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Abstract. Biogeography based optimization (BBO) is a new evolutionary optimization algorithm 

based on the science of biogeography for global optimization. In this paper, we proposed two 

extensions to BBO. First, we proposed a new migration operation based sinusoidal migration model 

with the heuristic crossover operator. We have presented three heuristic crossover operators, they 

are constant heuristic crossover operator, random heuristic crossover operator and dynamic heuristic 

crossover operator. Among them, the migration operation used random heuristic crossover operator 

(HCBBO) is optimal. Then, as we all know, the Gaussian mutation operator is optimal to settle 

unimodal function, the random mutation operator is optimal to settle multimodal function. 

Therefore, we have presented a stable mixture mutation approach based on an improved variant of 

BBO, it is a biogeography of hybrid with random mutation and Gauss mutation based optimization 

algorithm using sinusoidal migration model. Experiments have been conducted on 14 benchmark 

problems of a wide range of dimensions and diverse complexities. Simulation results and 

comparisons demonstrate the proposed HCBBO algorithm using sinusoidal migration model 

surpasses other improved BBO, the mixture BBO is stability than other algorithms from literatures 

in recent years when considering the quality of the solutions obtained. 

Introduction 

Biogeography based optimization (BBO) is a new evolutionary algorithm for global optimization 

that was invented in 2008 by Dan Simon [1], while attempting to simulate the colonization and 

extinction of species between habitats. This new population-based stochastic optimization technique 

is based on the mathematical models of the natural phenomenon of biogeography. In this algorithm, 

each habitat represents a candidate solution for the optimization problem and gets modified by the 

process of migration. The colonization and extinction rates are calculated with reference to the 

fitness of each solution. Originally, the BBO algorithm was proposed for optimization problems, 

where several modifications have been proposed such as [2-6] .However, The performances of the 

proposed algorithms are better.  

Biogeography Based Optimization with Heuristic Crossover 

Migration Model. BBO is a new population-based biogeography inspired global optimization 

algorithm[7-10], which gives it certain features in common with other EAs. In BBO, each real 

number in the array is considered as a SIV. The goodness of each solution is called as its habitat 
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suitability index (HIS) which is analogous to ‘‘fitness’’ in other population-based optimization 

algorithm. In BBO, each individual has its own immigration rate λ and emigration rate μ. The 

immigration rate and emigration rate are functions of the number of species in the habitat. They can 

be calculated as follows: 
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where I is the maximum possible immigration rate, E is the maximum possible emigration rate, i 

is the number of species of the ith individual, and n is the maximum number of species. As we can 

see, this model is a linear migration model. However, the process of migration is more complicated 

than a linear curve because the ecosystem is inherently nonlinear, where simple changes in one part 

of the system will produce complex effects throughout the entire system. In this sense, linear model 

is too simple to explain the complicated problem such as migration. The immigration rate and 

emigration rate are functions of the number of species in the habitat. They can be calculated as 

follows: 
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In BBO, migration denotes the movement species among different habitats. The migration 

strategy is similar to the evolutionary strategy in which many parents can contribute to a single 

offspring. BBO migration is used to change existing solution and modify existing island. Migration 

is a probabilistic operator that adjusts a habitat Hi. The probability Hi is modified proportional to its 

immigration rate λi, and the source of the modified probability comes from Hj is proportional to the 

emigration rate μj. Migration can be described as follows: 

Hi(SIV)← Hj(SIV)                                               (5) 

In this paper, we propose a new migration operation based sinusoidal migration model, called 

perturb migration, which is a generalization of the standard BBO migration operator. In perturb 

migration model, instead of copying a parent’s island if the Hi is not chosen with the probability 

proportional to λi, we use the operator of perturb method from the neighborhood island to update 

the Hi, which is described as follows: 

Model 1 Constant heuristic crossover model: 

   Hi (SIV)= Hi (SIV)+0.12( Hi (SIV) –Hr(SIV))                                  (6) 

where r is a random individual,  )1,0(randNr  . 

Model 2 Randomly heuristic crossover model: 

Hi (SIV)= Hi (SIV)+(0.5-rand(0,1))( Hi (SIV) –Hr(SIV))                               

(7) 
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where r is a random individual,  )1,0(randNr  . 

Model 3 Dynamic heuristic crossover model: 
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where r is a random individual,  )1,0(randNr  . 

The basic structure of perturb migration operator can be informally described in the following 

algorithm: 

Algorithm 1. Habitat perturb migration model  

01: for i=1 to N do  

02:   for j=1 to D do 

03:     Use λi to probabilistically decide whether to immigrate to xi,j. 

