
 

A Wear Prediction Model for Spur Gears Based on the Dynamic Meshing 
Force and Tooth Profile Reconstruction 

Zhouli Zhang1, a, Changsong Zheng1, 2, b, Mengquan Wen3, c, Shuo Yang3, d, 
Huizhu Li1, e and Qiu Du1, f 

1School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China 
2Collaborative Innovation Center of Electric Vehicle in Beijing, Beijing 100081, China 

3Jianglu Machinery & Electronics Group Corporation, Hunan 411100, China 
azhang_zl93@163.com, bzhengyuanye@126.com, cwmq_83@163.com, djjyang@qq.com, 

elhz20041471@163.com, fduqiu@bit.edu.cn 

Keywords: Dynamic meshing force, Reconstruction of tooth profile, Wear, Archard’s wear equation. 

Abstract. In this study, Archard’s wear equation is combined with a nonlinear dynamic model and a 
reconstraction method for the wear tooth profile to predict the wear depth of gears. The dynamic 
model, which is used to determine the dynamic meshing force, and the reconstraction of the wear 
tooth profile serves as the basis of the sliding coefficient calculation. Next, the dynamic meshing 
force and sliding coefficient are used to calculate the surface wear in Archard’s wear equation. Then, 
the dynamic meshing force and sliding coefficient would be recalculated according to the surface 
wear state. After multiple iterations of previous steps, the simulation results show that the 
non-uniform wear of the gear surface has a great influence on the distribution of dynamic meshing 
force, and will increase significantly the peak of dynamic meshing force. And in return, the changing 
dynamic meshing force would enhance the non-uniformity of wear. These two factors influence and 
exaggerate each other, but are limited by sliding coefficient. When the driving gear runs after 858 
million cycles accumulatively, the maximum wear depth reaches 0.0737mm, and the peak value of 
dynamic meshing force is more than 4 times of the unweared, which exists the risk of overload. The 
proposed model can be used to predict gears wear life and design gears, which has a certain 
engineering significance. 

1. Introduction 

Gear system is widely uesd in various mechanical transmission devices. But wear, which is one of 
the most important factors that affect the behavior of gear systems, would cause gear systems to fail. 
The traditional experimental method to study the wear life of gears, whose results lack universality, 
demands a mountain of expenses and time[ 1 ]. Therefore, applying the numerical simulation 
technology to the study of wear is an effective alternative [2]. 

Flodin established a simulation model for mild wear of gears [3-4]. Bajpai improved the model 
proposed by Flodin, taking intentional surface modifications and manufacturing related 
imperfections into account[5]. Ding studied the two-way relationship between surface wear and gear 
dynamics[6]. He Rongguo considered the effect of temperature on wear, and gave the calculation 
formula of the material wear rate[7]. Zhang Yicheng developed a wear calculation formula based on 
friction wear work principles, which only need to calculate the macro force rather than instaneous 
contact pressure[ 8 ]. In addition, there are also several other wear models based on deffierent 
theories[1,9-10]. At present, these studies are mainly using meshing force or stress which is calculated 
under quasi-static conditions as the basis for the calculation of wear. But in fact, the gear systems 
usually show complex nonlinear dynamic characteristics [11]. The actual meshing force, that is, the 
dynamic meshing force, varies significantly with the gear speed and surface wear, while the static 
meshing force does not vary with the speed change and isn’t sensitive to surface wear. So the wear 
models under quasi-static conditions are not very accurate. 
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Therefore, a wear prediction model for involute spur gears is proposed in this paper, which 
combines Archard’s wear equation, a gear nonlinear dynamic model and a reconstraction method for 
the wear tooth profile. The dynamic model is used to calculate the dynamic meshing force, while the 
sliding coefficient is determined by involute profile geometry. As the result of the fact that the gear 
surface wear would significantly change the dynamic meshing force and sliding coefficient, the 
calculated wear amount would be regarded as the tooth profile errors, which would be considered in 
the gear nonlinear dynamic model to recalculate the dynamic meshing force. And the tooth profile 
would also be reconstructed according to the surface wear in order to get the new sliding coefficient. 
Repeat iterations, then the simulation results would be used to predict the wear depth and study the 
variation trend of meshing force. 

