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Abstract. Compressed sensing (CS) theory provides a new chance to reduce the data rate of high 
resolution radar imaging system. A novel SAR imaging method based on compressed sensing for 
wideband linear frequency modulated (LFM) signal is proposed in this paper. The radar data 
compression is conducted in range and azimuth dimension respectively. A new sparse matrix based 
on stretch processing and Fourier transform is constructed and then applied to obtain the range profile 
information. Based on the range compression, the phase compensation and the azimuth compression 
are conducted. The method incorporates coherent mixing processing in sparse matrix, consequently 
simplifies hardware design of radar system. Simulation results show the effectiveness of the method 
in reducing data rate and suppressing sidelobe compared with conventional stretch processing (SP) 
method. It also turns out that the proposed method is robust in the case of serious noise. 

1. Introduction 

Synthetic aperture radar (SAR) imaging technology can produce the images of the stationary 
surface targets and terrain in all weather conditions. Wideband linear frequency modulated (LFM) 
signal is widely used in SAR system for high imaging resolution. With the imaging area getting larger 
and imaging resolution getting higher, more and more data will be gained in SAR system which leads 
to the burden of the system. The compressed sensing (CS) theory proposed in recent years breaks 
through the constraints of the conventional Nyquist sampling theorem [1-2]. This theory indicates 
that a sparse or compressible signal can be reconstructed from a small set of measurement values by a 
specifically designed nonlinear reconstruct algorithm.  

In the past few years, many applications based on CS have been explored and researched in radar 
imaging area [3-5]. In the framework of CS theory, taking full advantage of sparsity or 
compressibility of echo signal, it is sufficient to use only a small number of samples to reconstruct 
high resolution images of targets. A compressed radar imaging method is proposed in [6]. It has two 
significant improvements: removing the requirement for the matched filter and reducing the 
bandwidth of the ADC. A novel strategy for SAR imaging based on CS is provided in [7]. It proposes 
that SAR image formation can be separated into two 1-D processing operations: range and azimuth 
compression. Then the CS processing can be applied to each dimension respectively. Some effective 
SAR compress processing methods in two dimensions are proposed in [8-11]. These methods above 
are mainly fit for baseband signal gained from coherent mixing processing. Besides, these methods 
need to predefine the observation target space and construct the sparse matrix by synthetizing the 
radar model data for each discrete spatial position. In [12], the stretch processing of LFM echoes is 
reformulated in matrix form and an orthogonal dictionary is established, but the specific 
implementation in radar imaging is not discussed.  

A novel SAR imaging method based on CS for wideband LFM signal is proposed in this paper. In 
the method, the CS processing is applied to range and azimuth dimension respectively. Firstly, a 
sparse matrix based on stretch processing and Fourier transform in range is constructed to realize the 
sparsity of the radar data. Then, the range profile information is reconstructed from random 
measurements by orthogonal matching pursuit (OMP) algorithm. Based on the range compression, 
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the phase compensation and stretch processing in azimuth are conducted. Finally, the azimuth 
compression based on Fourier transform matrix is conducted to obtain targets images. The method 
incorporates coherent mixing processing in sparse matrix, consequently simplifies the hardware 
design in radar system. Simulations demonstrate the effectiveness of the method in the data rate 
reduction and the sidelobe suppression. 

This paper is organized as follows. In Section 2, the SAR imaging based on stretch processing is 
introduced. In Section 3, the SAR imaging method based on CS is discussed in detail. In Section 4, 
simulation results are presented to prove the validity of the proposed method and Section 5 concludes 
the paper.  

2. SAR Imaging Based on Stretch Processing 

Stretch processing (SP) used in wideband LFM signal, can effectively reduce the instantaneous 
bandwidth. The echo signal is stretched by multiplying it with the reference LFM signal that has the 
same sweep rate as the transmitted signal. Then the output signal spectrum is analyzed to detect the 
targets. SAR imaging geometry is shown in Fig.1, H  is SAR platform height, P  is the radar position 

vector with uniform motion of v , T  is the target position vector and  22
0 0( , )=r r r v   is 

instantaneous slant range where 0r  denotes the slant range of closest approach. 
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Fig. 1 SAR imaging geometry 

Assume that the transmitted signal is based on LFM waveform, the echo signal from target is 
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where rT  is the pulse duration in range, 0f  is the carrier frequency, /r rK B T  is the range chirp 
rate,   is the target reflection coefficient, t  is the fast time and   is the slow time. 

Suppose the reference signal is 
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where refr  is the reference distance and refT  is the pulse duration of the reference signal. 

