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Abstract. An algebraic method is presented for harmonic responses analysis. This paper is aiming 

at improving the accuracy of results obtained by the extended hybrid expansion method. Based on 

modal superposition and Neumann expansion theorem, the high and low modal can be truncated by 

the proposed method. Meanwhile, how to reduce the truncation error is also our pivotal topic. 

According to the accuracy of the results, two methods have been compared in several different 

situations. In the end, the results of simulation experiments show clearly the correctness and 

effectiveness of the improved method. 

Introduction 

Harmonic response analysis is widely used in mechanical systems. Often, a lot of rolling machine 

parts such as blowers, engines and boosters may cause oscillatory excitation [1]. Therefore, 

harmonic response analysis is playing an increasingly important role in many areas. For example, it 

can be used to identify the system, control the noise, update the finite element model, detect the 

structural damage and so on. 

In the past twenty years, a lot of methods have been used in harmonic response analysis and the 

sensitivity of non-viscously damped systems. First of all, harmonic responses are usually calculated 

by direct frequency response method (DFRM) and modal superposition method (MDM). From the 

direct frequency results，the DFRM uses the complicated arithmetic to solve the equation of 

motion. Hence, the results may be calculated accurately. The MDM expresses harmonic responses 

as a combination of low, high and middle modes. These methods are widely applied in engineering 

field and have been implemented in utility software. As can be seen, the MDM needs all the modes 

to calculate the responses, nevertheless, it is usually hard and even dispensable to obtain all the 

modes in engineering. Therefore, it often calculates the responses by using the interest modes and 

the modal truncation error is introduced. In order to eliminate the modal truncation error, many 

researchers have investigated the corrections to the modal truncation scheme. Then, modal 

acceleration methods (MAM) [2] is introduced by Maddox, Hansteen and Bell, Leger and Wilson, 

Kulkarni and Ng. Dickens. The characteristic method uses the particular solution of the dynamic 

equation that the excitation frequency is set to zero, meanwhile, it combines the particular solution 

with the mode superposition of available modes. Due to its neglect for the acceleration terms of the 

responses, the approximate results are usually obtained by using the method. Through further study, 

hybrid methods[3] eliminate the error by expressing the responses as a power-series expansion of 

dynamic response in terms of system matrices. Dynamic correction methods[4] reduce the caculated 

error by including the contribution of motion and the high-order modes by a summation of the 

particular solutions of both the equation of motion and the reduced differential equation of motion. 
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It is worth mentioning that force derivative methods[5] which consider the higher-order derivatives 

of the forcing function reduce the error. 

In this article, we aim at accurately calculating the harmonic response of non-viscously damped 

systems in terms of the modes of interest by generalizing the extended hybrid expansion method 

(EHEM). The extended hybrid expansion method(EHEM) is presented to reduce the error of the 

results obtained by the MDM. We generalize the extended hybrid expansion method (EHEM) by 

multiplying two coefficients in the two terms respectively. So that, the EHEM is a particular 

situation. By adjusting the coefficients, it may obtain various methods to calculate harmonic 

responses. In this way, the error can be reduced efficiently.  

Theoretical Background 

In engineering, the equations of motion of a viscously damped system can be expressed as 

hFiXKCiM =++− )()( 2 ωωω
.                                                 (1) 

Where M denotes the mass, C denotes viscous damping and K denotes stiffness matrices. Here, 

we only consider system matrices are symmetric. 

   Assuming the complex eigenvalues are different, the complex frequency response function 

(FRF) matrix )( ωiA  can be expressed by mode superposition   
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Where jϕ  is the eigenvector corresponding to the jth eigenvalue jλ . Here, we assume the 

number of eigenvalues is 2N. 

By considering ,)()( 12 −++−= KCiMiA ωωω  the responses from Eq.1 can be expressed as 
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In theory, the MDM needs all the frequencies and mode shapes. However, often the thL1  pair 

through thL2  pair of complex modes lie in the frequency range of interest and only these modes of 

interest are calculated. So, the harmonic responses obtained using the MDM can be expressed by  
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The corresponding modal truncation error can be given by   
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Accurate modal correction method  

If the excitation frequenciesω satisfy the inequation 
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where σ  is a frequency shift value, then the FRF matrix can be expressed as 
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By casting Eq.6 into the matrix form, we obtain 
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where ],,,[ 221 σλσλσλ iiidiag N −−−=Λ ⋯ , ],,,[ 221 nU ϕϕϕ ⋯=  and ],,,[ 221 Ndiag θθθ ⋯=Θ . 