2. Gear Wear Model 

When the study object is a pair of gears, the mechanism of wear is shown in Fig. 1. Assume the face 
width of driving and driven gears are B. During time dt, the contact point on the driving gear moves 
from point Pj to point Pj+1, with a moving distance dsp

j, which results in a normal wear depth dhp
j and 

a wear volume dVp
j . At the same time, the contact point on the driven gear moves from point Gj to 

point Gj+1, with a moving distance dsg
j, which leads to a wear depth dhg

j and a wear volume dVg
j on the 

driven gear. According to the geometey, the wear volume of driving gear dVp
j and the sliding distance 

ds can be written as  
1jP 

jP

1jG 

jG

d p
js

d p
jh

d g
js

d g
jh

 
Fig. 1 Gear wear schematic diagram 
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Put the dVp
j and ds into the Archard’s wear equation ( d

d

V F
K

s H
 ), then the wear depth of driving 

gear can be express as 

d d
d =

d

p g
j jp p

j jp
j

s sK F K F
h

B H s B H


 
  

                                                                                                      
(2) 

where K is the dimensionless wear coefficient; F is the normal force; H is the tooth surface 
hardness; εp

j is the sliding coefficient of driving gear at the piont Pj. Similarly, the wear depth of 
driven gear at the point Gj can also get. 

Since the numerical simulation can be only performed at a large number of discrete positions, the 
tooth profile participating in the meshing process would be discretized to 300 points accordingly. 
More details could refer to Ref. [8]. Besides, the simulation time would be discretized to a series of 
time steps, as the system is time-varying. The threshold of the wear depth is set as 1 μm[10]. Retain the 
parameters of each pair of meshing points within a time step until the wear of any points on the gears 
reaches the threshold. Then continue the next time step.  

At any point j after n time steps, the total wear depth of the driving gear hp
j and driven gear hg

j can 
be expressed as 
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 (3) 

where Fj,n is the normal force; εp
j,n and εg

j,n are the sliding coefficients; np and ng
  are the average 

rotate speeds; Δtn is the duration of the n-th time step. Here, the superscript p represents the driving 
gear (gear p), and g represents the driven gear (gear g). The subscript j represents the j-th discrete 
point, and n represents the n-th time step. 

3. The Dynamic Model of Gear System 

The nonlinear dynamic model of gear system is shown in Fig. 2, which consists of two rigid 
wheels. 

( )f  b

( )k t ( )c t

( )e t
,p pI m

( )p t

pT

pR

,g gI m

gT

gR( )g t

 
Fig. 2 Dynamic model of gear system 

Where Ip and Ig, are inertias; mp and mg are masses; Rp and Rg are base circle radius. Each wheel is 
supported by a rigid shaft. As a result, the system only has two degrees of freedom, i.e. angular 
displacement of gear p θp(t) and angular displacement of gear g θg(t). And a periodically time-varying 
mesh stiffness k(t) and a viscous damping c(t) connect the two gear wheels along the line of action. A 
blacklash function f(δ) is included to represent the amount of clearance between mated gear teeth, and 
an internal displacement excitation e(t) is also applied at the gear mesh interface to represent 
manufacturing errors, intentional modifications of tooth profile or a wear profile. The backlash 
function in the nonlinear dynamic system can be written as[12] 

            ( 0)

( ) 0          ( 0)

      ( )

f b

b b

 
 

 


    
                                                                                                              

(4) 

where δ ( ( ) ( ) ( )p p g gR t R t e t     ) is the dynamic transmission error. The gear backlash b can be 
expressed as 0 02 cos ( )b a inv inv b       , in which a0 is the ideal operating center distance; α is the 
pressure angle; is the wroking pressure angle of pitch circle; b0 is the gear backlash due to the 
change of actual tooth thickness on the pitch circle, b0=0 is considered in this paper. 

In consideration of the fact that the amount of meshing tooth pairs at the same time maybe more 
than one, a subscript i is introduced to represent the i-th meshing tooth pair. And as for the 
periodically time-varying mesh stiffness of single meshing teeth pair, i.e. ki(t), material mechanics 
method would be uesd here to calculate ki(t). According to Cornell[13], the total compliance or 
flexibility of a gear tooth at the point of load is made up of three deflections: 1) the basic tooth as a 
cantilever beam, δBj

 p and δBj 
g; 2) the fillet and foundation, δMj 

p
 and δMj 

g; and 3) the local contact and 
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compression, δhj. Each deflection for any meshing tooth pair i can be calculated by the following 
equations: 

