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Abstract—Time Delay is common and inevitable in the dynamic 
system. The accuracy of system identification will not be 
guaranteed if time delay is not accurately estimated or handled 
properly. Using the theory of dependency measurement, this 
paper studies the delay identification of SISO system. Firstly, the 
copula theory is introduced into time delay identification. 
Secondly, use dependency to measure the relationship of input 
and output signals and then estimate the time delay with this 
relationship, Finally, several first order system experiments are 
used to verify the proposed theory.  

Keyword-time delay estimation(TDE); first order system; copula; 
dependence; system identification 

I. INTRODUCTION 

The problem of identification of parameters in system 
engineering is an interest area of research and has gained 
increasing significance. As one  of the important aspects of 
parameters identification research, there has been increasing 
attention to the time delay estimation. Time delay systems are 
widely used to model concrete systems in engineering sciences, 
such as biology chemistry, mechanics and so on[1]. Many 
results have been reported for the purpose of stability analysis, 
by assuming that the time delay of the studied systems is 
known. 

There are various methods in the literature for estimating 
time delays, especially in univariate process. Generalized 
cross correlation(GCC) is the conventional method for finding 
time delay[2,3], however, in order to obtain an accurate time 
delay estimate, the GCC method requires a priori[4]. 
Meanwhile, if the dynamics between signals is considered, a 
simple model plus time delay is a practical choice for most 
cases[5,6]. In the last decade, a few new methods for TDE 
have also been developed, based on different techniques such 
as interpolation[7,8], neural network[9], linear matrix 
inequality. There are also some different methods, and these 
methods also have limitations. Some methods are “model 
dependent”, which should know the structure of the system 
before estimating the time delay. Some methods need to know 
the scope of the parameter. There are still many methods 
which are very sensitive to noise[10]. So there may remain 
some limitations in practical application. 

This paper presents a new method to identify time delay 
when the sample data is distorted by noise or the structure of 
system is unknown. The proposed method is based on the 
copula theory. We regard the input signals and the output 
signals are two random variables. The dependence relationship 

between random variables is constructed. And the system 
delay is determined by this relationship. 

II. COPULA 

A. Basis Theory of Copula 
The researchers often study the relationship of random 

variables by their joint distribution and marginal 
distribution[11]. The marginal distribution of variables can be 
obtained by their joint distribution. Meanwhile, when the 
random variables are independent of each other, the joint 
distribution can also calculated by their marginal distribution. 
The relationship of random variables also contains function 
relation and dependence relation. Sklar joined their joint 
distribution and marginal distribution together as a new 
function, which called copula, when these variables have 
dependence relation. In probability theory and statistics, a 
copula is a multivariate probability distribution for which the 
marginal probability distribution of each variable is uniform. 
Copulas are used to describe the dependence between random 
variables. Their name comes from the Latin for "link" or "tie", 
similar but unrelated to grammatical copulas in linguistics. 
Copulas have been used widely in quantitative finance to 
model and minimize tail risk and portfolio optimization 
applications. 

We first give a proposition in order to prompt copula 
function: 

There are two random variables 21 & XX , let 
)(&)( 21 xFxF be there distribution functions. Let 
)(2,12,1 xFZ 

, then the random variable Z  is 

uniform-distributed in interval ]1,0[ . 

Theorem I is proposed according to the above proposition: 

(i)In probabilistic terms, is a 2-dimensional copula if C is a 
joint cumulative distribution function of a 2-dimensional 
random vector on the unit cube with uniform marginals[12]. 

(ii)In analytic terms,  

: [0 ,1] [0 ,1] [0 ,1]C    

is a 2-dimensional copula if 

vvCvC  )1,(),1( , the copula is equal to u if one 
argument is v  and all others 1. 
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0)0,(),0(  vCvC , the copula is zero if one of the 
arguments is zero. 

0),(),(),(),( 21212121  aaCabCbaCbbC
, for all 

]1,0[]1,0[],[][ 221,1  baba
. 

