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Abstract—In this paper, a hexarotor unmanned aerial vehicle 
(UAV) is concerned to solve such problems as smaller payload 
capacity, lack of both hardware redundancy and anti-crosswind 
capability for quad-rotor. Considering the under-actuated and 
strong coupling nonlinear system with external disturbance and 
parameter uncertainty properties of the hexarotor UAV, a nested 
double-loops trajectory tracking control strategy is proposed. A 
position error PID controller is designed as the outer-loop 
controller, of which the task is to compare the desired trajectory 
with real position of the hexarotor UAV and export the desired 
attitude angles to the inner-loop. And, an adaptive command-
filtered backstepping controller is designed as the inner-loop 
controller which makes use of parameter update laws to estimate 
the disturbances of the hexarotor UAV. The simulation results 
show that the proposed control strategy enhances the trajectory 
tracking performance by controlling the external disturbance 
and parameter uncertainty. 

Keywords- Hexarotor UAV, trajectory tracking control, 
backstepping, adaptive, command filter 

I.  INTRODUCTION 

Rotary wing type UAVs are classified into multi-rotor type 
(such as quad-rotor and hexarotor), co-axial helicopter, and 
traditional helicopter, etc. The design of the vehicle is simpler 
than for normal helicopters in that the quad-rotor does not use 
mechanical linkages to vary the rotor blade pitch angle as they 
spin and this reduces maintenance time and cost. Further, its 
relatively low-cost feature make it attractive candidates for 
swarm operations, a field of ongoing research in the UAV 
community[1-4]. 

The purpose of this paper is to design a trajectory tracking 
control system forcing the hexarotor UAV (The structure as 
shown in Fig.1) to track the desired trajectory accurately. To 
realize this purpose, the highly stable and nonlinear controllers 
are required. In consideration of the under-actuated and strong 
coupling characteristics of the hexarotor UAV, the nested 
double-loops trajectory tracking control strategy is introduced 
in this paper. Accordingly, the outer-loop refers to the position 
loop while the inner-loop refers to the attitude control loop. In 
the outer-loop, a position error proportional-integral-derivative 
(PID) controller is developed, of which the task is to compare 
the desired trajectory with real position of the hexarotor UAV 
and construct the command signals to the inner-loop.  

In the approach of attitude controller design, dynamic 
inversion[5], feed linearization and sliding mode control[6], 
model reference adaptive[7] have been widely used. 

Backstepping control design[2-4], due to its simple, has 
become an effective approach for controller design. The 
rotational dynamics of the hexarotor UAV satisfies the strict 
feedback form, so it can be used backstepping to design the 
attitude controller. However, the traditional backstepping 
control also has several of inadequacies which limit the 
backstepping technique in practical applications. First, the 
analytic derivative expressions of virtual control variables are 
usually overly complicated or unknown especially for systems 
with uncertain or noise. Second, considering the practical 
application, the states of the UAV especially for the attitude 
angles and angular rate are usually needed to limit. For instance, 
in the inspection of the transmission lines using the hexarotor 
UAV, in order to facilitate the camera carried by the UAV 
focusing on the components of the transmission lines, the 
attitude angles and angular rate of the hexarotor UAV cannot 
change too much. Third, the problem of the control saturation 
is not considered [8,9]. Especially the last defect, it may lead to 
serious problems in the actual control systems. If the generated 
control command is not fully implemented by actuators, the 
accumulation of errors may lead to the system unstable. 
However, these problems are not considered in the reference 
[2-4]. To solve these problems, Farrell, etc.[10,11] introduced a 
constrained command filter into backstepping control systems. 
The command filter is used to eliminate the impact of 
derivative of the virtual control signals and control saturation. 

Motivated by the above analysis, an adaptive command-
filtered backstepping attitude controller for the hexarotor UAV 
is designed to overcome the problems of input and state 
constraints, avoid calculating the virtual control signal 
derivative analytically and increase the robustness of the 
disturbances. The adaptive backstepping method proposed in 
this paper is a recursive, Lyapunov-based, nonlinear controller 
design approach which makes use of parameter update laws to 
estimate the disturbances of the rotational dynamics. With the 
command filter, it is possible to control the limit of the attitude 
and angular rate, at the same time under the actuator 
constraints[10]. And, the derivatives of the pseudo control 
signal are numerically calculated by the command filter instead 
of calculating it analytically. At the same time, an auxiliary 
filter is also introduced to compensate for the command filter 
error simultaneously satisfying the overall stability requirement. 