2
, 2 2
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 Then the periodically time-varying mesh stiffness at the j-th (j=1,2,3,…300) point can be 
calculated by 

j p g p g
Mj Mj Bj Bj hj

F
k

    


                                                                                                          
(8)

 
More details can refer to Refs. [13-14]. And the calculation of ki(t) can be accomplished by 

calculating the stiffness of all the contact points and combining them together. Afterwards, the 
viscous damping ci(t) can be also determined by[12] 

( ) 2 ( ) p g
i i

p g

m m
c t k t

m m


                                                                                                                    
 (9) 

where ξ is the damping ratio, ξ=0.06 is used in this paper empirically.  
Accordingly, the dynamic meshing force Fi then can be expressed as 
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Assuming the input torque Tp and output torque Tg are constant and taking the friction torques into 
account, the equations of the nonlinear model are   
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(11) 

where nz is the amount of pairs of the teeth engaged at the same time, nz=2 is considered in this 
paper; μi is the friction coeffcient; Λi is the direction coefficient of the friction torque which is 
determined by the nominal sliding velocity. ρpi and ρgi are friction arms of the meshing tooth pair i, 
and can be defined as 

2 2

2 2

sinpi ag g p p

gi ag g p p

a R R R w t

R R R w t

 



    
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 (12) 

where Rag is the addendum circle radius of gear g; wp is the average rotate speed. 
In addition, during gear meshing, even in a stable work condition, the actual rotate speeds of the 

gear pair, p  and g  will fluctuate, which generates inertia torques. If the rotate speeds of the gear 
pair remained canstant during the meshing process, Eq. (19) would become a static equation, which 
can be used to solve the meshing force under quasi-static conditions. 

4. The Calculation of Sliding Coefficients after Wear 

4.1 The Reconstruction Process of the Wear Tooth Profile 
To discreble the tooth changing profile and the whole meshing process, two moving coordinate 

systems, xpOpyp and xgOgyg, and one fixed coordinate system, xOpy, are established, as shown in Fig. 
3. The coordinate system xpOpyp is attached to gear p, and the axis yp is in the direction of OpM1. 
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Similarly, the coordinate system xgOgyg is attached to gear g, and the axis yg is in the direction of 
OgM2. The two moving coordinate systems connect the fixed coordinate system by two time-varying 
angles, ϕp

j and ϕg
j respectively. ϕp

j and ϕg
j can be expressed as [8] 
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Fig. 3 Coordinate systems diagram                      Fig. 4 Reconstruction of tooth profile 

where αp
j (αg

j) is the pressure angle of the gear p (gear g) at the j-th point. 
Take gear p as an example to show the method of the reconstruction process of the wear tooth 

profile. As shown in Fig. 4, the coordinate of the point Pj,n in xpOpyp, whose displacement used to be 
Pj,0 before wear, can be expressed as 

 
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(14) 

where ((1)xp
j,n , (1)yp

j,n) is the coordinate of the point Pj,0, the j-th point on gear p before wear point, as 
the superscript (1) represents the coordinate system xpOpyp, and the superscript (0) and (2) represent 
the coordinate system xOpy and xgOgyg respectively. Σhp

j,n is the the cumulative wear depth at the j-th 
point. βp

j (βp
j=tanαp

j) is the angle between the axis yp and line OpN1. The reconstruction would be 
done after calculating the coordinates of all the discrete points. 
4.2 Sliding Coefficient 

The sliding coefficient is used to indicate the extent of the relative slip between the teeth surface, 
which is related to the position of the gear. Along with the wear of the gear, the meshing position on 
the gears moves from initial pair of discrete points to a new pair. Therefore, the discrete points with 
wear on gear p would be regarded as the benchmark, and the meshing points on gear g would be 
redefined to determine the new sliding coefficient. 

