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Abstract—Implementation of smart growth theories into city 
planning has become increasingly important and necessary. In 
this paper, a metric to measure the success of urban smart 
growth was defined as Success Index and the relationship 
between Success Index and the three E’s components was 
established based on principal component analysis (PCA). 
Cellular automata (CA) method was applied to simulate the 
dynamic growth processes of Pittsburgh and Zurich. Some 
planning regulations were made based on economic, environment 
and geography. The developed model can be used to evaluate the 
success of smart growth and to make smart urban planning with 
high degree of adaptability and predictability. 
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I.  INTRODUCTION 

Smart growth is an urban planning theory originated in 
1990’s that concentrates growth in compact walkable urban 
centers to avoid sprawl [1-4]. Many communities are 
implementing smart growth initiatives in an effort to consider 
long range, sustainable planning goals [5-7]. Smart growth 
focuses on building cities that embrace the E’s of 
sustainability–economically prosperous, socially equitable, and 
environmentally sustainable, and this task becomes more 
important than ever as the world is rapidly urbanizing. In the 
past, many studies have been done to propose the ways to curb 
continued urban sprawl and to reduce the loss of farmland 
surrounding urban centers [8-10], and some models have also 
been developed to simulate the development and land-
utilization of a city [11-14]. However, there was little study on 
the model based on a metric to measure the success of smart 
growth by considering the three E’s and 10 principles of smart 
growth simultaneously. Moreover, in view of the fact that a city 
has the characteristics of high complexity and dissipative 
structure, a spatio-temporal discrete dynamics method is 
considered to be proper to study the complicated city system 
with the spatio-temporal dynamic variety.  

In the present work, a comprehensive model has been 
developed to design the smart growth of a city, and the 
following specific contributions have been included in the 
model: (1) three principal components (Economic prosperity, 
social Equity and Environment sustainability) are extracted 
from ten factors based on principal components analysis (PCA), 
(2) a metric (Success Index) to measure the success of smart 
growth of a city is defined, and (3) cellular automata (CA) is 

applied to simulate the dynamic process of city transformation 
and the practical measures for urban smart growth are proposed. 

II. PROPOSED METHODOLOGY 

A. Metric for Smart Growth Success Based on PCA 

In order to establish a model to assess the development of a 
specific city, it is need to explore several factors which can 
describe the smart growth of a city completely. According to 
the three E’s sustainability and ten principles for smart growth 
[15], ten critical factors from different aspects should be 
considered to represent the smart growth of a city.  

1) Selection of critical factors: Ten representative factors, 
including land-use diversity, residential density, population 
density, housing units, soft mobility, museums and theaters, 
cultivated acreage proportion, household maintenance, public 
transportation, and poor population are selected by considering 
the three aspects of economy, equality and environment, as 
shown in Table I. 

2) A metric for smart growth success based on PCA: 
Considering the fact that the ten representative factors could 
be dependent on each other and some correlations may exist 
among the ten factors, it is need to extract the linearly-
independent variables. Thus, a bilayer structure is designed to 
contain the representations of economy, society and 
environment, as shown in Figure I. 

TABLE I.  REPRESENTATIVE FACTORS SELECTED FOR SMART 
GROWTH 

Symbol Factor 

x1 Land-use diversity 

x2 Residential density 

x3 Population density 

x4 Housing units 

x5 Soft mobility 

x6 Museums and theaters 

x7 Cultivated acreage proportion 

x8 Household maintenance 

x9 Public transportation 

x10 Poor population 
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FIGURE I.  MAPPING RELATION BETWEEN TEN FACTORS AND THE 
THREE E’S. 

The method of principal components analysis (PCA) is 
applied to combine the ten factors together to make an 
evaluation on the success of smart growth. As shown in Figure 
I, the expression of smart growth success has been established 
by using the PCA method twice. The first step is to establish 
the mapping relationship between three E’s and the ten 
representative factors, while the second step is to establish the 
relationship between the success index and three E’s. 

