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Abstract. (Aim) Current cerebral microbleed detection methods are too complicated, 

and difficult to train. (Method) We enrolled 10 subjects diagnosed as cerebral 

microbleed.Our method combined wavelet entropy and naive Bayes classifier. 

(Results) The simulation results over 10 times of 10-fold cross validation showed that 

the average sensitivity, average specificity, and average accuracy of our method are 

76.90±1.81%, 76.91±1.58%, and 76.90±1.67%, respectively. Our method can identify 

the CMB areas using only 1.41 seconds. (Conclusion) Our method is effective and 

rapid. 

Background 

The cerebral microbleed (CMB)[1] is a prodromal symptom of stroke. Nevertheless, 

detection of CMB by traditional structural magnetic resonance imaging (sMRI)[2-9] 

is difficult. The susceptibility weighted imaging (SWI)[10] is now attracting attention 

from both clinicians and technicians, since it can provide better accuracy than sMRI 

in detecting CMB. 

In the last year, scholars have proposed many methods to detect CMB in SWI 

scanning. For example, Chen (2016) [11] suggested a novel leaky rectified linear unit 

(LReLU) classifier. Hou and Chen (2016) [12] proposed a four-layer deep neural 

network (DNN) method. Chen (2017) [13] extended the four-layer to a seven-layer 

neural network based on sparse autoencoders. 

Nevertheless, above methods are too complicated. The training of either LReLU or 

the deep neural network are extremely time-consuming. Besides, the training results 

heavily rely on the initialization. 

Hence, we suggested in this study to use a simple but efficient method, which is 

based on wavelet entropy and naive Bayesian classifier.Next Section 2 gives the 

materials and methods. Section 3 provides the experiments and results. Section 4 

concludes the paper. 

Materials and Methods 

We enrolled 10 subjects diagnosed with cerebral microbleed (CMB). Their SWI 

images were reconstructed by Syngo MR B17 software. The size of the 3D volumetric 

image of each subject is 364x448x48. An experienced physician is requested to label 

all the CMB areas, as shown in Figure 1. 
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Figure 1 Samples of CMB areas 

The sliding neighborhood processing technique is used to generate input and target 

samples from these 10 subjects. The sliding window size is chosen as 81x81. Finally, 

we generated (364-80)*(448-80)*48 = 5,016,576 samples per subject. In all, we have 

50,165,760 samples for the total 10 subjects. Among them, 21965 samples are of 

CMB voxels, and the rest 50,143,795 samples are of healthy voxels. 

To balance the dataset, we used random undersampling approach[14] to select 

21981 healthy samples. Finally, our dataset contains 21965 CMB samples and 21981 

healthy samples. Now this dataset is balanced. 

The wavelet entropy[15-21] is successfully applied in many academic fields. In this 

study, it was employed to select important features from the sliding windows. We 

chose three-level decomposition. The wavelet family was selected as Haar wavelet. 

The naive Bayes classifier [22] was used. It is a competitive method with 

state-of-the-art approaches, including support vector machines [23-26] and artificial 

neural networks[27-35]. 

Results and Discussions 

The statistical results of our method are shown below in Table 1,  

Table 2, and Table 3. Each row represents the result of one run, each column 

represents the result over each fold. The last column gives the total result over 10 

folds. 

Finally, the average sensitivity, average specificity, and average accuracy of our 

method are 76.90±1.81%, 76.91± 1.58%, and 76.90± 1.67%, respectively. This 

suggests the effectiveness of our method. For one slice image, our method can 

identify the CMB areas using only 1.41 seconds. 

