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Abstract. While deployable antenna works in space, there are little or no gravity effects on antenna’s 

state, and it is no need to analyze antenna’s cablenet system with considerations of gravity effects. But 

before launching, deployable antenna is to be assembled and tested in ground conditions, so in this 

situation, it is necessary to add gravity effects to antenna’s analysis model to make sure the 

calculations are still accurate. For this sake, the catenary element that can simulate cable problems in 

conditions with gravity effects was used in this paper to build the cablenet system’s finite element 

method model for deployable antenna. Firstly, formula of catenary element is deduced based on 

cable’s original length.  Then by using this type of cable element, the finite element method model of 

antenna’s cablenet system in ground conditions is set up. And at last, this finite element method 

model is analyzed in an example, and the results show the difference of cablenet system between 

space conditions and ground conditions. 

Introduction 

Cablenet is increasingly being used in spaceborne deployable antenna system for its special qualities 

such as lighter weight, smaller collapsed volume and more flexible material. Cablenet can be used to 

form long-span reflector for spaceborne deployable antenna with strict shape precision requirement, 

and this is very different from its other usage in common buildings [1]. There is little or no gravity in 

space, but before launching, deployable antenna has to be manufactured and tested on the ground. So 

gravity effects on cablenet of deployable antenna in ground test are a problem we need to study. 

Cablenet is a kind of flexible structure with geometric nonlinearity. Its cable elements need 

particular pretensions to obtain cablenet’s given shape and stiffness. Cablenet problems can always be 

solved by methods such as nonlinear finite element method, balance matrix method, force density 

method and dynamic relaxation method. A lot of papers have studied the subject about analysis and 

calculation for cablenet of deployable antenna. In these papers, paper [2] summarized the difference 

of above methods when they are used for solving deployable antenna cablenet problems. Paper [3] 

used balance matrix method to analyze and optimize some different types of deployable antenna’s 

cablenet, and gave out the optimal cable pretension distributions. Paper [4] used minimum norm 

method to optimize pretensions of a non-axisymmetric deployable antenna’s cablenet, and obtained 

an optimal cable pretension distribution that can meet the demand for stress uniformity. Paper [5] 

used nonlinear finite element method to optimize pretensions of deployable antenna’s cablenet with 

minimum reflector’s shape precision as goal, and obtained the optimal structural parameters. 

All above papers studied cablenet of deployable antenna without consideration of gravity effects. 

When antenna works in space, there are little or no gravity effects, but before launching, the antenna 

should be adjusted and tested in gravity environment, and in this situation, special attention need to be 

given to how much difference there will be for the cablenet’s shape between these two kinds of 

environments. For this reason, Catenary element that can simulate cable in gravity environment is 

used to establish the finite element model of deployable antenna’s cablenet system in conditions with 

gravity effects, and by solving this finite element model, we can obtain accurate shape and pretension 
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distribution in ground environment, and make sure the difference between gravity effects and no 

gravity effects [6, 7]. 

 
Figure 1.  Finite Deployable antenna’s structure 

 

Analysis for Deployable Antenna’s Cablenet with Consideration of Gravity Effects 

For deployable antenna’s cablenet with consideration of no gravity effects, seeing cable elements as 

two nodes line segments and using balance matrix method to linearly analyze it, the pretension value 

of every cable element in cablenet system can be accurately calculate [8, 9]. But before launching,  

deployable antenna need to be tested and adjusted on the ground, and because of gravity, cable 

elements will sag more or less, and force directions at element’s end nodes will not be on the same 

straight line. In this case, deployable antenna’s cablenet may deviate from its given shape in 

conditions with gravity effects. In order to find out the accurate effects of gravity on cablenet’s shape 

and inner forces, we use catenary elements to simulate upper and lower cables in the cablenet system, 

and two nodes cable-bar elements for vertical cables in the cablenet system. 

When it is assumed that catenary element shown in Fig.2 can meet the demand for large 

deformation and small strain, and gravity evenly loads on the cable element [10, 11], we can calculate 

cable length from formulae below. 

 

Figure 2.  Finite Catenary element 
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In above expressions, L is cable length after loading, Cx and Cz are horizontal and vertical projected 

length of catenary chord, q0 is cable weight per unit length, FH is horizontal tension on end node. 
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The relationship between original cable length L0 and horizontal tension FH can be written as, 
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Getting the derivation of FH in Equ.(3), we can obtain equation below further. 
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Because cable’s original length L0 is known, we can use Newton-Raphson method to solve Euq.(5) 

to obtain cable node’s FH. 

From FH, we can get catenary element’s nodal component force as shown below. 
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In above equations, Fix and Fiz are horizontal and vertical component force of the ith cable node in 

local coordinate system, Fjx and Fjz are horizontal and vertical component force of the jth cable node, 

Ti and Tj are nodal tension of the ith and the jth cable node, θi is the angle between the cable element 

and horizontal direction at ith cable node. 

By using balance matrix method described in previous section, we can get the optimal cablenet 

pretension distribution with no consideration of gravity effects, and then we can use Equ.(12) and 

Equ.(13) below to calculate cables’ original lengths in conditions with elasticity and small strain. 

0L L L= − ∆                                                                                                                            (12) 

T
L L

AE
∆ =                                                                                                                             (13) 

L0 is cable original length, L is cable length with deformation caused by pre ⊿tension, L is 

elongation of cable element caused by pretension, T is cable element’s pretension calculated by 

balance matrix method. 

When cable’s original length and nodes’ locations are known, we can obtain tangent stiffness 

matrix of catenary elements in conditions with gravity effects. 

