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Abstract. In order to improve the positioning accuracy and reliability of the dynamic positioning 
system and deal with the problem of state estimation of nonlinear system with Gaussian noise, 
according to the basic principles and methods of Ensemble Kalman Filter (EnKF), a dynamic 
positioning filtering method is proposed based on EnKF. Then, the simulation results show that the 
nonlinear observer based on EnKF can effectively estimate the state of the ship and have certain 
robustness to the observed outliers. The validity of this method is verified at the end of this article. 

1. Introduction 

Dynamic positioning system is a kind of high-tech control technology, which is widely used in 
ships and offshore floating operation platforms. This system also plays a very important role in the 
development of marine resources [1]. In order to feedback the low-frequency signals to the controller, 
the state estimator of the ship need to filter out the noise of measurement, which is divided into two 
parts, low and high frequencies. According to kinematics and dynamics, a mathematical model of the 
ship can be built. Since the model is non-linear, the ship state estimation can be transformed into 
nonlinear filtering problem [2]. 

On the basis of measuring the observable signals of the system, filter theory can estimate the state 
of system according to certain estimation criteria. The most classical filtering theory is Kalman filter, 
but the traditional Kalman filter is only applicable to the state equation and the measurement 
equations which is fitting to the random linear Gaussian system, not to nonlinear systems. 

Nonlinear filtering has been widely used in statistical signal processing, target tracking, satellite 
navigation and so on [3]. The key to the optimal filtering in nonlinear systems is to get the posterior 
probability density function exactly in system state. The representative methods in the nonlinear 
filtering are Extended Kalman Filter (EKF) [4], Unscented Kalman Filter (UKF) [5], Cubature 
Kalman Filter (CKF) [6] and so on. The most traditional method which is widely used in nonlinear 
Gaussian filtering is Extended Kalman Filter (EKF).By linearly truncating the nonlinear state and 
Taylor series expansion of the measurement function, the nonlinear system is transformed into a 
linear Kalman filtering system, so EKF is a sub-optimal filter. The main idea of this filter is to use the 
Non-linear in the parametric analytical systems to approximate. So the filtering accuracy is not good 
enough to be accepted. Long-term engineering application practice also shows that EKF is easy to 
divergence and has bad robustness when existing uncertainties in the system model.  

Everson published the Ensemble Kalman Filter at the end of last century. EnKF initially aims to 
deal with the problem of data assimilation, and its principle combines the idea of the predictions of set 
on the basis of Kalman filter, which resulted in the convenient use of filtering algorithm, and 
promoted the vigorous development of filtering research. 

Based on the theory of EnKF, the design of dynamic positioning observer is proposed under the 
unknown time-varying condition for Gaussian noise statistics. The nonlinear observer based on 
EnKF is used in dynamic positioning system, and the simulation results verify its effectiveness.  
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2. Ensemble Kalman Filter Principle 

2.1 Optimal Bayesian Estimation. 
Consider the following nonlinear state space model: 
 1 1( , )k k k kx f x w    (1) 

 ( , )k k k kz h x v   (2) 

Here n
kx R is system state vector and m

kz R is observe vector, 1 ( )kf   and ( )kh  respectively 
describe the non-linear state transition function and observation function. At the same time, the 
dynamic process noise n

kw R and the measurement noise m
kv R are also incorporated into the 

model. If the initial probability density function of the state is    0 0 0|p x z p x , then the prediction and 

update process are as follows: 

 1 1
1 1 1( | ) ( , ) ( | )k k

k k k k kp x Z p x x p x Z dx 
       (3) 
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  (4) 

 Where 1 2{ , , , }k
kZ z z z  describe the measurements from discrete time 1 to k. Equation (3) and (4) 

describe the basic idea of optimal Bayesian estimation. However, the integral in Equation (3) can 
only be obtained for some linear dynamic systems. For non-Gaussian nonlinear systems, how to 
obtain accurate numerical solutions has always been a research direction. 
2.2 Extended Kalman Filter.  

Let the initial state 0x be independent of kw and kv , the mean and covariance of 0x are: 

 0 0x ( )E x
  (5) 

 0 0 0 0 0 0 0( , )= [( x )( x ) ]TP Cov x x E x x   
  (6) 

The non-linear state function 1(.)kf  is done by Taylor deployment when 1x k
 is decided by 1k  . 

Then the higher order term of the second order is omitted, and the basic linear Kalman filter equation 
can be used to derive EKF as follows: 

The step of State prediction: 
 | 1 | 1 1 1x xk k k k k kU      

  (7) 

The step of measure prediction: 
 | 1 | 1z xk k k k k kH y   

  (8) 

Covariance prediction: 
 | 1 | 1 1 , 1 , 1 1 , 1

T T
k k k k k k k k k k k kP P Q             (9) 

State estimation: 
 | 1 | 1x x ( )k k k k k k kK z z     

  (10) 

Filter gain: 
 1

| 1 | 1( )T T T
k k k k k k k k k k kK P H H P H R 

       (11) 

Covariance update: 
 | 1( )k k k k kP I K H P     (12) 

 Although EKF is widely used in engineering, it has many shortcomings and limitations. In the 
model recursion, it is necessary to calculate the Jacobian matrix, resulting in difficulties of achieving 
the method. The accuracy of the system noise is reduced when the noise is not Gaussian. It is not 
suitable for the strong nonlinearity, which requires the system state space to be continuous. These 
problems will lead to poor filtering stability and even divergence [7].  
2.3 Ensemble Kalman Filter. 