After stretch processing, it yields 
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where  0= , refr r r r  , taking Fourier transform of Eq.(3) in terms of fast time t , the range profile 

can be obtained  
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After compensating residual video phase (RVP) and neglecting range migration correction, 
conduct stretch processing in azimuth, it can be expressed as 
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where aT , 0  and aK  denote the pulse duration in azimuth, the time delay of the reference signal in 
azimuth and the azimuth chirp rate, respectively.  

Taking Fourier transform of Eq.(5) in terms of  slow time  , the target image can be obtained 
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The peaks of ( ; )r aS f f  appear at  0

2 r
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K
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c
    and 0a af K  , corresponding to range and 

azimuth profile, respectively. 

3. SAR Imaging Method Based on CS 

3.1 Principle of Compressed Sensing 
Suppose a discrete-time signal Nx   is K  sparse or compressible on a set of basis and it can be 

expressed as 
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where  1 2= , , , N N
N     Ψ   is the sparse basis matrix and α  is an 1N   vector with K  non-zero 

elements. The signal x  is sparse or compressible in Ψ  domain with K  sparsity. 
When a measurement matrix Φ  is designed, we can get low-dimensional measurements y  from 

the high-dimensional signal x  through the nonlinear projection 
 y Φx ΦΨα                                                                           (8) 

where Φ  is an  ( )M N M N   measurement matrix and y  is an 1M   vector. 
The reconstruct of the signal x  from the measurements y  is ill-posed because of M N . However, 

if ΦΨ  satisfies the restricted isometry property (RIP), the sparse representation of x  can be exactly 
reconstructed by solving an 1l  norm problem 

1
min       . .    =s tα y ΦΨα                                                               (9) 

This optimization problem can be solved by conventional linear programming techniques. The 
orthogonal matching pursuit (OMP) is an iterative greedy algorithm which can reconstruct the signal 
x  from the measurements y .   
3.2 SAR Imaging Method Based on CS 

Firstly, the sparse matrix based on stretch processing and Fourier transform in range and the sparse 
matrix based on Fourier transform in azimuth are constructed respectively. The ( ; )rs t  , ( )refs t , ( ; )ifs t   

and ( ; )rS f   can be discretized as 
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where  0= ,l refr r r r  , nt  and l  denote the number of samples in range and azimuth dimension, 

respectively. Specifically, the structural composition of vectors rs , refs , ifs  and S  can be expressed 
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From Eq.(3) we can get ( ) H ( )l l
if rs D s , from Eq.(4) we can get ( ) ( )l l

if rs F h  and from Eq.(6) we can 

get aS F σ , where the vector ( )lh  represents the targets range profile at the thl  azimuth cell and the 
vector σ  represents the targets reflectivity, consequently these can be represented as 
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where rΨ  represents the range sparse matrix and aΨ  represents the azimuth sparse matrix. 
Then, assume  ( )  l M N

r M N Φ   and   P L
a P L Φ   are the random downsampling 
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At the end, the OMP algorithm is used to reconstruct the targets range profiles 
(1) (2) ( ) ( ), l L       h h h h h  and targets reflectivity σ .  

The steps of SAR imaging method based on CS are as follows. 
Step1 Construct the range measurement matrixes (1) (2) ( ) ( )     l L

r r r r     Φ Φ Φ Φ， ， ， ，then we get the 
measurements ( )l

ry  at the thl  azimuth cell according to Eq.(14).   
Step2 Construct range sparse matrix rΨ  from Eq.(13) and reconstruct range profile ( )lh  by the 

OMP algorithm. 
Step3 Repeat Step1 and Step2 to get a series of range profiles h . 
Step4 Based on range compression, conduct the phase compensation and stretch processing in 

azimuth dimension. 
Step5 Construct azimuth sparse matrix aΨ  from Eq.(13) and azimuth measurement matrix aΦ . 

Then reconstruct the targets reflectivity σ  from  ay  by the OMP algorithm. 

4. Simulations 

To verify the performance of the proposed method, simulations are presented in this section. The 
system transmits LFM signal. Suppose the carrier frequency is 0 1f GHz , the range pulse duration is 

=5rT us , the bandwidth is =100B MHz , the pulse repeat frequency (PRF) is 400Hz , the velocity is 
=100 /v m s ,  the platform height is =1000H m  and 4 point targets are set in the imaging area. 