PCA is a statistical procedure concerned with transforming 
the correlated variations into several linearly-independent ones. 
Each independent variation is called principal component 
which involves every input factor. The advantage of PCA is not 
only to reduce the dimension of primary data, but also to 
determine the coefficient for every primary factor. The process 
of PCA method executes as the followings. 

a) Step 1: Suppose that the variables of xki represent the 
factors and then the covariance matrix of Sij is computed for 
the primary data. In order to eliminate the inconsistency, the 
primary data should be standardized according to (1).  
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b) Step 2: Calculate the eigenvalues of matrix  and the 
corresponding eigenvectors. Then, each group composed of 
the eigenvectors is used as the coefficients for the primary 
factors. 

c) Step 3: Every eigenvalue can be deduced to calculate 
the contribution of each component by (2) and those 
components with larger contribution should be selected. 


)/()(

11




n

k
k

q

k
kk 

 

where  is the contribution of a component, and  is the 
eigenvalue. 

d) Step 4: Sort the eigenvalues in a descending order and 
determine the component number by calculating the 
cumulative contribution until the value is over 99%. 

e) Step 5: Choose n principal components and use (3) to 
express the relationship between the principal components and 

the ten factors. The synthesized variable can also be calculated 
from the components of c1, …, cn. 






















~

1010

~

22

~

11

~

10210

~

222

~

1212

~

10110

~

212

~

1111

xuxuxuc

xuxuxuc

xuxuxuc

nnnn 






 

where ci is the principal component and the coefficients of uki 
are required to meet the relationship expressed by (4). 
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Finally, the method of PCA is used again to determine the 
mapping relationship from the three E’s to the final 
comprehensive score, i.e., Success Index (I). 

B. Urban Planning Based On Cellular Automata 

As we know, development of a city would be affected by 
the neighboring regions from many different aspects, such as 
geographical location, economic condition and other social 
factors. Therefore, as long as the interaction between the 
regions is figured out, the transformation can be predicted in 
general. Then, the pertinent regulations can be designed by the 
government to guide the transformation towards a positive 
direction. 

One of the best methods to visualize the dynamic 
transformation of such a discrete system is the cellular 
automata. The cellular automaton consists of cells which 
locates in several finite grids. Each cell also has the finite 
statuses. The simulation process is to calculate the new status 
of each cell on the basis of fixed rules by considering the 
relationship between the neighboring cells at a specific moment. 
This method has been widely applied to many fields such as the 
sociology economics and military, etc. 

Chen et al [16] proposed several equations to consider the 
three constraints of a city development, i.e., city form, 
agricultural land and distribution of urban and countryside, and 
whether a region is urbanized or non-urbanized is based on the 
piecewise function, as shown in (5). 
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where p can be regarded as the urbanization possibility of a 
specific region, which is calculated by (6). 

 P=(Dis.)  (Agri.)  (Loc.)  (Con.)  (Dens.)  (Ra.) (6) 

where Dis., Agri., Loc., Con., Dens. and Ra. respectively 
represent the distance from the city center, agricultural 
characteristics, weight value of economic and sustainability, 
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condition function, density of land development, and 
randomness of development. Therefore, the cells of cellular 
automata in the present work are defined with two states, i.e., 
developed and undeveloped ones. By the prediction for 10 
years and 20 years, the distribution for both urbanized and non-
urbanized lands can be visualized, and thus the proportion for 
urbanized and non-urbanized land in each region can be 
obtained.  

III. EXPERIMENT 

A. Coefficients of Smart Growth Success 

In order to establish the model, the factors from eight cities 
have been collected and then the coefficients are determined by 
using PCA to form the expression of smart growth success. The 
bottom level of PCA is determined by (7). 
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where x1~x10 are the selected ten factors, E1 denotes the 
economic prosperity, E2 denotes the social equity and E3 
denotes the environment sustainability.  

As mentioned above, E1, E2 and E3 must be combined to 
form the success index of smart growth. Thus PCA is 
employed once again and the expression for success index (I) is 
obtained, as shown in (8). 

