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Abstract. As the parametric level set method (PLSM) can provide the clear structural boundary 
description and the ANSYS software has a strong capability of finite element analysis, structural 
topology optimization based on PLSM under the environment of ANSYS secondary development is 
conducted in this paper. The finite element analysis programs and structural topology optimization 
based on PLSM are written by APDL and UPFs, respectively. This approach based on ANSYS 
secondary development can expand the practical applications of structural topology optimization. 
Typical 2D and 3D examples shown in this paper are used to verify the feasibility and applicability of 
the adopted method, which can also provide an important guidance to achieve structural topology 
optimization under the environment of ANSYS secondary development. 

1. Introduction 

As the most challenging research direction in the field of structural optimization, topology 
optimization is becoming an indispensable optimization tool in the engineering area [1, 2], such as 
aerospace, automobile industry, biological engineering, material engineering and so on. Compared 
with the traditional structural optimization methods, topology optimization was establishing an 
overall framework of conceptual design without prior knowledge of an optimal shape and size design 
[3]. The topology optimization has experienced considerable progress during the past three decades, 
and several well-known methods such as homogenization method [3], Solid Isotropic Material with 
Penalization (SIMP) [4, 5], Evolutionary Structural Optimization (ESO) [6] and level set method 
(LSM) [7, 8] have been proposed. 

The SIMP-based topology optimization method has experienced considerable popularity due to its 
conceptual simplicity and numerical easiness, and it has been favored by some commercial software 
vendors such as ANSYS and HyperWorks. However, this method is usually undergone numerical 
instabilities during optimization process, and the resulting boundary of the optimized design is 
usually identified with zigzag features and ambiguities boundary, which means that additional 
smoothing scheme should be included to reconstruct a geometrical model in order to facilitate the 
fabrication of the final design [9]. 

To deal with the zigzag boundary and ambiguities of intermediate element densities of the 
SIMP-based topology optimization method, Sethian and Wiegmann [7] firstly introduced the level 
set method (LSM) into structural topology optimization by the Eulerian representation to make the 
topology and shape merging and breaking naturally. The LSM can provide unique benefits in shape 
and topology optimization, for example smooth boundary and distinct interface, shape fidelity and 
topological flexibility. However, the conventional LSM is often hampered by several unfavorable 
numerical features in topology optimization process, such as velocity extension, re-initialization and 
Courant-Friedrichs-Lewy (CFL) condition [10]. To avoid the above mentioned numerical problems 
in the conventional LSM, the efficient PLSM [11, 12] are proposed as an alternative for the 
topological shape optimization of structures. In this method of PLSM, the compactly supported radial 
basis function (CSRBF) [13, 14] was utilized to achieve the interpolation of the implicit level set 
function, and then the design boundary was advanced by updating a set of the expansion coefficients. 
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The PLSM has shown its ability as a powerful topological shape optimization method [15, 16], which 
can remain favorable aspects while avoid unfavorable numerical issues of the conventional LSM. 

ANSYS, as one of the world’s largest finite element analysis software, has been widely used in the 
analysis of structure, fluid, electric filed, magnetic field and sound field. ANSYS not only has strong 
finite element analysis capability, but also has the convenient secondary development tools that 
provide users with the possibility of designing new unit types, material propertied, optimization 
algorithms and so on. 

Based on the above description, due to the advantages of PLSM as well as the strong finite element 
analysis capability of ANSYS, structural topology optimization based on PLSM under the 
environment of ANSYS secondary development is produced in this paper. Because of the convenient 
secondary development tools of ANSYS, we design finite analysis programs and topology 
optimization based on PLSM by APDL and UPFs, respectively. Several 2D and 3D examples are 
used to test the produced method. It is illustrated that the method is feasible and correct, which can 
extend the practical applications of structural topology optimization. Moreover, this work can 
provide an important guidance to achieve structural topology optimization under the environment of 
ANSYS secondary development. 

2. Representation of parametric level set method 

The level set method was firstly introduced into structural optimization by Sethian and Wiegmann 
[7] to enable the dynamic process of shape boundary. The pseudo-time t is introduced into the 
Lipschitz continuous level set function ( ) x , which is defined over a reference domain 

( 2  3)dD R d or   including all admissible shapes ( )D   . For d=2, the scheme can be 
defined as follows: 

( , ) 0  \       (void  region),

( , ) 0    (design boundary),

( , ) 0  \     (solid region).

t D

t D

t

     
    
     

x x

x x
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where   can be described random shape freely, and x  represent the knot coordinates in higher 
dimensional space. 

