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Abstract. It is a brand-new research in combinatorial matrix theory to extend the exponent of 

traditional single nonnegative primitive matrix to the exponent of nonnegative primitive matrix pairs. 

With the knowledge of graph theory, the problem of primitive exponent of nonnegative matrix pairs 

can be transformed into the associated directed digraph of nonnegative matrix pairs, that is 

two-colored digraphs. A class of two-colored digraphs whose uncolored digraph has 4 2n+  vertices 

and consists of one (4 1)n + -cycle and one n-cycle is considered. The primitive conditions, the upper 

bound, the lower bound, and the characterizations of extremal two-colored digraphs are given. The 

results provide a basis for the study of the exponent of nonnegative primitive matrix pairs and the 

exponent of nonnegative primitive matrix tuples in the general case. 

Introduction 

Let D  be a digraph. A walk in D  of length l  is a sequence 1 2 1, , , lv v v +⋯  of vertices such that there is 

an arc in D  from iv to 1iv +  for 1,2, ,i l= ⋯ . The walk is a path if the vertices 1 2 1, , , lv v v +⋯  are 

distinct[1]. A two-colored digraph is a digraph whose arcs are colored red and blue. We allow loops 

and both a red arc and blue arc from i  to j  for all pairs ( , )i j  of vertices. D  is strongly connected 

provided for each pair ( , )i j  of vertices there is a walk in D  from i  to j . Given a walk ω  in D , ( )r ω  

(respectively, ( )b ω ) is the number of red arcs (respectively, blue arcs) of ω , and the composition of 

ω  is the vector ( ( ), ( ))r bω ω  or ( ( ), ( ))Tr bω ω . 

A two-colored directed digraph D  is primitive if and only if there exist nonnegative integers h  and 

k  with 0h k+ >  such that for each pair ( , )i j  of vertices there is a ( , )h k -walk in D  from i  to j .  A

( , )h k -walk from i  to j  consisting of h  red arcs and k  blue arcs. The exponent of the primitive 

two-colored digraphD , denotedexp( )D , is defined to be the smallest value of h k+  over all such h

and k . 

Let 1 2{ }, , , lC γ γ γ= ⋯ be the set of cycles ofD . Set M  to be the 2 l×  matrix whose i th column is 

the composition of iγ . We call M  the cycle matrix ofD . The content of M , denoted content(M ), is 

defined to be 0 if the rank of M  is less than 2 and the greatest common divisor of all 2 2×  minors of 

M , otherwise. 

Lemma 1.1 Let D  be a two-colored digraph having at least one red arc and one blue arc. Then D  

is primitive if and only if D  is strongly connected and content(M )=1[2]. 

In fact, there is a one-to-one relationship between nonnegative matrix pairs and two-colored 

digraphs.By studying the exponent of associated directed digraph of nonnegative matrix pairs, that is 

two-colored directed digraphs, the problem of nonnegative matrix, the upper bound and the lower 

bound of primitive exponent, the characterizations of extremeal digraphs etc can be solved.Some 

results have already been obtained [4-10]. 

In this paper, for n ≥ 2, we consider the two-colored digraph D  in Figure.1 with 4 2n+  vertices 

which has at least one red and one blue arc. 
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Clearly, D  has only two cycles that one is an (4 1)n + -cycle and the other one is an n -cycle. 

Without loss of generality, we can assume that the cycle matrix of D  is 

4 1

x y

n x n y
M

 
 
 + − −

=       (1) 

for some nonnegative integers x  and y  with 4 1
4 1

2

n
nx

+ ≤ +≤ . 

The Primitivity 

Theorem 2.1 Let D  be primitive. Then if and only if 4 3, 1x n y n= − = − . 

Proof From (1), det(M )= (4 1)nx n y− + .By Lemma 1.1, D  is primitive if and only if content(M ) 

=1,that is, det(M ) = ±1. So (4 1) 1nx n y− + = ± . Because 4 1
4 1

2

n
nx

+ ≤ +≤ ,we have 4 3, 1x n y n= − = − , 

then the theorem follows.  

By Theorem 2.1, we obtain the (4 1)n + -cycle of D  contains four blue arcs, and the n -cycle of D  

contains exactly one blue arc, the cycle matrix of D  is  

4 3 1

4 1

n n
M

 
 
 

− −= . 

And the inverse matrix of M  is 

1
1 ( 1)

4 4 3

n

n
M −  

 
 

− −
− −

= . 

The Bounds on the Exponents 

Theorem 3.1 Let D  be primitive. Then 2 28 9 1 exp( ) 32 20 3n n D n n≤+ + ≤ − − . 

Proof We first prove 2exp( ) 32 20 3D n n≤ − − . 

We only prove that between each pair ( , )i j  of vertices of D  there is an 2(36 52 21,32n n n− + −  

24) -walk. For any pair ( , )i j  vertices of D , let 
ij
P  be the shortest path in D  from i  to j , and 

denote )(
ij

rr P =  and )(
ij

bb P = . We see that 

24 3 1 36 52 21
(4 3 ( 1) ) (16 12 4 (4 3) )

4 1 32 24

r n n n n
n r n b n r n b

b n

− −  − +     
+ − − + − + − + − − =        −       

. 

Noting that 0 4 3,0 5r n b≤ ≤ − ≤ ≤ , it is easy to see that 4 3 ( 1) 0n r n b− − + − ≥  and 16 12n− +  

4 (4 3) 0r n b− − ≥ . If 4 3r n= − , then 0b ≥  and if 4b = , then 0r ≥ . If 5b = , then the walk that 

starts at vertex i , follows 
ijP  to vertex j , goes one time around the (4 1)n+ -cycle at least. This gives 

2 2exp( ) 36 52 21 32 24 32 20 3D n n n n n≤ − + + − = − − . 