J

, j nP

, j nG

, j nG

-1, j nG

y

pO x  
Fig. 5 Illustration of the reconstruction of contact points 

As shown in Fig. 5, the black dotted lines represent the teeth profile without wear, and the j-th point 
on gear p exactly contacts with the j-th point on gear g. But the two points would not contact anymore 
as the j-th point on gear p moved to point Pj,n, and the j-th point on gear g moved to point Gj,n. The 
black solid lines represent the teeth profile after wear.  
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Assume point Pj,n contacts with the point G*
j,n, then the first step is to determine the approximate 

position of point G*
j,n geometrically (in Fig. 5, G*

j,n is between points Gj,n and Gj-1,n). Hence, the 
coordinate of G*

j,n in xOpy, i.e. ((0)x*
j,n , (0)y*

j,n), satisfies the following equations 
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where ((0)xp
j,n , (0)yp

j,n) is the coordinate of the point Pj,n in xOpy; ((0)xg
j,n , (0)yg

j,n) is the coordinate of 
the point Gj,n in xOpy; ((0)xg

j-1,n , (0)yg
j-1,n) is the coordinate of the point Gj-1,n in xOpy. The coordinate of 

any point can be freely converted in the three coordinate systems [9]. 
After determine all coordinates of the new contact points on gear g, convert the coordinates of all 

the points from xOpy to xgOgyg. Then the distances of the two adjacent points can be calculated by 
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The new sliding coefficients after gears wear can be calculated by the define 
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It must be pointed out that the new sliding coefficients can be used in Archard’s wear equation only 
after interference analysis. As shown in Fig. 6, keep gear g from moving and let gear p rotate an angle 
φj,n to make the two points, Pj,n and G*

j,n, contact. If there are other points contacting, the sliding 
coefficients are not be right, and further analysis is required, otherwise the sliding coefficients could 
be considered right. Taking the deformation into account, an interference boundary would be 
established according to f(δ), which represents the amount of actual deformation between mated gear 
teeth at the contact points in essence. If the tooth profile of gear p doesn’t intersect the interference 
boundary, the values of sliding coefficients remain the same as the value calculated. Otherwise, as 
shown in Fig. 6, the values of sliding coefficients are set to zero. 

, j nG

Tooth profile of Driving gear

Interference boundary

Driving gear

Drivien gear

( )f 

, j nP
, j n

Tooth profile of Drivien gear

 
Fig. 6 Illustration of interference analysis 

5. Wear Simulation and Results Analysis 

The parameters of the gear system are shown in Table 1, and the flow chart of the computational 
methodology is shown in Fig. 7. The initial geometric description of the actual gear tooth surfaces 
serves as the initial state for the wear prediction. Here, e(t)=0 serves as the initial manufacturing 
errors. The next step is using 4-order Runge-Kutta method to solve the dynamic equation (11) to 
determine the dynamic meshing force. Then the sliding coefficients can be calculated by equations 
(17), and put the dynamic meshing force and sliding coefficients into Archard’s wear equations (3) to 
get the wear depth. When the time step is over, given e(t)=Σ(hp

j,n+hg
j,n), reconstruct the actual teeth 

profiles and continue the next time step. With lots of iterative computations, several sets of simulation 
results are acquired to predict the wear depth and study the variation trend of meshing force.  
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Table 1 Parameters of the gear system 
Parameters(Unit) Symbol Gear p Gear g 

Number of tooth zp  zg 23 121 

Modulus (mm) m 2 2 

Pressure angle (deg) α 20 20 

Face width (mm) B 20 20 

Actual center distance (mm) a′ 144.2 144.2 

Mass (kg) mp mg 0.2609 7.2214 

Rotation inertia (kg·mm2) Ip  Ig 69.013 52864 

Elastic modulus (Mpa) E 206000 206000 

Poisson’s ratio   0.3 0.3 

Friction coeffcient μ 0.04 0.04 

dimensionless wear coefficient K 4.675e-10 4.675e-10 

Surface hardness (HBS) H 187 187 

Torque (N·m) Tp  Tg 90 473 

Rotate speed (r/min) np  ng 3000 570 

, , ( ) ( )p g
j n j ne t h h  

, 
 , 1p g

j nh m

, d p g
jh

, 
, 

p g
j nh

500n 

 
Fig. 7 Calculation flow chart 

5.1 The Effect of Rotate Speed on Meshing Force and Wear Depth  
As Fig. 8 shows, the abscissa represents the number of the 300 discrete points on driving gear; the 

dynamic meshing force is close to the static meshing force when the rotate speed of driving gear is 
low, except the significant fluctuation produced when there are tooth pairs coming into or exiting 
mesh. The trend of fluctuation becomes flatter as the rotate speed of driving gear becomes faster, and 
the distribution of dynamic meshing force begin to deviate from the static meshing force with the 
difference between the two becoming bigger and bigger. The reason for the difference between 
dynamic and static meshing forces is the inertia torques due to the instantaneous fluctuation of rotate 
speed, while the static meshing force is calculated regardless of inertia torques.  
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Fig. 8 Dynamic meshing force when driving gear          Fig. 9 Wear depth of driving gear meshing 