II.  MATHEMATICAL MODELING 

To simplify the modeling of the hexarotor UAV and make 
the controller design easier, several reasonable assumptions are 
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made: 1) hexarotor UAV is a rigid. Then the nonlinear 
dynamics can be derived by using Newton-Euler formulas. 2) 
The structure of the hexarotor UAV is symmetrical with 
respect to the axes ox , oy  and oz . 3) The height between the 
rotors and the plane of the hexarotor UAV is ignored. 
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FIGURE I.  THE STRUCTURE OF HEXAROTOR UAV AND THE 

ASSOCIATED FRAMES  
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FIGURE II.  THE SIMPLE STRUCTURE OF HEXAROTOR UAV 

Firstly, two frames have to be defined: a body-fixed frame 
(B-frame) and an earth-fixed frame (E-frame). Let { }oxyz=B  
denote the body-fixed frame whose origin o  is at the center of 
mass of the hexarotor and { }g g g go x y z=E  denote the earth-

fixed frame, as shown in Fig. 1. Therefore, under the 
assumption 3), the structure of the hexarotor UAV can be 
simplified as shown in Fig. 2. 

In Fig.2, 1l  denotes the length of OB and OE, 2l  denotes 

the length of AM, DM, CN and FN, 3l  denotes the length of 
OM and ON, a  represents the included angle between AM and 
OM. 

Then, the translational dynamics and the rotational 
dynamics [12] of the hexarotor UAV can be expressed as 


e e

p = v

T
v = -gz + Rz

m









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


 

In (1), T( , . )x y z=p  and T( , , )x y zv v vv =  are the position 

and velocity of the hexarotor UAV in the E-frame, respectively. 
g  is the gravitational acceleration, T  is the resulting force in 
the B-frame (excluding the gravity force) acting on the 
airframe and T(0,0,1)e =z  is a unit vector expressed in the E-

frame. (3)R SOÎ  is the orthogonal rotation matrix to orient 
the hexarotor UAV and defined as follows 

c c s c s s c s c c s s

R c s s s s c c s s c c s

s c s c c

           
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  
    
  



where T( , , )f q y=ξ  denotes the vector of three Euler angles 
and .s  and .c  are abbreviations for sin(  ) and cos(  ).  

And, in (2) T( , , )p q rΩ =  is the angular rate, W is an Euler 
matrix [4] and given by 

1 sin tan cos tan

0 cos sin

0 sin sec cos sec

W

   
 

   

 
   
  



3 3RJ ´Î  is the total inertial matrix of the hexarotor UAV. 
Under the assumption 2), it is a diagonal positive definite 
constant matrix expressed in the B-frame. , ( 1,2)iD i =  are 
composite disturbances, including aerodynamic moments, 
external disturbances and parameter uncertainties. , ( 1,2)i ib =  

are the input disturbance matrices. And the vector aG  
expresses the gyroscopic torque given by: 


3,4,5 1,2,6

( )( )a r e i i
i i

G J Ω z  
 

     

where rJ  and i  are, respectively, the rotor inertia and the 
rotor speed. 

From (1) and (2), It is obvious that the hexarotor UAV is an 
under-actuated mechanical system with six degree of freedom 
(DOF) and four main control inputs. It is characterized by one 
main control force T generated by the six propellers in the free 
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air and three main control torques T( , , )b
    τ  . So, the 

control force T can be expressed as 


6 6

2

1 1
i i

i i

T f b 
 

    

At the same time, the reactive torque caused by air drag is 
also generated by each propeller and given by 2

i iQ d . Thus, 
the total reactive torque by the six propellers is given as follow: 

 2 2

3,4,5 1,2,6 3,4,5 1,2,6

( )i i i i
i i i i

Q Q Q d  
   

        

where i  is the rotor speed, b  and d  are thrust and drag 
factors[3], respectively. 

