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Abstract—This survey paper describes a focused literature survey 
of machine learning methods in order to detect pathological 
brain. Based on the published time and emerging methods, this 
paper introduces in details the methods used in each documents. 
Because of the requirement to select a good approach in the 
process of pathological brain analysis, we compare the 
classification results of different methods and present a 
promising future. 
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I. INTRODUCTION 

With the change of people’s lifestyle and the rapid arrival 
of the population aging, brain disease now becomes a major 
disease that has endangered the health of the elderly [1-3]. In 
this case, the medical diagnostic personnel need to identify the 
abnormal brain timely and effectively. There are several 
machine-learning methods to solve the problem. 

Machine learning (ML) is a significant technology that 
allows computers to discover hidden areas where they are not 
explicitly programmed [4-8]. ML can produce models faster 
and automatically, used to reproduce known patterns and 
knowledge. ML methods focus on achieving high-value 
predictive results and apply these results to decisions and 
actions. Therefore, ML is widely used in computer vision [9], 
biometric identification [10], medical diagnosis [11], and so on 
[12]. 

The ML methods are summarized in this paper is useful to 
solve the normal and abnormal brain detection problems. At 
the same time, we compare the evaluation results of each 
approach. 

II. METHODS 

Yang (2016) [13] presented a new approach respond to 
wavelet energy because WN shows excellent performance in 
practical application. The weights of SVM are optimized using 
BBO before classification. After that, WN and SVM are 
combined to classify magnetic resonance brain images 
automatically. 

Nayak, Dash and Majhi (2016) [14] used a smart computer 
aided diagnosis system (CADS) to identify disease brain 
images. This system includes three aspects, applying 2D DWT 
to extract features, using PPCA to reduce features and using 
ADBRF to identify normal and disease brain. 

Yang and Sun (2016) [15] suggested BPSO-MT to select 
only two features from both approximation and detail 
sub-bands. BPSO-MT includes two improvements, one is 
adding mutation operator and the other is combining with 
time-varying acceleration coefficient technique. To ensure the 
classification performance of BPSO-MT, which is compared 
with BPSO-M and BPSO-T in the literature. 

Sun (2016) [16] used an attractive method of assisting to 
recognize the patterns, types and conditions of the brain. In 
“WE + QPSO-KSVM”, after the outstanding feature extraction, 
the weights of the classifier are optimized effectively. 

Atangana (2016) [17] proposed a novel method, stationary 
wavelet entropy (SWE), to extract features. Compared with the 
following three approaches: (i) WE; (ii) WN; (iii) DWT, the 
performance of SWE is best. The experimental results are 
98.82 %, 96.00 %, 99.76 % 98.67 % for sensitivity, specificity, 
precision and accuracy, respectively. 

Sun (2016) [18] provided a system to detect pathological 
brain better. The most important thing is to make two 
improvements to MLP. On the one hand, the best pruning 
technique is chosen to determine the number of hidden neurons 
by comparing three pruning techniques. On the other, the 
authors apply ARCBBO to train the biases and weights of MLP 
by comparing it to BBO and RCBBO. The accuracy of the 
experiment achieved 99.53%. 

Yang (2016) [19] described three classifiers and a 
comparative study on them is reported. At the first stage, 
applying DTCWT to transform wavelets in order to improve 
the weakness of DWT. Then, feature extraction is performed 
by VE. Meanwhile, this paper testify “DTCWT + VE + 
TSVM” achieved the highest accuracy compared with 
“DTCWT + VE + SVM” and “DTCWT + VE + TSVM”. 

Chen (2016) [20] developed contemporary PBDS based on 
single slice is the highlight in this paper. Firstly, they focus on 
the changes of fractal pattern and extract features using FD. 
Then, an improved PSO algorithm is put forward to avoid to 
plunging into local minimum in training phase. SLFN is 
applied to distinguish normal and abnormal brain images. The 
prospect of the overall approach is bright. 

Chen, Yang and Phillips (2015) [21] proposed the 
following methods to identify pathological and healthy brain 
images: (i) WFRFT + PCA + GEPSVM; (ii) WFRFT + PCA + 
TSVM; (iii) WFRFT + PCA + SVM and the first one has the 
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best test results. The novelty of this paper is that they create the 
possibility of WFRFT to extract more effective features. 

Chen and Du (2017) [22] introduced a detection system 
based on disease brain images that includes three parts. Using 
WPTE to extract global features at first, using RCBBO to train 
the classifier in the next step and using FNN to categorize at 
last. 

Yang (2017) [6] approved Hu moment invariants (HMI) to 
describe features which take the place of traditional DWT. 
Although the performance measure is 98.89%, there are only 
90 images used in this work. 

Wang and Lv (2016) [23] improved particle swarm 
optimization (PSO) by embed predator-prey operator to train 

weights and biases of SLN. The experiment prediction 
achieved 97.02 ± 0.33%. 

Jiang and Zhu (2017) [24] found pseudo Zernike moment 
(PZM) that represent a feature is effective to categorize. 
According to the paper, they not only analyzed the reason that 
KSVM performs better than SVM and also contrast “PZM + 
KSVM” with eleven previous approaches. 

III. RESULTS 

In the above approaches of this survey paper, we analyze 
and research the performance and disadvantages of each 
method in Table 1. 

TABLE I.  COMPARISON OF SEVERAL CONTEMPORARY METHODS 

Author Method Vulnerability Accuracy 

Yang (2016) [13] WE + BBO-KSVM 
Wavelet entropy has lower performance than 

other ways. 
97.78% 

Nayak, Dash and Majhi 
(2016) [14] 

2D-DWT + PPCA + ADBRF 
Using PPCA to reduce features are able to 

improve. 
99.53% 

Yang and Sun (2016) [15] WE + BPSO-MT + PNN 
Comparatively time-consuming in the 

experiment. 
99.53% 

Sun (2016) [16] WE + QPSO-KSVM 
not fully capture the focus and deformed 

region 
98.22% 

Atangana (2016) [17] SWE + RBF-KSVM low validity during parameter optimization 100% 

Sun (2016) [18] FRFE + KC-MLP + ARCBBO
Compared with other approaches, the 
sensitivity and specificity are lower. 

99.53% 

Yang (2016) [19] DTCWT + VE + TSVM Computation time is not optimal. 99.57% 
Chen (2016) [20] MBD + SLFN + PSO-TTC Other algorithm can optimize SLFN better 98.08% 

Chen, Yang and Phillips 
(2015) [21] 

WFRFT + PCA + GEPSVM Only applied to specific T2-weighted images 99.11% 

Chen and Du (2017) [22] WPTE + FNN + RCBBO 
The number of running times is inconsistent 

slightly. 
99.49% 

Yang (2017) [6] 
HMI + GEPSVM and HMI + 

TSVM 
The dataset only includes 90 specific images. 98.89% 

Wang and Lv (2016) [23] HMI + SLN + PP-PSO The test results are unstable. 97.02 ± 0.33%

Jiang and Zhu (2017) [24] PZM + KSVM 
There are other better SVM improvements to 

classify. 
99.45 ± 0.38%

 

IV. CONCLUSION 

This study compared the latest machine-learning methods 
for abnormal brain identification. Furthermore, we look 
forward to make a comparison of the algorithms for detecting 
other human brain-related diseases, such as sickle cell disease 
[25], HIV disease [26], etc. Some image preprocessing 
methods [27-34] may be added to check the performance. 
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