
Lifting Scheme Combined with SPIHT Color
 Image Compression Algorithm

Xinwen Bi

Institute of Information Technology and Media, Beihua University, Jilin City, China

52600613@qq.com

Keywords: MRCT; SPIHT; Lossless Compression

Abstract. The embedded zero tree wavelet coding algorithm in wavelet transform domain is the

efficient image compression coding algorithm, the wavelet transform coefficients according to their

order of importance to, realize the progressive image coding, based on aggregation and S transform

and MRCT transform in the lossless compression algorithm for image, through the simulation

experiment, the JP2 respectively, RAR, ZIP, PNG, TGA, PCX, TIF lossless compression results

improved an average of 2%, 15%, 51%, 51%, 34%, 52%, 31%.

Introduction

The SPIHT algorithm
[1]
 is based on the embedded zerotree wavelet algorithm

[2]
it inherits the

EZW method using the correlation between the corresponding position coefficients
[4]
 in different

frequency bands
[3]
 after wavelet transform, Easy to control the compression ratio

[5]
 and achieve

scalable coding
[6-7]

,Greatly optimizing the location information
[8]
 encoding. However, the

singularity of the compression coding can not be completely redundant, under this condition, a

variety of algorithms combined with coding technology to achieve the redundancy of the

compression technology, in this paper, we study the image compression algorithm of S-transform

and SPIHT algorithm, compression results have been improved.

SPIHT Algorithms

SPIHT Algorithm Specific Symbols.),(jiO indicates the node),(ji a collection of all child

coordinates.

)}12,12(),2,12(),12,2(),2,2{(),(++++= jijijijijiO 。 (1)

),(jiD represents the set of all the descendant coordinates of node),(ji .

H denotes the set of transform coefficients of the largest scale of wavelet transform, both LLJ,

HLJ, LHJ and HHJ.

),(jiL means),(),(),(jiOjiDjiL −= 。 (2)

Three lists:

(LIS), important pixel list (LIP), important pixel list (LSP), in LSP,LIP,),(ji represents a single

pixel, in LIS,),(ji represents set),(jiL or),(jiD . In order to distinguish between the two types

of collections, if it is),(jiD said LIS table value for the A type, if it is),(jiL said LIS table

value for the B type.

SPIHT Specific Implementation Process.ⅠInitialization:

Output
 }C ji,{max j)(i,(logn

2
=

, set the LSP is empty, the coordinate Η∈),(ji into the LIP,

and H in the descendants (high frequency part: HLJ,LHJ,HHJ) into the LIS, as the A value.

This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/).

Copyright © 2017, the Authors. Published by Atlantis Press. 916

Advances in Computer Science Research (ACSR), volume 76
7th International Conference on Education, Management, Information and Mechanical Engineering (EMIM 2017)

Ⅱ Sorting process:

(1) for each ∈),(ji LIP

1) Output),(jiS n ;

2) If 1),(=jiS n , move 1),(=jiS n into the LSP and output the sign of
c ji),(;

 (2) for each ∈),(ji LIS

 1) If the value of A, then

① output)),((jiDS n ;

② if 1)),((=jiDS n , then for each),(),(jiOlk ∈ , as:

• Output),(lkS n ;

• If 1),(=lkS n , send (k, l) to the LSP and output its symbol;

• If 0),(=lkS n , send (k, l) to the end of the LIP;

③ If),(jiL ≠φ , move (k, l) to the end of the LIS as the B value; otherwise, remove (i, j) from the

LIS.

2) If the value of B, then

① output)),((jiLS n ;

② if 1)),((=jiLS n , then

• for each),(),(jiOlk ∈ added to the end of the LIS as an A value;

• Delete (i, j) from LIS.

(3) refinement process: for each LSPji ∈),((not including the last splitting process), output

the nth most significant bit of
c ji , ;

 (4) quantization step size refresh: n = n-1; return (2).

S Transform

The simplest, most generally reversible integer to integer mapping is the S transform, the S

transform is well known as a reversible integer to integer transform, and its basic component is the

Haar wavelet transform.

It can be expressed as:

















−






 +
=















xx

xx

y

y

10

10

1

0
)(

2

1

 (3)

When












−
=













yx

x
t

t

11

0

 is: t ≌





 ++)1(
2

1

10
yy

Of course, the above formula is the most basic form of S transform, we often use more complex

three-dimensional form, S-transform can be extended to the generalized S-transform generalized

S-transform (GST).

Here we set x, y are:

917

Advances in Computer Science Research (ACSR), volume 76

[]Tx xxx N 110 −
≅ … (4)

Ty yyy
N 



≅

− 110
…

 (5)

There are y = Cx + Q ((B-I) Cx) where B and C are what? It can be expressed as:

1 b1 b2 … bN-1

0 1 0 … 0

B = 0 0 1 … 0 (6)

………………

0 0 0 … 1

C0,0 C0,0 C0,0 … C0,N-1

C1,0 C1,1 C1,2 … C1, N-1

C ≌ C2,0 C2,1 C2,2 … C2, N-1 (7)

 ……………………

 CN-1,0 C N-1,1 C N-1,2 … CN-1, N-1

Here, if A ≅ BC then x = C-1 (y-Q ((B-I) y)). It should be noted that C-1 is also an integer matrix.