04:     if rand (0,1)< λi then 

05:       Select the emigrating island Xk with a probability μk 

06:       Replace the jth decision variable (SIV) of Xi with its corresponding variable in Xj 

07:       xi,j=xk,j 

08:     else 

09:       Replace the jth decision variable (SIV) of Xi with its corresponding variable in Xj 

according to different heuristic crossover model 

10:     end if  

11:   end for  

12: end for 

Hybrid Mutation. In order to enhance the exploration ability of BBO, we use a new mutation 

operator based on Gaussian operator. The Gaussion mutation can be described as follows: 

The formula for the probability density function of the Guassion distribution is 
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where μ is the mean and σ
2
 is the variance. Then the Guassian mutation with μ= 0 and σ= 1 can 

be described as 

)1,0(,, jjiji Nxx 
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Where xi,j is jth dimension variable of individual Xi and Nj(0,1) indicates that the random 

number is generated a new for each individual of j. In this paper, we use the Guassion distribution 

to update the individual based sinusoidal migration model. 
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Algorithm 2  Hybrid with random mutation and Gauss mutation 

01: for i=1 to N do  

02:   Compute the probability Pi using λi and μi  

03:   Use the probability Pi to compute the mutation rate mi  

04:   for j=1 to D do  

05:     Select a variable (SIV) xi,j with a probability Pi  

06:     if rand(0,1)<mi then  

07:       if round(rand(0,1))=0 then 

08:         Replace xi,j with a randomly generated variable from its range 

09:       else 

10:         Replace xi,j with Gauss mutation to generate a new SIV 

11:       end if 

12:     end if  

13:    end for  

14: end for. 

Experimental Results 

To evaluate the performance of our algorithm, we apply it to 18 standards benchmark functions. 

These functions have been widely used in the literature. Since we do not make any modification of 

these functions, they are given in Table 1.The first five of seven functions are unimodal functions. 

Function f06 is the step function which has one minimum and is discontinuous. Function f07 is a 

noisy quadratic function. The following seven functions are multimodal test functions. For these 

functions, the number of local minima increases exotically with the problem dimensions. Then, ten 

multimodal test functions with fix dimension which have only a few local search minima are used 

in our experimental study.  

Experimental Seting. For HCBBO, we have chosen a reasonable set of value. For all 

experiments, we use the following unless a change is mentioned. Population size: NP = 

100;Maximum immigration rate: I = 1;Maximum emigration rate: E = 1;Mutation probability: 

mmax= 0.005.All algorithms are coded in MATLAB 2012, and experiments are made on a Pentium 

3.0 GHz Processor with 1.0 GB of memory. 

Experimental Result. Maximum number of Fitness Evaluation (Max_NFFEs): 

The maximum number of generations: 1500 for f1, f6, f10, f12, f13, and f14, 2000 for f2 and f11, 

3000 for f7, f8, f9, and 5000 for f3, f4, f5. For all test functions, the algorithms carry out 50 

independent runs. 
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Table 2  Comparisons of Constant HC(sin), Random HC (sin), Dynamic HC (sin). 

Annotation:Constant heuristic crossover:Hi (SIV) = Hi (SIV)+0.12( Hi (SIV) –Hr(SIV)) 

Random heuristic crossover:Hi (SIV)= Hi (SIV)+(0.5-rand(0,1))( Hi (SIV) –Hr(SIV)) 

Dynamic heuristic crossover:
5
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Conclusion 

In this paper, in order to enhance the exploration ability, we proposed a new migration operation 

used heuristic crossover operator, which is an innovation of the standard BBO migration operator. 

We have presented three heuristic crossover operators, they are constant heuristic crossover operator, 

random heuristic crossover operator and dynamic heuristic crossover operator. Among them, the 

migration operation used random heuristic crossover operator is optimal. At the same time, we have 

presented a stable mixture mutation approach based on an improved variant of BBO, it is a 

biogeography of hybrid with random mutation and Gauss mutation based optimization algorithm 

using sinusoidal migration model. To verify the performance of HCBBO(a migration operation used 

random heuristic crossover operator), 14 benchmark functions are chosen from literature are 

employed. The results show that the proposed HCBBO algorithm clearly outperforms the basic 

BBO.The mixture BBO are stability than other algorithms witch is proposed by now. In this paper, 

we only consider the global optimization. The algorithm can be extended to solve other problems 

such as constrained optimization problems. 
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