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Abstract. A two-colored directed digraph D is primitive if and only if there exist nonnegative integers 

h and k with h+k>0 such that for each pair (i, j) of vertices there is a (h, k)-walk in D from i to j. A (h, k) 

-walk from i to j consisting of h red arcs and k blue arcs. The exponent of the primitive two-colored 

digraph D, denoted exp(D), is defined to be the smallest value of h+k over all such h and k. A class of 

two-colored digraphs with two cycles whose uncolored digraph has n vertices and consists of one n 

-cycle and one 3 -cycle is considered. The upper bound of primitive exponent and characteristic of 

extremal two-colored digraphs are given. 

Introduction 

Let D  be a digraph. A walk in D  of length l  is a sequence 1 2 1, , , lv v v   of vertices such that there is 

an arc in D  from iv to 1iv   for 1,2, ,i l . The walk is a path if the vertices 1 2 1, , , lv v v   are distinct 

[1]. A two-colored digraph is a digraph whose arcs are colored red and blue. We allow loops and both 

a red arc and blue arc from i  to j  for all pairs ( , )i j  of vertices. D  is strongly connected provided for 

each pair ( , )i j  of vertices there is a walk in D  from i  to j . Given a walk   in D , ( )r   

(respectively, ( )b  ) is the number of red arcs (respectively, blue arcs) of  , and the composition of 

  is the vector ( ( ), ( ))r b   or ( ( ), ( ))Tr b  . 

A two-colored directed digraph D  is primitive if and only if there exist nonnegative integers h  

and k  with 0h k   such that for each pair ( , )i j  of vertices there is a ( , )h k -walk in D  from i  to j . 

A ( , )h k -walk from i  to j  consisting of h  red arcs and k blue arcs. The exponent of the primitive 

two-colored digraph D , denoted exp( )D , is defined to be the smallest value of h k  over all such 

h and k . 

Let 1 2{ }, , , lC    be the set of cycles of D . Set M  to be the 2 l  matrix whose i th column is 

the composition of i . We call M  the cycle matrix of D . The content of M , denoted content( M ), is 

defined to be 0 if the rank of M  is less than 2 and the greatest common divisor of all 2 2  minors of 

M , otherwise. 

Lemma 1.1 Let D  be a two-colored digraph having at least one red arc and one blue arc. Then D  

is primitive if and only if D  is strongly connected and content( M )=1[2]. 

It is well known that there is a natural correspondence between two-colored digraphs and 

nonnegative matrix pairs ([2]). The concept of exponent of nonnegative matrix pair arises in the study 

of finite Markov chains([2,3]), and some results have already been obtained ([3-10]).In this paper, we 

consider the two-colored digraph D  in Figure.1 with n vertices which has at least one red and one 

blue arc. 

For 4n  , the greatest common factor of n  and 3 to be 1,we consider the two-colored digraph that 

has at least one red arc and one blue arc, and whose uncolored digraph is that in Fig. 1. 
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Figure 1.  Finite Uncolored digraph of D 

Clearly, D  has only two cycles that one is an n -cycle and the other one is an 3 -cycle. If all of arcs 

on 3 -cycle are red or blue, then content( M ) 1 , D  is not primitive. Without loss of generality, we 

may assume that the cycle matrix of D  is 

1

2

a

n a
M

 
 
 

              (1) 

or 

2

1

a

n a
M

 
 
 

              (2) 

for some nonnegative integer a . 

Theorem 1.2 If the cycle matrix of D  is (1), D  is primitive if and only if 1

3

n
a


 . 

Proof From (1),  det( M )= 2 ( )a n a  .By Lemma 1.1, D  is primitive if and only if content( M )=1, 

that is, det( M )=±1. Then the theorem follows. 

Theorem 1.3 If the cycle matrix of D  is (2), D  is primitive if and only if 2 1

3

n
a


 . 

Proof From (2), det( M )= 2( )a n a  .By Lemma 1.1, D  is primitive if and only if content( M )=1, 

that is, det( M )=±1. Then the theorem follows. 

The Upper Bound of the Exponents 

In this section, we will give the upper bound on the primitive exponent for D . By Theorem 1.2, we 

obtain the 3 -cycle of D  contains exactly one red arc and two blue arcs. By Theorem 1.3, we obtain 

the 3 -cycle of D  contains exactly two red arcs and one blue arc. 

Theorem 2.1 If the cycle matrix of D  is (1), D  is primitive and 1

3

n
a


 , then 

24 3 1

3
exp( )

n n
D

 
 . 

Proof Form Theorem 1.2,we know the inverse matrix of M  is 
2 1

2 1 1

3 3

n n

 
 
 
  



 


.We only prove that 

between each pair ( , )i j  of vertices of D  there is an 
2 24 5 1 8 4 4

( , )
9 9

n n n n   
-walk. For any pair 

( , )i j  vertices of D , let 
ijP  be the shortest path in D  from i  to j , and denote )( ij sr P   and )( ij tb P  . 

We see that 
2

2

1 4 5 1

12 2 (2 1)( 1) 2 1 13 9
( 2 ) ( )

2 1 23 9 3 3 8 4 4

3 9

n n n

s n n n n n
s t s t

t n n n

    
         
           

       
     

. 

1090

Advances in Computer Science Research (ACSR), volume 76



 

Noting that
1 2 1

0 ,0
3 3

n n
s t

 
    , it is easy to see that 

1 0   and 
2 0  . If 

1

3

n
s


 , then 

0t   and if 
2 1

3

n
t


 , then 0s  . This gives 

2 2 24 5 1 8 4 4 4 3 1
exp( )

9 9 3

n n n n n n
D

     
   . 