We next prove 2exp( ) 8 9 1D n n≥ + + . 

Suppose that ( , )h k is a pair of nonnegative integers such that for all pairs ( , )i j of vertices there is 
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an ( , )h k -walk from i  to j . By considering 4 1i j n= = + , we see that there exist nonnegative integers 

u  and v  with 

h u

k v
M

   
   
   

= . 

From Figure.1 and the cycle matrix of D , we can see there is at least an 1n+  red path on the 

(4 1)n+ -cycle. Taking i  and j  to be the initial vertex and the terminal vertex of the 1n+  red path on 

the (4 1)n+ -cycle, and this path has composition ( 1,0)n + .Hence  

( 1)h n

k
Mz

 
 
 

− +=  

has a nonnegative integer solution. Necessarily,  

1 1
( 1) 1 1

0
0 4 4

z M M
h n u n u n

k v v n

− −=
− + + +         

= − = − ≥         − −         
 

So 1u n≥ + .Next take i and j to be the terminal vertex and the initial vertex of the 1n+  red path on 

the (4 1)n+ -cycle, and this path has composition (3 4, 4)n − .Hence 

(3 4)

4

h n
Mz

k

 
 
 

− −=
−

 

has a nonnegative integer solution. Necessarily, 

1 1(3 4) 3 4
0

4 4 4 4
z M M

h n u n u n

k v v n
− −         

=          
         

− − − −
= − = − ≥

− +
. 

So 4 4v n≥ + .Thus 

[ ] [ ] 2
1

1 1 4 1 8 9 1
4 4

M
u n

h k n n n n
v n

+   
+ = ≥ + = + +   +   

. 

Thus the theorem follows. 

The Extremeal Two-Colored Digraphs 

Lemma 4.1 Let D  be primitive. If there is exactly four red paths 1ω , 2ω , 3ω , and 4ω of length 1n− , 

1n− , 2n −  and 1n+  on the (4 1)n + -cycle, that is, there is the longest red path of length 1n+  on the 

(4 1)n + -cycle, then 2exp( ) 8 9 1D n n= + + . 

Proof Form Theorem 3.1, we only proof 2exp( ) 8 9 1D n n≤ + + . 

For any pair ( , )i j  of vertices ofD , let 
ijP  be the shortest path in D  from i  to j  , and denote 

)( ij rr P =  and )( ij bb P = .We see that 

24 3 1 8 7
( 1 ( 1) ) (4 4 4 (4 3) )

4 1 8 8

r n n n n
n r n b n r n b

b n

− −  + −     
+ + − + − + + + − − =        +       

.(2)  

We consider the following six cases: 

Case 1: 0b = . 

It is clear that0 1r n≤ ≤ + . Hence 1 0n r+ − ≥ and 4 4 4 0n r+ + > .By (2), the walk that starts at 

vertex i , follows 
ijP  to vertex j , goes 1n r+ −  times around the (4 1)n+ -cycle, and 4 4 4n r+ + times 

around the n -cycle is an 2(8 7,8 8)n n n+ − + -walk from i  to j . 

Case 2: 1b = . 

It is clear that 0 2r n≤ ≤ . Hence 2 0n r− ≥  and 4 7 0r + > .By (2), the walk that starts at vertex i , 

follows 
ijP  to vertex j , goes 2n r−  times around the (4 1)n+ -cycle, and 4 7r +  times around the n

-cycle is an 2(8 7,8 8)n n n+ − + -walk from i  to j . 

Case 3: 2b = . 

It is clear that 2 3 1n r n− ≤ ≤ − . Hence 3 1 0n r− − ≥ and 4 4 10 0n r− + + > .By (2), the walk that 
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starts at vertex i , follows 
ijP  to vertex j , goes 3 1n r− −  times around the (4 1)n+ -cycle, and 

4 4 10n r− + + times around the n -cycle is an 2(8 7,8 8)n n n+ − + -walk from i  to j . 

Case 4: 3b = . 

It is clear that 2 3 4 3n r n− ≤ ≤ − . Hence 4 2 0n r− − > and 8 4 13 0n r− + + > .By (2), the walk that 

starts at vertex i , follows 
ijP  to vertex j , goes 4 2n r− −  times around the (4 1)n+ -cycle, and 

8 4 13n r− + + times around the n -cycle is an 2(8 7,8 8)n n n+ − + -walk from i  to j . 

Case 5: 4b = . 

It is clear that 3 4 4 3n r n− ≤ ≤ − . Hence 5 3 0n r− − > and 12 4 16 0n s− + + ≥ .By (2), the walk 

that starts at vertex i , follows 
ijP  to vertex j , goes 5 3n r− −  times around the (4 1)n+ -cycle, and 

12 4 16n r− + + times around the n -cycle is an 2(8 7,8 8)n n n+ − + -walk from i  to j . 

Case 6: 5b = . 

It is clear that 4 3 5 2n r n− ≤ ≤ − . Hence 6 4 0n r− − > and 16 4 19 0n r− + + > .By (2), the walk 

that starts at vertex i , follows 
ijP  to vertex j , goes 6 4n r− −  times around the (4 1)n+ -cycle, and 

16 4 19n r− + + times around the n -cycle is an 2(8 7,8 8)n n n+ − + -walk from i  to j . 

Then 2 2exp( ) 8 7 8 8 8 9 1D n n n n n≤ + − + + = + + . The lemma follows. 

As the proof of Theorem 4.1, we have the following Lemma. 

Lemma 4.2 Let D  be primitive.If and only if there is exactly one red path ω  of length 4 3n −  on 

the (4 1)n+ -cycle, then 2exp( ) 32 20 3D n n= − − . 
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