Furthermore, the vertical cables in deployable antenna’s cablenet system have approximately the 

same direction with gravity, and this type of cable will stay straight line shape in conditions with 

gravity effects, so we use two nodes cable-bar element to simulate vertical cables for cablenet’s FEM 

model. 

Based on cablenet’s original structural parameters in conditions with no gravity, and with catenary 

elements simulate upper and lower cables, two nodes cable-bar elements simulate vertical cables, we 

can establish non-linear Newton-Raphson iterative equations for antenna’s cablenet system in 

conditions with gravity effects as shown below, 
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In these eq ⊿uations, u
i+1
 is displacement increment in the i+1th step, KT

i
 is the whole structure’s 

tangent stiffness matrix in the ith step, R
i
 is node’s residual force vector in the ith step, F

i
 and P

i
 are 

node’s external force vector and inner force vector. 

By solving above iterative equations, we can get nodal displacements and inner 

forces of deployable antenna’s cablenet in conditions with gravity effects. 

Furthermore, it is necessary to note that there is a layer of wire mesh put on antenna’s cablenet 

system. And its weight should also be considered a kind of external force for the cablenet system. 

Numerical Experiment and Discussion 

Based on the method described in this paper, we used Fortran language to write the corresponding 

programs, and analyzed triangular mesh cablenet system of a deployable antenna with 10m diameter 

and 6m paraboloid focal length in conditions with gravity effects. The deployable antenna’s cablenet 

system is shown in Fig .3. This cablenet system is made up of 439 cable elements. Based on axial 

symmetry of this triangular mesh cablenet system, we can divide the system into twelve groups with 

the same topology structure as shown in Fig.3, and it turns out that every group includes only 27 

independent cable pretension variables. Symbols in Fig.3 are pretension serial numbers of each cable 

element, and among these numbers, 20-27 are for vertical cables. And for this simplified cablenet 

system, a group of ideal cable pretentions shown in Table 1can be obtained easily by using balance 

matrix method with the average value T
—

≤15N as constrain. 

 

Figure 3.  Finite Deployable antenna’s cablenet system 

 

Table 1  The given pretensions of cablenet 

Variable No. Variable value Variable No. Variable value Variable No. Variable value 

T1 20.4549 [N] T10 19.0685 [N] T19 17.7977 [N] 

T2 19.0576 [N] T11 19.9018 [N] T20 5.1093 [N] 

T3 19.3006 [N] T12 19.4049 [N] T21 4.7330 [N] 

T4 19.3534 [N] T13 19.5276 [N] T22 4.7275 [N] 

T5 19.5910 [N] T14 18.9221 [N] T23 4.7962 [N] 

T6 19.3397 [N] T15 18.8906 [N] T24 4.7253 [N] 

T7 19.9841 [N] T16 18.2632 [N] T25 4.7325 [N] 

T8 20.2953 [N] T17 18.9969 [N] T26 4.7376 [N] 

T9 19.3914 [N] T18 19.0630 [N] T27 4.8345 [N] 

 

By using catenary elements to simulate upper and lower cables, two nodes cable-bar elements for 

vertical cables, we analyze above cablenet system in conditions with gravity effects. In this case, 

cable’s weight per unit length is set to 4.6181E-2N/m, cable density is set to 1.5E3kg/m
3
, elastic 
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modulus of cable element is set to 1.24E11N/m2 and cable radius is set to 1mm. It is necessary to note 

here that for gravities of vertical cables, they are added to the ends of cable-bar elements just as a kind 

of external load. After using non-linear finite element method to calculate this model, we obtain that 

root mean square error of all cablenet’s unrestrained nodes’ displacements is 2.5105E-2mm in its 

self-balance state. When the average nodal force of catenary element is considered its inner force, the 

root mean square of differences between catenary cables’ inner forces and pretension values in Table 

1 is 0.6130N. 

Above results suggest that gravity make lower cables’ inner forces reduce a little and make upper 

cables’ inner forces increase a little. But in general, for deployable antenna, gravity effects of cable 

elements are very weak for cables’ small cross-sectional areas and light weights. 

In view of the weight of wire mesh reflector put on antenna’s upper cables, it is necessary to add its 

gravity as nodal external load to cablenet’s FEM model. In this paper, the wire mesh’s mass is set to 

5Kg, and after it is added to the non-linear finite element calculation, we obtain that root mean square 

error of all cablenet’s unrestrained nodes’ displacements is 6.9439E-2mm. The root mean square of 

differences between cables’ inner forces and pretension values in Table 1 is 1.7020N. These results 

show that though wire mesh’s weight is small, its effects on inner force change of cablenet need 

careful attention. And for antenna’s cablenet system, a large inner force change will have adverse 

effects on its deployment property. 

Conclusions 

Firstly, by using catenary elements to simulate upper and lower cables, two nodes cable-bar elements 

to simulate vertical cables, the deployable antenna’s cablenet FEM model in ground conditions is 

established and analyzed. The results show that for antenna’s cablenet system, there is only very little 

shape difference between gravity state and no gravity state, so we can consider that shape precision of 

cablenet system in ground test is equal to it in space. 

Secondly, at the end of the example, we set the weight of wire mesh as external load and add it to 

the calculation, and results show that the cablenet’s shape does not have a measurable change by this 

external load. But in this case, the root mean square of cablenet’s inner force change rises to 1.7020N, 

and for the antenna’s cablenet system, it is necessary to bring attention to this problem for a potential 

risk of worse deployment property. 
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