Then we look at the matrix B, or it can be replaced by any two unknown variables u, v: V = u + Q

((B-I) u) or u = v-Q ((B-I) v). Equivalent to us into u = Cx and v = y.

A = BC, then A can be defined as

a0,0 a0,0 a0,0 … a0,N-1

 a1,0 a1,1 a1,2 … a1, N-1

A ≌ a2,0 a2,1 a2,2 … a2, N-1 (8)

 ……………………

 aN-1,0 a N-1,1 a N-1,2 … aN-1, N-1

Break down the steps:

Step1. The integer term of A for N-1 rows is:

Ai,j∈Z (i = 1, 2, ..., N-1, j = 0,1, ..., N-1)

Step 2. The modulus of A is 1.

Step 3. {Det minor (A, 0, i)}N-1is a quality.

MRCT Transformation.When compressing a color image, the color is expressed as multiple

components often in order to improve the coding efficiency. This transformation can be expressed

by brightness. In this way, people can easily extract the gray scale of the image. For RGB color

images, the brightness is the color of the element, it can usually be expressed as y = 0.299r +0.587g

+0.114b We use this formula to express the brightness and gray value when you can use this

formula:
bgry

4

1

2

1

4

1 ++=

In this way the calculation is rough, there will be a lot of data loss in practical applications, if the

structure of such changes can improve the approximate brightness, we call this method for the

MRCT. Extended to GST as follows:

918

Advances in Computer Science Research (ACSR), volume 76



























 ++

=


















t

t

ttx

y

y

y

1

0

101

2

1

0

)1590(
128

1

then t0=x2-x1,t1=x0-x1；



















+

=



















ys

s

s

x

x

x

21

1

0

2

1

0

then s=y0-





 +)1590(
128

1

21
yy

,s0=s2-y1

Experimental Results and Conclusions

In order to illustrate the effectiveness of the algorithm, this paper compares the lossless image

compression algorithms of JP2, RAR, ZIP, PNG, TGA, PCX and TIF in 12 color international

standard test images, and on average, no compression ratio Than the above algorithm were

increased by 2%, 15%, 51%, 51%, 34%, 52%, 31%, as shown in Table 1.

Table 1 12 color international standard test image compression experiment comparison results

Compression

scheme

InternaTional

Standard

Test Images

JP2 RAR PCX TGA ZIP TIF PNG

Kodak1 511631 598789 1161410 1157891 796111 1065614 783060

Kodak2 451678 508771 1142233 1150300 665774 865916 621478

Kodak3 399015 458212 1096862 1085783 569796 890712 549676

Kodak4 461292 512279 1172752 1153733 747996 108740 640877

Kodak5 533178 684773 1185005 1162343 915984 1238244 810363

Kodak6 472736 532397 1188493 1148689 718077 1001630 673733

Kodak7 419224 488048 1113169 1109121 650774 976216 573980

Kodak8 548967 804423 1309333 1163564 951692 1255784 791697

Kodak9 446250 488367 1190110 1152950 619045 838012 587850

Kodak10 454440 495213 1171219 1154093 686399 958320 598508

Kodak11 458044 553611 1139853 1129959 699897 930316 643047

Kodak12 426781 482724 1247133 1130272 598262 881932 575313

SPIHT+MRCT 2% 15% 51% 51% 34% 52% 31%

Acknowledgements

This work was financially supported by National Ministry of Education Chunhui

Plan(104900071, 1049000150), Exploring Practice of C Language Program Design" Case

Teaching for Professional Application (XJQN2016035).

References

[1] Tasai M J, Villasenor T D, Chen F. Stack-run image coding[J].IEEE Transactions on Circuits

System Video Technology, 1996,6(5): 519-521.

[2] Mallat S. Multifrequency channel decompositions of images and wavelet models[J].IEEE

919

Advances in Computer Science Research (ACSR), volume 76

Transactions on ASSP,1989,37(12): 2091-2109.

[3] Moffat A. Linear time adaptive coding [J].IEEE Transactions on Info Theory,1990,36(2):

401-406.

[4] Shapiro J M. Embedded image coding using zerotree of wavelet coefficients [J].IEEE

Transactions on Signal Processing, 1993, 41 (12): 3445-3462.

[5] Ordentlich E, Weinberger M, Seroussi G. On modeling and ordering for embedded image

coding[C]//Proc IEEE Int Symp Information Theory,2000: 297-299.

[6] Taubman D. High performance scalable image compression with EBCOT [J].IEEE

Transactions on Image Processing, 2000, 9 (6): 1158-1170.

[7] Said A, Pearlman W A.A new fast and efficient image codec based on set partitioning in

hierarchical trees[J].IEEE Transactions on Circuit and Systems for Video Technology, 1996,

6(3): 243-249.

[8] Witten I H, Neal R M,Clew J G. Arithmetic coding for data compression[J]. Commun ACM,

1987, 30(6): 520-540.

920

Advances in Computer Science Research (ACSR), volume 76

