected SNPs can be 
different even if the total number is the same; 2) optimizing the 

SVM’s parameters can increase classification accuracy. 
Therefore, the feature subset and model parameters must be 
determined simultaneously. 

 
FIGURE II.  THE NUMBER OF ITERATIONS VERSUS PREDICTION 

ACCURACY AND THE NUMBER OF SNPS SELECTED.  

V. CONCLUSIONS  

The SNP with small individual effect but jointly significant 
effects would be missed by single SNP analysis. In this paper, 
the DFW has been proposed to identify the subset of SNPs 
which are most associated with diseases. Two filters are used 
in DFW with the objective of including as many relevant SNPs 
as possible, so as not to leave out any potential relevant SNPs 
at the filter stage. In the wrapper stage, NUMDA with SVM is 
used to optimize the performance of selected feature subset. In 
addition, three different encoding methods have been applied 
and have shown the effectiveness of the DFW was benefited 
from the used of the MS_FDCC_DI. The experimental results 
on five disease datasets indicate that the MS_FDCC_DI can 
much more accurately reflect the real situation. Based on the 
results, it seems that the algorithm proposed in this paper is 
more promising to be used in the genome-wide association 
studies. 
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