Therefore, according to Fig. 2 and (5), it is easy to obtain 
the airframe torques generated by the six propellers given by: 
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

In order to facilitate the computation of the real control 

inputs, that is, ( 1,2, ,6),i i   , (4) and b  are put together: 

T( , , , )T M      

where 
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III. TRAJECTORY TRACKING CONTROL STRATEGY 

Considering the under-actuated and strong coupling 
characteristics of the hexarotor UAV, the nested double-loops 
trajectory tracking control strategy is introduced. And, the 
relationship between the outer-loop and inner-loop is 
established based on the position error PID controller. Then an 
adaptive command-filtered backstepping controller for the 
hexarotor UAV is designed to track the desired attitude angles 
generated by the outer-loop. The controller makes use of 
parameter update laws to estimate the composite disturbances 
of the rotational dynamics of the hexarotor UAV. And, an 
auxiliary filter is also introduced to compensate for the 

command filter error simultaneously satisfying the overall 
stability requirement.  

To give a clear idea of the overall design procedure, a flow 
chart is depicted as Fig.3 
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FIGURE III.  THE FLOW CHART OF THE DESIGN PROCEDURE 

A. Position controller design 

In this section, a position controller based on PID in the 
outer-loop will be developed, of which the task is to compare 
the desired trajectory with real position of the hexarotor UAV 
and construct the desired attitude angles to the inner loop. The 
translational dynamics (1) will be treated as the plant to the 
controller which calculates the desired attitude angles and 
control force based on the desired trajectory. 

Based on (1), we have 


cos cos

T
z g

m
   

 


(cos sin cos sin sin )

T
x

m
     

 


(cos sin sin sin cos )

T
y

m
     

 

The altitude subsystem (6) containing vertical force input T 
which can be linearized by selecting T as 

 cos cos cos cos

mg u
T

   
 

 

The necessary condition for (9) is cos cos 0   , where u , 
a PD controller, is given by 

 ( )d p du K z K z z   
 
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where Kp and Kd are the proportional and the derivative 
positive gain and zd the desired altitude. 

Position subsystem is given by (7) and (8). Let dx  and dy  
be the desired speed in x and y direction, respectively. Then, 
the errors at desired and actual speed are separately given by 

 x de x x    

 y de y y  
 

The desired roll and pitch angles in terms of errors between 
actual and desired speed are, thus, separately given by 



arcsin( sin cos )

sin sin
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cos cos cos cos

x y

x

c e e

e
c

u u

u

  
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   

 

 
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where, 
xeu and 

yeu  are  


,

x y

y yx x
e e

K e mK e m
u u

T T
 

 

where Kx and Ky are the positive constants and T is the desired 
vertical force input by the altitude control. 

B. Attitude controller design 

First, a reasonable assumption and a definition are given as 
follows. 

Assumption 1: The derivatives of the disturbances 
0, 1,2iD i  . (This means that the disturbances change 

slowly.) 

Definition 1: ˆ , 1, 2i i iD D D i    are the estimation errors 
of the disturbances. 

Consider the rotational dynamics given by (2), and define, 
respectively, the attitude and angular rate tracking errors as 
follows: 

 1 ce     

 2 ce = Ω -Ω  

where T
c ( , , )c c c  ξ  are the desired attitude angles 

computed by (12)and (13). cΩ  is the filtered-command of *
dΩ  

and it will be defined later. 

The derivatives of 1e  and 2e  are given by 

 1 1 1 ce W β D ξ     


1 1 1

2 2 2( ) b
a ce J Ω JΩ J G J τ β D Ω           

To give a clear idea of the controller design procedure, the 
following steps are given. 

Step 1: In this step, the task is to stabilize (17) with respect 
to the Layapunov function 


T T

1 1 1 1 1 1

1 1
V

2 2
e e D Φ D   

 

where 1 1 1
ˆD D D  , 1Φ  is a positive definite design parameter 

matrix. 