Table 1. Sensitivity of our method 

Run F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 Total 

R1 79.19 77.24 81.42 74.56 77.42 76.78 79.38 74.73 76.64 76.88 77.42 

R2 74.95 78.37 75.73 79.33 80.70 77.78 78.06 80.43 78.15 77.06 78.06 

R3 77.37 75.36 69.44 74.10 72.63 74.74 74.65 73.37 73.42 71.31 73.64 

R4 74.13 75.23 75.74 75.60 73.54 78.78 74.01 75.24 75.56 79.19 75.70 

R5 74.42 76.50 75.69 77.33 80.20 73.59 73.68 78.42 76.10 77.46 76.34 

R6 74.37 78.28 80.51 79.47 80.33 77.00 84.07 82.42 80.29 78.38 79.51 

R7 76.14 75.06 76.65 74.87 78.37 72.36 75.33 76.05 78.23 79.43 76.25 

R8 74.41 78.10 75.47 72.59 77.38 76.05 70.87 76.06 77.19 76.15 75.42 

R9 77.56 77.73 77.79 74.82 78.14 79.10 73.36 78.06 76.74 79.70 77.30 

R10 80.52 80.70 77.32 78.61 82.29 80.70 78.01 78.73 78.33 77.82 79.30 
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Table 2. Specificity of our method 

Run F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 Total 

R1 76.48 79.75 77.98 78.16 78.66 74.89 76.11 79.03 77.67 77.89 77.66 

R2 77.12 79.25 78.90 78.21 76.25 77.53 79.85 77.48 76.62 78.43 77.96 

R3 73.66 73.52 75.39 76.34 78.53 72.47 73.44 74.07 76.57 77.02 75.10 

R4 75.34 76.89 75.11 75.22 76.34 72.20 73.34 75.07 76.07 76.16 75.17 

R5 79.53 76.16 74.43 76.21 75.11 73.75 77.02 75.20 74.48 76.03 75.79 

R6 78.62 78.34 77.84 81.03 76.07 79.31 79.03 83.44 80.48 79.03 79.32 

R7 77.93 74.61 76.39 77.12 76.03 75.61 77.48 75.43 77.39 78.30 76.63 

R8 77.17 76.43 76.93 74.34 76.11 76.11 74.43 72.66 73.38 75.48 75.31 

R9 78.16 76.80 77.16 79.31 76.21 76.57 75.39 77.34 76.11 77.80 77.08 

R10 75.89 82.26 80.80 77.13 78.43 80.35 78.80 78.53 77.80 80.98 79.10 

 

Table 3 Accuracy of our method 

Run F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 Total 

R1 77.83 78.50 79.70 76.36 78.04 75.83 77.75 76.88 77.16 77.38 77.54 

R2 76.04 78.81 77.32 78.77 78.48 77.65 78.95 78.95 77.38 77.75 78.01 

R3 75.51 74.44 72.42 75.22 75.58 73.61 74.04 73.72 74.99 74.17 74.37 

R4 74.74 76.06 75.43 75.41 74.94 75.49 73.67 75.15 75.81 77.67 75.44 

R5 76.97 76.33 75.06 76.77 77.66 73.67 75.35 76.81 75.29 76.75 76.07 

R6 76.50 78.31 79.18 80.25 78.20 78.16 81.55 82.93 80.39 78.70 79.42 

R7 77.04 74.84 76.52 76.00 77.20 73.99 76.41 75.74 77.81 78.86 76.44 

R8 75.79 77.26 76.20 73.46 76.75 76.08 72.65 74.36 75.28 75.81 75.37 

R9 77.86 77.26 77.47 77.06 77.17 77.83 74.37 77.70 76.43 78.75 77.19 

R10 78.20 81.48 79.06 77.87 80.36 80.52 78.40 78.63 78.07 79.40 79.20 

Conclusion and Future Research 

In this paper, we have proposed a novel CMB detection approach, based on wavelet 

entropy and naive Bayes classifier. The method achieved good results. In the future, 

we shall make tentative results on advanced feature extraction, such as wavelet Tsallis 

entropy [36-38]. Advanced classification methods shall be tested, including extreme 

learning machine [39] and linear regression classifier [40, 41]. 
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