 I = 43.905E1 + 53.944E2 + 22.503E3 

B. Application of Cellular Automata in Proposing Practices 

In this section, the two cities, Pittsburgh and Zurich, are 
chosen as the investigating objectives. According to the 
criteria for distinguishing urbanized and non-urbanized cell, 
the modelling process based on cellular automata is 
implemented with Matlab. It is worthwhile to note that the 
geographical distance is scaled by the real distance. Through 
iterating for 100 times and 200 times which stand for 10 years 
and 20 years respectively, the distribution graph of urbanized 
and non-urbanized are obtained for both Pittsburgh and Zurich, 
as shown in Figure II. In Figure II, the cells colored green 
represent the non-urban districts while those colored blue 
denote the urban districts. It can be noted that after a decade 
(from tenth year to the twentieth year), the urban expansion 
extents of Pittsburgh and Zurich are greatly restricted under 
the smart growth plan.  

For the results based on cellular automata, the urbanization 
and non-urbanization proportions of each region are mainly 
focused on. According to the cellular density in each unit, 80% 
of high density urban land is used as commercial land while 
20% of low density is used as residential land in Pittsburgh. 
On the other hand, 50% of medium density urban land is used 
as commercial land while 20% is also used for commerce and 

the rest for resident in Zurich. Finally, the land use 
distributions for Pittsburgh and Zurich are shown in Table II. 

After the planning process and data manipulation, the 
values of ten representative factors for Pittsburgh and Zurich 
are adjusted according to the results from cellular automata, as 
shown in Table III. And with the smart growth metric, the 
predicted Success Indexs (I) are compared between the current 
and after-planning ones for both cities, which can be used to 
testify that the plan is positive for the city development, as 
shown in Figure III. 
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FIGURE II.  CELLULAR DISTRIBUTION OF PITTSBURGH AND 

ZURICH 

TABLE II.  PLANNING OF URBAN LAND IN PITTSBURGH AND 
ZURICH 

City 
Commercial 

land 
Residential 

land 
Non-urban 

land 
Pittsburgh 17.0% 63.7% 19.3% 

Zurich 16.7% 60.6% 22.7% 

TABLE III.  EVALUATION RESULT 

Factor 
Pittsburgh Zurich 

Current After-plan Current After-plan

Land use 
diversity 

0.962 0.984 0.906 0.939 

Residential 
density 

2820.5 2452.9 2972.5 2667.0 

Population 
density 

5521.4 4450.8 5576.9 5039.5 

Housing units 156165 215608 164581 234433 

Soft mobility 5.4 8.3 5.5 8.33 

Museums and 
theaters 

57 63 57 63 

Acreage 
proportion 

0.169 0.018 0.170 0.167 

Household 
maintenance 2.54109 2.73108 2.62109 3.03108

Public 
transport 

0.256 0.254 0.258 0.252 

Poor 
population 

0.229 0.146 0.234 0.160 
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FIGURE III.  SUCCESS INDEX (I) FOR PITTSBURGH AND ZURICH. 

It can be found in Figure III, that the redesigned growth 
plan works well in both cities but the effect in Zurich is not as 
good as that does in Pittsburgh. By comparing the 
backgrounds of the two cities, the speculation can be made 
that because Pittsburgh has been an industrial city for a very 
long time, smart growth plan can do much better under such 
circumstance. On the other hand, Zurich is the biggest city in 
Switzerland, which is one of the most harmonious countries in 
the world, the smart growth plan may has been carried out in 
some ways for a while, namely the smart growth plan has 
nearly reach its limitation.  

IV. CONCLUSIONS 

A comprehensive model was established based on principal 
component analysis to evaluate the success of urban smart 
growth. Meanwhile, cellular automaton was applied to predict 
the city transformation in the future. Several developing plans 
were proposed which can be testified to be beneficial for 
improving the extent of smart growth under the present model. 

The established model is a complex iterative network of the 
relationships among a variety of factors, and the metric defined 
in the model can be used to measure the success of the smart 
growth of a city. 
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