It has been referred that Sklar gives the definition of 
copula. Sklar’s theorem is also regarded as the theoretical 
basis of copula. Sklar's Theorem states that any multivariate 
joint distribution can be written in terms of univariate 
marginal distribution functions and a copula which describes 
the dependence structure between the variables[13]. 

Sklar's theorem[8], named after Abe Sklar, provides the 
theoretical foundation for the application of copulas. Sklar's 
theorem states that every multivariate cumulative distribution 
function 

 ],[),( 221121 xXxXPxxH   

of a two elemental vector ),( 21 XX  can be expressed in 

terms of its marginals: 2,1],[)(  ixXPxF ii  and a 
copula C.Indeed: 

In case that the multivariate distribution has a density h, 
and this is available, it holds further that

)()())(),((),( 2211221121 xfxfxFxFcxxh   

where c is the density of the copula. 

The theorem also states that, given H, the copula is unique 

on )()( 21 FRanFRan  , which is the cartesian product of the 
ranges of the marginal cdf's. This implies that the copula is 

unique if the marginals 21, FF  are continuous. 

The converse is also true: given a copula 

: [0,1] [0,1] [0,1]C   and margins 21, FF then 
))(),(( 2211 xFxFC defines a 2-dimensional cumulative 

distribution function. 

Sklar’s theorem indicates that the joint distribution of 
random variables can be constructed by two independent 
steps: 

(i) Marginal distribution of single random variable. 

(ii) Dependence of random variables, which is called 
copula. 

It should be estimated by some methods because the 
copula between the random variables is usually unknown. 
There are two classes of methods among the literatures. The 
first kind of the methods estimate the undetermined 
parameters based on the principle of maximum likelihood 
estimate. But this needs to know the marginal distribution of 
the variables and the type of copula. We can use empirical 
formula to estimate copula or specify several types of 
distribution without knowing these prior knowledge and then 
estimate the parameters by Bayesian method. Finally, use 

some criteria to judge the distribution type, such as AIC, BIC, 
DIC, etc. 

Suppose we have observations 

  2,1),,( 21 iXX ii
  

from a two elemental vector ),( 21 XX with continuous 
margins. The corresponding "true" copula observations would 
be 

 2,1)),(),((),( 221121  iXFXFUU ininii
 

However, the marginal distribution functions iF are usually 
not known. Therefore, one can construct pseudo copula 
observations by using the empirical distribution functions 


)(1

1
)(

1

xX
n

xF i
k

n

i

n
k  

  

instead. Then, the pseudo copula observations are defined as 

 2,1)),(),((),( 22112

~

1

~
 iXFXFUU inin

ii

 

The corresponding empirical copula is then defined as 






2

1
22

~

1121
2 ),(

2

1
),(

i

ii uUuUuuC

  

The components of the pseudo copula samples can also be 

written as 2/
~

i
k

i

k RU   where
i
kR

  is the rank of the 

observation 
i
kX

: 

 




2

1

)(
j

i
k

j
k

i
k XXR

 

Therefore, the empirical copula can be seen as the 
empirical distribution of the rank transformed data. 

: [0,1] [0,1] [0,1]C   is the copula of 21, XX ,  is the 

dependence measurement of 21, XX : 

  
2]1,0[

21 )()(),( dVVVCXX 
 

The role of is to ensure ]1,0[),( 21 XX . 
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B. Estimate Time Delay Based on Dependence 
Measurement 

21, XX  are two random variables. Suppose 1X and 2X

are output and input of a SISO system and ][2 kX is the value 

of 2X after a delay of 0kt
. 

According to the copula of 1X and 2X , their marginal 
distribution can be transformed as : 

]][[]][|[]][,[ 2222221122211 xkXPxkXxXPxkXxXP  

The formula of delay estimation: 

])[,(maxarg 2212

~

2

kXXk
k


shows when the time delay 

equals 02

~

tk
,their dependency is maximum. The time delay is 

the optimal solution of delay estimation. This method is called 
dependence method in this paper. 