The theorem follows. 

Form Theorem 2.1, the following results are clear. 

Theorem 2.2 If the cycle matrix of D  is (1), D  is primitive and 1

3

n
a


 , then 

24 1

3
exp( )

n
D


 . 

Theorem 2.3 If the cycle matrix of D  is (2), D  is primitive and 2 1

3

n
a


 , then 

24 1

3
exp( )

n
D


 . 

Theorem 2.4 If the cycle matrix of D  is (2), D  is primitive and 2 1

3

n
a


 , then 

24 3 1

3
exp( )

n n
D

 
 . 

The Extremal Two-Colored Digraphs 

In this section, we determine the two-colored digraphs that achieve the upper bound of primitive 

exponents of D . 

Lemma 3.1 If the cycle matrix of D  is (1), D  is primitive and 1

3

n
a


 , then 

24 3 1
exp( )

3

n n
D

 
  if 

and only if the 1

3

n   red arcs are consecutive on the n cycle, that is, the 2 1

3

n   blue arcs are 

consecutive on the n cycle. 

Proof Sufficiency: Form Theorem 2.1, we only proof 
24 3 1

exp( )
3

n n
D

 
 . 

Suppose that ( , )h k is a pair of nonnegative integers such that for all pairs ( , )i j of vertices there is 

an ( , )h k -walk from i  to j . By considering i j n  , we see that there exist nonnegative integers u  

and v  with 

h u

k v
M

   
   
   

 . 

Taking i  and j  to be the initial vertex and the terminal vertex of the 1

3

n   red arcs are consecutive 

on the n cycle , and this path has composition 
1

( ,0)
3

n
.Hence  

1

3

n
h

k

Mz
 
 
 
  




  

has a nonnegative integer solution. Necessarily,  

1 1

2 2
1 1

3
03 3

( 1)(2 1)
0

9

z M M

n
n n

u uh

v v n n
k

 


 
                                     

 

So 
2 2

3

n
u


 . Next take i and j to be the terminal vertex and the initial vertex of the 1

3

n   red arcs 

are consecutive on the n cycle, and this path has composition 2 1
(0, )

3

n .Hence 
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2 1

3

h

n
k

MZ
 
 
 
  




  

has a nonnegative integer solution. Necessarily, 

1 1

2 1
0

3
02 1 2 1

(2 1)( 1)
3 3

9

Z M M

n
h

u u
n n

v v n nk

 

 
                                 



     
 

. 

So 
(2 1)( 1)

9

n n
v

 
 . Thus 

   
2

2 2

4 3 13
1 1 3

(2 1)( 1) 3

9

M

n

u n n
h k n

v n n

 
    

     
    

  

. 

Then 
24 3 1

exp( )
3

n n
D

 
 . 

Necessity: We only need to prove that the 1

3

n   red arcs are not consecutive on the n cycle; or the 

2 1

3

n   blue arcs are not consecutive on the n cycle, then
24 3 1

exp( )
3

n n
D

 
 . 

 For any pair ( , )i j  of vertices of D , let 
ijP  be the shortest path in D  from i  to j , and denote 

)( ij sr P   and )( ij tb P  .We consider the walk that starts at vertex i , follows 
ijP  to vertex j , goes 1  

times around the n cycle, and 2 times around the 3 -cycle. Taking 1

2 1
2

3

n
s t


   and 2   

(2 1)( 2) 2 1 1

9 3 3

n n n n
s t

   
  . We see that 

2

1 2 2

1 4 4 1

13 9

2 1 2 8 14 5

3 9

n n n

s

t n n n
 

    
     
       

       
     

. 

Noting that
1 2 1

0 ,0
3 3

n n
s t

 
    , it is easy to see that 1 0   and 2 0  . If 

1

3

n
s


 ,  then 

1t   and if 
2 1

3

n
t


 , then 1s  . This gives 

2 2 2 24 4 1 8 14 5 4 6 2 4 3 1
exp( )

9 9 3 3

n n n n n n n n
D

       
    . 

Combining Theorem2.1, the theorem follows. 

As in the proof of Lemma 3.1, we can prove the following results. 

Lemma 3.2 If the cycle matrix of D  is (1), D  is primitive and 1

3

n
a


 , then 

24 1
exp( )

3

n
D


  if and 

only if the 1

3

n   red arcs are consecutive on the n cycle, that is, the 2 1

3

n   blue arcs are consecutive 

on the n cycle. 

Lemma 3.3 If the cycle matrix of D  is (2), D  is primitive and 2 1

3

n
a


 , then 

24 1
exp( )

3

n
D


  if 

and only if the 2 1

3

n   red arcs are consecutive on the n cycle, that is, the 1

3

n   blue arcs are 
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consecutive on the n cycle. 

Lemma 3.4 If the cycle matrix of D  is (2), D  is primitive and 2 1

3

n
a


 , then 

24 3 1
exp( )

3

n n
D

 
  

if and only if the 2 1

3

n   red arcs are consecutive on the n cycle, that is, the 1

3

n   blue arcs are 

consecutive on the n cycle. 

Summary 

Form Theorem 1.2-Theorem 1.3 and Lemma 3.1-Lemma 3.4, we can find the upper bound of D . 

Theorem 4.1 D  is primitive, then 
24 3 1

exp( )
3

n n
D

 
 . 
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