By using the relationship expressed in Eq.1, the responses can be obtained as the following form 
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The harmonic responses obtained by MDM can be given by  
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 the mode truncation error expressed as  
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For a viscously damped systems, the eigensolutions and system matrices satisfy  
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By casting Eq.11 into the matrix form, one obtains 
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where ],,,[ 221 σλσλσλ iiidiag N −−−=Λ ⋯ , ],,,[ 221 nU ϕϕϕ ⋯=  and 

],,,[ 221 Ndiag θθθ ⋯=Θ . 

By using the results expressed in Eq.11, the mode truncation error expressed in Eq.10 can be 

expressed as  
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 Adding the error term to the MDM in Eq.4, the EHEM takes the form 
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In practice, it is hard to obtain all terms on the right-hand of Eq.15. Therefore, we consider the 

first h terms are retained, the approximate responses by the EHEM can easily be obtained as  
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Because only the first h term are retained, there also exists truncation error in Eq.16. It can be 

expressed as 
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Modal Truncation Augmentation Method 

Owing to the fact that EHEM only uses the first h terms of the power-series expansion expressed in 

Eq.15, the actual remaining error of the EHEM may be large. 

The modal truncation augmentation method MTAM is therefore presented to improve the results 

obtained using EHEM by multiplying two coefficients in the two terms respectively in the EHEM. 

The responses calculated using the MTAM can be expressed as 
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Where  )( ωα i  and )( ωβ i  are undetermined functions of Laplace varibles.Consider the first h 

terms are retained, the results calculated can be expressed as  
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The corresponding error can be expressed as  
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For convenience, we define the difference of the two method as  
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By casting Eq.4 and Eq.16 into the Eq.21, one obtains 

)]()()][(1[)()](1[)( ωωωβωωαω iXiXiiXiiS M

MDMEHEM

M

MDM −−+−= .                   (22) 

If )( ωα i  and )( ωβ i satisfy the following condition:  
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The difference of the two method )( ωiS <0, in that case Modal truncation  augmentation 

method is efficient in decreasing the calculated error. Especially, )( ωiS  can be expressed as  
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Example Study 

To compare the accuracy of the two method, we respectively computed the amplitude of one 

frequency response function of the different methods when h=1.At the same time, three different 

situations are also obtained. The results obtained are shown below. 
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Figure 1.  the amplitude of one frequency response function of the different methods 

From the result in Fig. 1 the errors of the MDM may be obvious when the frequency locates in 

200-250Hz and 650-700Hz.  When 0)(,1)( == ωβωα ii , in that case, the improved method 

MTAM is equivalent to the MDM. When 1)(,1)( == ωβωα ii , the improved  method  

MTAM  is equivalent to the EHEM. Apparently, when 5.0)(,5.0)( == ωβωα ii , the improved 

method MTAM can reduce the error of MDM and EHEM when the frequency locates in 200-250Hz 

and 650-700Hz. 

Concluding Remarks 

The harmonic response analysis is widely applied in many areas. Owing to its difficulty to obtain all 

the modes of a model, there exists the modal truncation error when computing the frequency 

response function. The paper is aimed at improving the accuracy of results obtained by the extended 

hybrid expansion method. The modal truncation augmentation method MTAM is therefore 

presented to improve the result obtained by EHEM. The MTAM generalizes the extended hybrid 

expansion method (EHEM) by multiplying two coefficients in the two terms respectively in the 

EHEM. According to the experiments, the errors of the MDM may be obvious when the frequency 

locates in 200-250Hz and 650-700Hz.  When 0)(,1)( == ωβωα ii , in that case, the improved 

method MTAM is equivalent to the MDM. When 1)(,1)( == ωβωα ii , the improved  method  

MTAM  is equivalent to the EHEM. Apparently, when 5.0)(,5.0)( == ωβωα ii , the improved 

method MTAM can reduce the error of MDM and EHEM when the frequency locates in 200-250Hz 

and 650-700Hz. 
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