Taking pseudo time t into the dynamic process of shape deformations and differencing 
 ( , ) 0t x  on both sides, one can obtain the following Hamilton-Jacobi equation [17]. 

0
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t
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The normal velocity is expressed as follows: 

n

d

dt

 
 
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x

v v
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Hence, moving the boundary  ( ) 0   x x  along the norm direction / n  is 

equivalent to transporting   by solving the Hamilton-Jacobi partial differential equation (2). The 
representation scheme is illustrated in Fig. 1(a) and 1(b) for the case of d=2. 

 
Fig. 1 Design domain and the level set function: (a) solid parts and its embedding domain D; (b) level 

set function and its zero level set 

Advances in Computer Science Research, volume 74

842



 

However, a general analytical function for the scalar level set function is usually unknown [18]. 
Thus, the discretization through a distance transform is necessary for level set processing. As 
aforementioned, numerical scheme, extension velocities and re-initialization algorithms must be 
proper settled to meet the numerical requirements for the discretization. These numerical difficulties 
limit the application of standard LSM to shape and topology optimization problems. 
2.1 Parametric level set method 

In order to eliminate this issue, Wang [19], Luo et al [20] proposed the parametric shape 
representation, which parameterize with continuous, differentiable functions based implicit RBFs 
model. Luo [18] introduced CSRBF into level set method, converting the level set function as a 
parametrical form. The CSRBFs with C2 proposed by wendland [21] can be written as follows: 

 4
( ) max 0, (1 ) (4 1)r r r      (4) 

Here, for 2D case, the radius of support r  defined in a Euclidean space can be given as: 
2 2( ) ( )i ii

mi mi

x x y yd
r

d d

  
    (5) 

where the parameter id  represents the distance between the current sample knots ( , )x y  and the 

interpolation control knots ( , )i ix y  within the supporting radius, and the parameter mid  indicates the 

supporting radius of influences from the other adjacent knots, which can be calculated by using 

maxmi id d C   , where maxd  is a scaling parameter factor typically 2.0-4.0 for a static analysis, and iC  

is used to guarantee there are enough knots located in the neighborhood for the current knot [21]. 
Now, we turn to RBF interpolation, the basic RBF approximation to f(x) is given by the expansion: 


1

( ) ( ) ( )
N

i i
i

f x x x x 


    (6) 

where   denotes the d-dimensional Euclidean norm, ix  presents the interpolation control knots’ 

location, ( )ix  is the expansion coefficient, and  is the base function. 

Then, the level set function is transformed by the CSRBF-based interpolation, so the level set 
function is transformed to the function that is independent with spatial variable x  and the time 
variable t, which can be written as: 

1

( , ) ( ) ( ) ( ) ( )
N

i i
i

t x t x t 


  x φ α   (7) 

where ( )xφ  is set of the interpolation function of RBF model, ( )tα  is the expansion coefficient 
related with time in the iterations. 

Combine Eqs. (2) and (7), the moving level set model is rewritten as: 

( )
( ) ( ) ( ) 0n

d t
x v x t

dt
  

α
φ φ α  (8) 

Then, the nv  related to the expansion coefficients is given as: 

( ) ( )

( ) ( )n

x d t
v

x t dt



φ α

φ α
  (9) 

Hereto, the CSBRF has been applied to convert the conventional LSM to a parametric form. Thus, 
the time-consuming process of handing Hamilton-Jacobi PDE is replaced by solving the ODEs. In 
addition, Eq. (8) can be solved by normal, simply gradient-based method, such as the steepest descent 
method, the moving asymptote (MMA) method and the optimality criteria (OC) method. 
2.2 Sensitivity analysis and optimality criteria method 

For the sake of simplicity but without losing generality, we discuss the famous optimization 
problem of minimizing the compliance for linear elastic structure. The mathematical model based on 
the level set method is established as: 
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where the inequality constraint is introduced to limit the material usage, and maxv  is the prescribed 

volume, u  is the displacement field, v  is the virtual displacement field belonging to the space U  
spanned by the kinematically admissible set of displacements and 0u  is the prescribed displacement 

on the admissible Dirichlet boundary D  while ( )H   is the Heaviside function, whose derived 

function ( )   is the Dirac delta function, ( , )f u v  presents the strain energy density, which is written 

as ( , ) ( ) ( ) / 2T

ij ijkl klf u v u E v   , where   is the strain filed. 