III. SIMULATION RESULTS 

In this section, we present the simulation results for 
determining time delay of first order system. For the sake of 
comparison, different intensity of noise is added to output 
signal. Some other methods are also mentioned to show the 
differences between copula. The procedure of the experiment 
is as follows: 

(i) Get the output }{ iyY  from the system 

se
Ts



1

1

and 

se
Ts

1

with given input: 

]1,0[,}{  ii xxX 

(ii) Calculate the time delay with )],[( YkX  

(iii) Add Gaussian noise to input and output signals and 
then recalculate their dependency. 

Example 1. To first order system: 

se
Ts


1

1

, 30 , 20,15,8,5T , noise free. 

 

 

 

 

FIGURE I.  RESULT OF TDE WITH NO NOISE(

se
Ts


1

1

20,15,8,5T ) 

Example 2. To first order system: 
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se
Ts


1

, 30 , 20,15,8,5T , noise free.
 

 

 

 

 

FIGURE II.  RESULT OF TDE WITH NO NOISE(

se
Ts


1

 
20,15,8,5T ) 

Two conclusions can be drawn from fig I and fig II: 

(i)To first order system, the delay estimation obtains a 
good result, which the computing value is about 30. 

(ii)The result is not be affected with the increase of T 
within certain range. 

Example 3.  

se
Ts


1

1

, 30 , 10T , singal-to-noise 
ratio(SNR)=1,0.5. 

 

 

FIGURE III.  RESULT OF TDE WITH NOISE(

se
Ts


1

1

) 

Example 4.  
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FIGURE IV.  RESULT OF TDE WITH NOISE(

se
Ts


1

) 

Two conclusions can be drawn from fig.III and fig.IV 

(i)To first order system, the delay estimation obtains a 
good result, which the computing value is about 30. 

(ii)The result is not be affected with the increase of noise 
density within certain range. 

Example 5. The comparison between dependence method 
and other methods 

(i)Least square method(LS) 

When there is no noise adding to the signals, the calculated 
result of time delay seems quite good, but when the noise is 
taken into account, the result get a great error. In addition, the 
computation cycles is far greater than copula’s. 

TABLE I. THE COMPARISON BETWEEN LS AND COPULA(NOISE 
FREE) 

Name Time delay Noise Result MAE 

Depende-nce 
method 

30 Noise free 30 0 

LS 30 Noise free 30 0 

Table I shows the estimation result and mean absolute 
difference (MAE) of the two methods. The result is the 
average of 10 simulation data, the same below. It can be seen 
that when there is no noise added to the signal, LS has the 
same accuracy with copula. 

TABLE II. THE RESULT OF COPULA(NOISE ADDED) 

SNR Time delay Result MAE 

20 30 30 0 

10 30 30.2 0.2 

5 30 30.4 0.4 

1 30 29.2 0.8 

0.5 30 30.8 0.8 

TABLE III. THE RESULT OF LS(NOISE ADDED) 

SNR Time delay Result MAE 

20 30 33.2 3.2 

10 30 40 10 

5 30 43.8 13.8 

1 30 8.8 21.2 

0.5 30 3.4 26.6 

As we can see in table II and table III, copula has great 
robustness when the noise is added to the output signals. The 
time delay estimation result of LS is much worse. The 
performance is getting worse with the increase of error. 

TABLE IV. COMPUTATION CYCLES OF TWO METHODS 

Name Calculating Time 

Least square method Almost 3 min 

Dependence method 8s 

Table IV shows the comparison of simulating time 
between the two methods. Obviously the simulating time of 
LS is much longer copula’s. 

(ii)Particle swarm optimization(PSO) 

Compare to the method proposed in this paper, estimating 
time delay with PSO needs to know the structure of system, 
and its result is the approximation of each system parameter. 
So it sometimes get great error. 

IV. CONCLUSION 

As a statistical method, dependence method uses marginal 
distribution and joint distribution when calculates the 
dependence of random variables. Therefore it can get great 
results when the variables have certain connection. So we use 
this method to estimate time delay because of the functional 
relationship between the input and output signals. This method 
has the advantages of high computational accuracy, fast 
computing speed, unaffected by noise. But it has computation 
complexity, and the future work is to solve this problem. 
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