The time derivative of V1 with respect to time is given by 



T T
1 1 1 1 1 1

T T
1 1 1 1 1 1

V

ˆ( )c

e e D Φ D

e WΩ β D ξ D Φ D

 

   

  
 
 

Then, the virtual controller and parameter update law for 

1D  can be designed as 


* 1

1 1 1 1
ˆ( )d cΩ W c e ξ β D     


1 T

1 1 1 1D̂ Φ β e  

where *
dΩ  is the desired angular rate and 1c  is a positive 

definite matrix to be designed. 

Substituting (21) and (22) into (20) yields  

T T T
1 1 1 1 1 1 1 1 1

T
1 1 1

V ( )

0

e c e β D D β e

e c e

   

  

  


And we can get the conclusion that (21) and (22) can 
guarantee the stability of (17). 

In order to overcome the problems of input and state 
constraints and avoid calculating the virtual control signal 
derivative analytically, a constrained command filter is 
introduced into the procedure of the adaptive backstepping 
control design. *

dΩ  and cΩ  are the input and output of the 
command filter as described in Fig.4. In addition, the derivate 
of cΩ , namely cΩ  can also be generated by the command filter.  
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FIGURE IV.  COMMAND FILTER BLOCK DIAGRAM  

where   and n  are damping ratio and natural frequency of 
the command filter, respectively. 

Thus, the state space of the command filter can be 
represented as[11] 

 
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*2 S S ( )
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c
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c n R M d c c
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Ω
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

  

where S ( )M   and S ( )R  denote magnitude and rate limited 

function, and S ( )M  is defined as 

,

S ( ) ,

,
M

M x M

x x x M

M x M


 
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

And, the definition of S ( )R   is similar to S ( )M  . 

In the interval of linear change of the S ( )R   and S ( )M  , the 
state space of the command filter can be described as 



*
2 2

0 1 0

2
cc

d
cc n n n

ΩΩ
Ω

ΩΩ   
      

                  




 

It is obviously that the system (23) is a linear stable system. 
Accordingly, if *

dΩ  is bounded, cΩ  and cΩ are bounded and 
continuous. 

At the same time, in consideration of the influence caused 
by the command filter, an auxiliary filter is also introduced to 
compensate for the command filter error simultaneously 
satisfying the overall stability requirement. 


*

1 ( )c dε c ε W Ω Ω     

Thus, the attitude tracking error and the parameter update 
law for 1D  are redefined as follows 

 1 ce ξ ξ ε    


1 T

1 1 1 1D̂ Φ β e  

Step 2: In this step, the task is to design the control torques 
and achieve Ω  tracking cΩ  asymptotically.  

Select the Lyapunov function as 


T T T T

2 1 1 1 1 1 2 2 2 2 2

1 1 1 1
V

2 2 2 2
e e D Φ D e e D Φ D      

 

and the time derivation of 2V  is given by 


T T T T

2 1 1 1 1 1 2 2 2 2 2V e e D Φ D e e D Φ D           

where 2 2 2
ˆD D D  , 2Φ  is a positive definite design 

parameter matrix. 

Then we can design the control torques bτ  and parameter 
update law for 2D  as 

1 1 T
2 2 1 2 2

ˆ[ ( ) ]b
a cτ J c e J Ω JΩ J G Ω W e β D        

 


1 T

2 2 2 2D̂ Φ β e  

where 2c  is a positive definite matrix to be designed. 

Based on (21), (24) and (25), we have 



*
1 1 1 c 1

*
1 1 c 1

1 1 1 1 2

( )

( )

c d

d c

e W β D ξ c ε W Ω Ω

WΩ W Ω Ω β D ξ c ε

c e β D We

     

     
   





 

Using the expression (29) and substituting it into (18) yields 


T

2 2 2 2 2 1e c e β D W e     

Substituting (26), (30)-(32) into (28), we obtain 


T T

2 1 1 1 2 2 2V 0e c e e c e  
 

Thus, the attitude and angular rate tracking errors e  and 

2e converge to zero exponentially. 

IV. SIMULATION RESULTS AND DISCUSSION 

In this section, in order to verify the validity and efficiency 
of the control law and update laws for the composite 
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disturbances , ( 1,2)iD i = , simulations of a typical trajectory 
tracking task is performed on Matlab/Simulink. 