Introducing the concept of material derivative, the design sensitivities for the objective function 
and constraint are obtained as follows: 
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At the same time, the Lagrangian method is utilized to convert the original constrained 
optimization problem into an unconstrained problem, and finally, a heuristic scheme can be derived 
to update the design variable: 
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where the damping factor (0 1)    as well as the moving limit (0 1)m m   are the artificial 
parameters to stabilize the iterative process. 

3. Introduction on ANSYS secondary development 

There are four types of secondary tools for ANSYS, namely ANSYS Parameter Design Language 
(APDL), User Programmable Features (UPFs), User Interface Design Language (UIDL) and Tool 
Command Language (TCK/TK). In this paper, APDL and UPFs are used to develop structural 
topology optimization. A brief introduction about these two secondary development tools is given. 

APDL is composed of general programming parts (parameters, arrays, vectors and matrix 
operations, branches, loops, repeats, etc.) that are similar to FORTRAN languages and more than 
1000 ANSYS command streams. The most advantage of APDL is that it can easily achieve the 
repetitive work of model-building, grid-meshing, load-loading and post-processing, which can 
greatly reduce the workload when processing the topology optimization. 

UPFs is the another ANSYS secondary development language which contains two parts: one is the 
user subroutine that can be modified by users, and the other is the general subroutine that the user 
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cannot modify but can be called directly. In our work, we write the optimization algorithm of the 
PLSM through the user subroutine while calling on the ANSYS database though the general user 
subroutine. 

The design of continuum structure topology optimization generally contains the follow four steps: 
a. initialization of structure design domain; b. finite element analysis; c. sensitivity analysis of 
optimization problems; d. update of design variable. In this paper, we apply the PLSM to the ANSYS 
topology optimization module not only take advantage of the powerful finite element analysis of 
ANSYS, but also gain clear structural boundary through PLSM. According to the above introduce of 
the APDL and UPFs, and the four steps of structure topology optimization designed as follow 
flowchart. 

Start

Initialization of structure 
design domain

Finite element analysis

Sensitivity analysis of 
optimization problems

Update of design variable

Convergence?

End

Y

N

Designed by 
APDL

Designed by 
UPFs

 
Fig. 2 Flowchart of topology optimization based on PLSM under ANSYS secondary development 

From the Fig. 2, it is clearly to see that the finite element analysis is designed by ADPL because it 
is a repeat work in the process of topology optimization, so using APDL can greatly reduce the 
workload of topology optimization. The last two steps are designed by UPFs, as we need to apply the 
algorithms based on PLSM to the ANSYS topology optimization module. 

It should be pointed out that after writing the structural optimization programs of the PLSM using 
UPFs language, ANSYS software should be recompiled so that the user specific programs can be 
used in the ANSYS topology optimization module. 

4. Numerical examples 

To verity its feasibility and correctness, the adopted structural topology optimization approach 
based on PLSM under the environment of ANSYS secondary development is applied to optimize 
typical 2D and 3D examples. In the area of structural topology optimization, the optimal design of 
structural stiffness under single workload condition is considered to be the most typical topological 
optimization problem, so both of these examples are the maximum stiffness design problems. 2D and 
3D examples are shown in the following sections. 
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In the examples, the elastic module is equal to 180Gpa, and the Poisson’s ratio is equal to 0.3. The 
optimization process will be terminated when the convergence tolerances are less than 1e-4 and 5e-3 
in the two-dimensional and three-dimensional optimization problems, respectively. 
4.1 Two-dimensional cantilever beam 

The design space of the two-dimensional cantilever beam is shown in Fig. 3 in which the ratio 
between length and width is 2. The left side of the cantilever is fixed as the Dirichlet boundary and a 
concentrated loading which is equal to 10KN is considered in the center of the right side. The object 
is to minimize the structural strain energy (namely maximum structural stiffness) while the material 
usage is 50% in volume fraction. 