runs   at different speeds                                                once   at different speeds 
Taking gear p as an example to analyze the effect of rotate speed on wear, it is not difficult to 

discover that the force is one of the most important factors that affect wear depth according to Eq. (4). 
what’s more, it is the only factor that changes with rotate speed, which leads to different dsitributions 
of wear depth. As Fig. 9 depicts, the effect of rotate speed on the wear depths is similar to that of the 
meshing force, which means, the wear depth, calculated basing on the model proposed in this paper, 
coincides with the distribution of wear depth under quasi-static conditions when the rotate speed is 
low, but the difference between them becomes larger as the rotate speed becomes faster. It is obvious 
that the wear model proposed in this paper can accurately reflect the influence of rotate speed on wear 
depth and the nonuniformity of wear distribution.  
5.2 The Variation Trend of Dynamic Meshing Force with Wear 

As shown in Fig. 10, besides slight changes in the peak and distribution, the dynamic meshing 
force doesn’t change a lot at first. As the gears continue wearing, the peak and amplitude of the 
dynamic meshing force begin to increase significantly, and its distribution gradually becomes a series 
of convex peaks. The zero meshing force also appears, which indicates the separation phenomenon 
during the meshing process and worse work condition. In general, the distribution of dynamic 
meshing force changes significantly, and its peak and amplitude show great growth trends. However, 
as Fig. 11 shows, the trend of the peak is not monotonous, but increases with violent fluctuations and 
finally declines. In the later period, the peak of meshing force has reached 3 to 4 times as much as 
theoretical value (=Tp/Rp), which leads to overload risk.  
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Fig. 10 Dynamic meshing forces of different time steps 
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Fig. 11 The trend of the peak of meshing force 

5.3 The Trend of Wear Depth  
As Fig. 12(a) depicts, the successive order of wear severity on the driving gear is the root of the 

tooth, the top of the tooth, and the node, which is consistent with the fact. As the result of wear, there 
are several convex peaks and valleys forming on the tooth profile, which casues the value of e(t) and 
its derivative fluctuating significantly, and eventually change the distribution of meshing force as 
mentioned earlier. Consequently, the changed dynamic meshing force would increase the 
non-uniformity of wear, they promote mutually. As the valleys on the tooth profile is likely not to 
contact with gear g because of the interference due to the adjacent convex peaks, the sliding 
coefficients of the valleys become zero, which indicates these valleys would not wear in this time step. 
Therefore, the non-uniformity of wear could be alleviated, and the distribution of wear is the result of 
the balance of various factors. The distribution of wear depth of gear g (Fig. 12(b)) is similar to that of 
driving gear, whereas the wear depth of gear g is much smaller than that of gear p.  
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Fig. 12 Total wear depths of different time steps 

6. Conclusion 

In this study, a wear prediction model for involute spur gears is proposed, based on Archard’s wear 
equation and a dynamic model of gear system. And a method to reconstruct the wear tooth profile and 
recalculate the sliding coefficient is presented here. Based on simulation results, the following 
conclusions can be made: 

i) The dynamic meshing force varies greatly with the process of wear, as the peak and amplitude of 
the dynamic meshing force increase significantly. However, the trend of the peak is not monotonous 
and finally declines. 

ii) As the result of wear, there are several convex peaks and valleys forming on the tooth profile, 
which causes the value of e(t) and its derivative fluctuating significantly, and eventually change the 
distribution of meshing force as mentioned earlier. Consequently, the changed dynamic meshing 
force would increase the non-uniformity of wear, they promote mutually. However, the 
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non-uniformity of wear could be alleviated, and the distribution of wear is the result of the balance of 
various factors. 

iii) According to the whole process, when gear p runs after 858 million cycles, the maximum wear 
depth reaches 0.0737mm, and the peak of dynamic meshing force is more than 4 times of the 
theoretical value, which leads to overload risk. At this time, the gear system can be considered failed 
due to wear, and the wear threshold can be determined accordingly, i.e. allowable limit wear depth. 
To be more specific, it can be concluded that the wear life of the gear system under this work 
condition is 858 million cycles. 
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