 Fig. 2 show the range profile and targets images obtained by conventional SP method. We 
randomly sample with 50% of the signal data in range and azimuth dimension respectively. The 
reconstructed range profile and targets images by the proposed CS method are shown in Fig. 3. 
Compared Fig. 3(a) with Fig. 2(a), it can be found that the CS method has much lower sidelobe than 
the conventional SP method. It can be also observed form Fig. 2(b) and Fig. 3(b) that the imaging 
quality based on CS method is superior to SP method with lower samples at the same time. 
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We add the Gaussian noise to the echo signal and the results are shown in Fig. 4, the method based 
on CS is able to reconstruct the targets images with SNR from 20dB to 0dB. The targets images can 
still be reconstructed perfectly when we further down sample the echo signal to 10% data in range and 
azimuth dimension respectively. The results are shown in Fig. 5.  

 
(a) The obtained range profile                        (b) The targets images  

Fig. 2 SAR imaging results based on conventional SP method 

 
(a) The obtained range profile                        (b) The targets images 

Fig. 3 SAR imaging results based on CS method with 50% samples in both range and azimuth 

 
Fig. 4 reconstruction results with 50% samples in both range and azimuth 

 at SNRs are 20dB, 10dB and 0dB, respectively 

 
Fig. 5 reconstruction results with 10% samples in both range and azimuth 

at SNRs are 20dB, 10dB and 0dB, respectively 
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5. Summary 

This paper proposes a novel SAR imaging method based on CS for wideband LFM signal. 
Essentially, it has proposed an alternative to the conventional stretch processing for SAR raw data. In 
the method, CS theory is applied into two 1-D processing operations: range and azimuth. A range 
sparse matrix based on stretch processing and Fourier transform is constructed and then applied to 
obtain the range profile information. Based on the range compression, the azimuth compression 
processing is conducted. The method replaces the coherent mixing processing with the sparse matrix 
construction, eliminating the mixer in radar system, consequently simplifies the complexity of 
hardware in radar system. Compared with conventional SP method, the proposed CS method 
significantly suppresses sidelobe and effectively reduces the number of samples that required in the 
Nyquist sampling theorem. Besides, the method is robust in the case of strong noise. 

This work is supported by National Nature Science Foundation of China 61571229 and National 
Nature Science Foundation of China 61271331. 

References 

[1]. Donoho D L. Compressed sensing [J]. IEEE Transactions on information theory. 2006, 52(4): 
1289-1306. 

[2]. Candès E J, Romberg J, Tao T. Robust uncertainty principles: Exact signal reconstruction from 
highly incomplete frequency information [J]. IEEE Transactions on information theory. 2006, 
52(2): 489-509.  

[3]. Potter L C, Ertin E, Parker J T, et al. Sparsity and compressed sensing in radar imaging [J]. 
Proceedings of the IEEE. 2010, 98(6): 1006-1020. 

[4]. Eldar, Yonina C, Gitta Kutyniok, et al. Compressed sensing: theory and applications [M]. 
Cambridge University Press, 2012. 

[5]. Liu J, Xu S, Gao X, et al. Novel imaging methods of stepped frequency radar based on 
compressed sensing [J]. Journal of Systems Engineering and Electronics. 2012, 23(1): 47-56. 

[6]. Baraniuk R and Steeghs P. Compressed radar imaging[C]. IEEE Radar Conference. Boston, MA, 
USA, Apr.17-20, 2007, 128-133. 

[7]. Alonso M T, López-Dekker P, Mallorquí J J. A novel strategy for radar imaging based on 
compressed sensing [J]. IEEE Transactions on Geoscience and Remote Sensing. 2010, 48(12): 
4285-4295. 

[8]. Yang J, Thompson J, Huang X, et al. Segmented reconstruction for compressed sensing SAR 
imaging [J]. IEEE transactions on geoscience and remote sensing. 2013, 51(7): 4214-4225. 

[9]. Dong X, Zhang Y. A novel compressed sensing algorithm for SAR imaging [J]. IEEE Journal of 
selected topics in applied earth observations and remote sensing. 2014, 7(2): 708-720. 

[10]. Bu H, Tao R, Bai X, et al. A novel SAR imaging algorithm based on compressed sensing [J]. 
IEEE Geoscience and Remote Sensing Letters. 2015, 12(5): 1003-1007. 

[11]. Fang J, Xu Z, Zhang B, et al. Fast compressed sensing SAR imaging based on approximated 
observation [J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote 
Sensing. 2014, 7(1): 352-363. 

[12]. Gao L, Su S Y, Chen Z P. Orthogonal sparse representation for chirp echoes in broadband 
radar and its application to compressed sensing [J]. Journal of Electronics and Information 
Technology. 2011, 33(11): 2720-2726. 
 

Advances in Computer Science Research, volume 74

672