The hexarotor UAV model parameters are taken as 
m =1.7Kg, g =9.81m/s2, 1l =281.5mm, 2l =287.6mm, 

3l =40.08mm,  =45°, J = diag{0.0019,0.0019,0.031}Kg.m2, 

rJ =3.357×10-5 Kg.m2, b =2.98×10-6N s2/rad2, d =1.14×10-

7Nm s2/rad2. 

In the simulation, the initial positions and attitude angles 
are T

0 (0,0,0)p , T
0 (0,0,0)ξ , respectively, and so are 

linear and angular velocities, respectively. The composite 
disturbances inputs are chosen as T

1( ) [0.05,0.1, 0.15]D t  ,  
T

2 ( ) [0.1cos(0.5t), 0.01sin(0.4t)+0.1,0.05cos(0.3t)+0.15]D t  . 

And the disturbance matrices , ( 1,2)i ib =  are all unit matrix.  

The desired horizontal rectangle trajectory is given by: 

0.8( 5)fsg( ,5,10) 4fsg( ,10,15)

0.8(20 )fsg( ,15,20)

0.6( 10)fsg( ,10,15) 3fsg( ,15,20)

0.6(25 )fsg( , 20,25)

0.6 fsg( ,0,5) 3fsg( ,5,30)

0.2rad

c

c

c

c

x t t t

t t

y t t t

t t

z t t t



   
 
    



  






where fsg is an interval function and expressed as 
sign( ) sign( )

fsg( , , )
2

x a x b
x a b

  
 . 

TABLE I.  COMMAND FILTER PARAMETERS 

Parameter n  Mag.limit Rate.limit 

p 2×10-3 ±5rad/s ±10rad/s2 

q 2×10-3 ±5rad/s ±10rad/s2 

r 
2×10-3 ±5rad/s ±10rad/s2 

The position controller and attitude controller parameters in 
simulations are fixed at Kp=0.98, Kd=0.265, Kx=1.0, 
Ky=0.97, 1 diag{2,2,2}c  , 2 diag{3,3,3}c  . The update law 
parameters are chosen as 

1 diag{0.2,0.2,0.2}Φ  , 2 diag{0.05,0.05,Φ   0.05} and the 
command filter parameters are shown in Table 1. 

The comparison of the simulation results is demonstrated in 
Fig.5 and Fig.7 where dashed-dot-dot lines represent the 
reference trajectory and the desired attitude angles, the solid 
lines correspond to the responses with update laws, and the 
dashed lines represent the responses without update laws. The 
detailed time responses for the trajectories of x, y, z direction 
are presented in Fig. 6.  
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FIGURE V.  THE 3D FLIGHT TRAJECTORY AND DESIRED 
TRAJECTORY  
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FIGURE VI.  ACTUAL TRAJECTORY AND DESIRED TRAJECTORY OF 
X, Y, Z DIRECTION  

From Fig. 5, the trajectory tracking without the update laws 
seems to work fine; however, the desired performance is not 
obtained. In Fig. 6, the trajectories of x, y, z direction and the 
responses of the attitude angles exhibit significant deviations. 
Contrarily, the actual flight trajectory with the update laws 
closely follows the desired trajectory even under the composite 
disturbances. So, it is obviously that the control law performs 
better with the update laws under the composite disturbances 
inputs. At the same time, the simulation results verify that the 
proposed control strategy has the same efficiency to track 
different trajectory types. 
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: Desired attitude angles produced by Eq.(21) : Responses 

of attitude angles with update laws : Responses of attitude angles 
without update laws 

FIGURE VII.  RESPONSES OF THE ATTITUDE ANGLES FOR 
TRACKING THE DESIRED TRAJECTORY  

V. CONCLUSIONS 

An adaptive command filtered backstepping control 
strategy is applied for the trajectory tracking problem of an 
under-actuated and strong coupling nonlinear hexarotor model 
with verification by the experiments. The hexarotor rotational 
dynamics is developed to include the composite disturbances. 
Update laws are established for the composite disturbances 
which include aerodynamic moments, external disturbance and 
parameter uncertainties. Simulation results demonstrate that the 
proposed control strategy provides desirable trajectory tracking 
performance levels even under the composite disturbances 
inputs. 
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