 
Fig. 3 Design domain of a two-dimensional cantilever beam 

The structure shape of the initial design is shown in Fig. 4(a). Several regular holes are added into 
the entire design domain to speed up the iterative process. Fig. 4(b)-4(e) are the intermediate designs 
in the different iterations. The optimal result is shown in the Fig. 4(f). Figure 5 shows the 
optimization process in MATLAB as the same cantilever beam. It is obviously to see that the optimal 
results of cantilever beam between ANSYS and MATLAB are consistent. It is demonstrated that the 
produced structural topology optimization method based PLSM under the environment of ANSYS 
secondary development is reasonable and feasible. 

 
(a) (b) (c) 

 
(d) (e) (f) 

Fig. 4 Structural boundaries of a two-dimensional cantilever beam at different iterations: (a) initial 
design; (b) the 10th iteration; (c) the 20th iteration; (d) the 40th iteration; (e) the 100th iteration; (f) 

the final design 
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Fig. 5 Structural boundaries at different iterations in MATLAB 

Fig. 6(a) and 6(b) show the convergent history of objective function and the volume constraint 
respectively. It can be seen that the objective value increase during the first 10 iterations, because of 
the violation of volume constraint. After that, the volume fraction is pulled back to 0.5, and the 
objective function starts to decrease stably. The optimal topology of the structure is achieved after 18 
steps, and the following iterations are used to perform the shape optimization of structural boundary. 
It takes 187 steps to achieve the optimal strain energy value of 33.7253, which is the same as the 
numerical results in MATLAB. It further proves the correctness of the method produced in this paper. 

 
(a) 

 
(b) 

Fig. 6 Convergent histories of the cantilever beam: (a) objective function; (b) volume fraction 
Above, we demonstrated the method is correct and reasonable though the optimal results of a 

cantilever beam both in ANSYS and MATLAB. The application of this method in 3D structure 
optimization is illustrated by two three-dimensional examples. 
4.2 Three-dimensional cantilever beam 

The design space of the three-dimensional cantilever beam 1 is shown in Fig. 7(a) in which the size 
of length, width and height are 2.0 meters, 0.4 meters and 1.0 meters, respectively. The left side of 
cantilever is fixed and a concentrated loading which equals to 300KN is considered in the center of 
the right side. Because of the symmetry, the width of model can be halved. The object is to minimize 
the structural strain energy (namely maximum structural stiffness) while the material usage is 50% in 
volume fraction. 

 
(a) 

 
(b) 

Fig. 7 Design domain of a three-dimensional structure: (a) a cantilever beam 1; (b) a cantilever beam 
2 
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The topology optimization results obtained by the ANSYS secondary development are shown in 
the Fig. 8. Figure 8(a) is the initial design of three-dimensional cantilever beam. Several regular holes 
were added into the entire design domain to speed up the iterative process. The optimal design result 
is shown in Fig. 8(f). 

 
(a) (b) (c) 

 
(d) (e) (f) 

Fig. 8 Structural boundaries of a three-dimensional cantilever beam 1 at different iterations: (a) initial 
design; (b)-(e) intermediate design; (f) optimal design 

The next example is the three-dimensional cantilever beam 2, the design space is the same as the 
cantilever beam 1, as shown in Fig. 7(b), and the only difference is that the load is a uniform loading 
rather than a concentrated loading and is considered in the bottom of the right end. 

 
(a) (b) (c) 

 
(d) (e) (f) 

Fig. 9 Structural boundaries of a three-dimensional cantilever beam 2 at different iterations, (a) initial 
design; (b)-(e) intermediate design; (f) optimal design 

The topology optimization results of three-dimensional cantilever beam 2 are shown in the Fig. 9. 
The initial design and the intermediate design are seen in Fig. 9(a)-9(e), respectively. The optimal 
design is shown in Fig. 9(f). 
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5. Conclusion 

In this paper, we realized the structural topology optimization based on PLSM under the 
environment of ANSYS secondary development. Through combining with the advantage of the 
explicit boundary of the PLSM and the strong finite element analysis capability of ANSYS, we 
expanded the practical applications of structural topology optimization. Finally, several typical 2D 
and 3D examples verified the correctness and feasibility of this method. This work can provide an 
important guidance for the ANSYS secondary development to realize the structural topology 
optimization. 
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