The Ensemble Kalman filter is developed on the basis of Bayesian filtering. Its core is to estimate 
the covariance between the state vector and the observation vector according to the prediction result 
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of the set (finite sample), and then use the observation information and covariance information to 
analyze and update, the calculated result set is recursively forwarded to predict. 

Assuming that set X is the state of the system and this set is a state matrix consisting of N sets of 
members, each member is consisting of n  states, expressed as: 

 1 2 3[ , , , , , , , ]i N
k k k k k kX x x x x x     (13) 

Where n N
kX R  represents the set of states at time k ,  1i n

kx R  represents the i-th state vector. 

Assume that the system is observed as mz R , Z is an observation set consisting of N perturbed 
observation vectors: 

 i i
k k kz z     (14) 

 1 2 3[ , , , , , ]i N
k k k k k kZ z z z z z     (15) 

 1 2 3[ , , , , , ]i N
k k k k k k          (16) 

Where m N
kZ R  is the observation matrix at time k , 1i m

kz R  is the observation vector of the i-th 

set at time k , 1i m
k R  is the perturbation vector of the i-th set at time k , m N

k R  represents the 

perturbation matrix at time k .  

The prediction set at the next time is obtained by the state transition function , 1, 2,f
ix i N  , 

expressed as: 
 ( )f i

i kx f x   (17) 

Where f
ix is the predicted state of the i-th particle, and ( )f  is the state transition function. 

The Ensemble Kalman filter, like other Kalman filters, assumes that the prior distribution is 
represented by a Gaussian function whose mean and variance are as follows: 

 ,
1

1 N
f f
k k i

i

x x
N 

    (18) 

 , ,
1

1
( )( )

1

N
f f f f f T

k k i k k i k
i

P x x x x
N 

  
    (19) 

Where f is the prediction of the members of the particle set, f
kx represents the predicted mean at 

time k , f
kP represents the predicted variance at time k ，The parameter ,

f
k ix represents the predicted 

state of the i-th particle at time k ，When N tends to infinity, the mean and variance of the prediction 
state matrix will reach the true value of mean and variance. 

During the update phase, each of the EnKF members uses the Kalman filter principle: 
 [ ( )]a f f

i i i ix x K z h x     (20) 

The measurement function is non-linear as shown in the following equation： 
 ( , )k k kz h x v   (21) 

f TP H and f TH P H are defined as follows: 

 
1

1
[ ][ ( ) ( )]

1

N
f T f f f f T

i i
i

P H x x h x h x
N 

  
    (22) 

 
1

1
[ ( ) ( )][ ( ) ( )]

1

N
f T f f f f T

i i
i

HP H h x h x h x h x
N 

  
    (23) 

Where 

 
1

1
( ) ( )

N
f f

i
i

h x h x
N 

    (24) 

The Kalman gain for a nonlinear system can be written as follows: 
 1

xz zzK P P   (25) 
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Where xzP is the crossed covariance of the state error and the observed error, zzP is the error 

covariance of the observed value and the predicted value of ( )fh x  . 
The error covariance matrix of equation (21) can be calculated as follows: 

 
1

1
[ ][ ( ) ( )]

1

N
f f f f T

xz i i
i

P x x h x h x
N 

  
    (26) 

 
1

1
[ ( ) ( )][ ( ) ( )]

1

N
f f f f T

zz i i
i

P h x h x h x h x R
N 

   
    (27) 

Summarize the main equation of EnKF as follows: 
 [ ( )]a f f

i i i ix x K y h x     (28) 

 
1

1 1

1 1
[ ][ ( ) ( )] [ ( ) ( )][ ( ) ( )]

1 1

N N
f f f f T f f f f T

i i i i
i i

K x x h x h x h x h x h x h x R
N N



 

                
  (29) 

Equation (29) is the improved Kalman gain. 
Compared with the traditional method, this method reduces the computational complexity and 

makes a better assimilation analysis of the nonlinear system measurement function. Using the idea of 
ensemble prediction to avoid the solution of complex error covariance, thus slow down the 
computational pressure, and solve the shortcomings of calculating EKF difficultly.  

3. Nonlinear Observer Design 

3.1 Mathematical Modeling of Ships 
In this paper, we utilize low speed dynamic positioning vessel as the research object, ignoring roll, 

pitch and heave motion, only considering horizontal movement of the ship, and then three degrees of 
freedom motion of high frequency and low frequency model motion model were established 
respectively. 

Due to attitude and line speed vessel were expressed in the north-east coordinate system and the 
ship coordinate system, so we take advantage of the Euler transform to do its conversion, the 
conversion relationship as follows[8,9]: 

 ( )R η ν   (30) 

Where














 


100

0cossin

0sincos

)( 


R  is a state-dependent transformation matrix. Notice 

that )()( 1    RR . Let the NE position ),( yx and heading  of the vessel relative to a NE 

frame EEEE ZYXO  be expressed in vector form by   ,, yxη , and let the velocities decomposed in a 

hull reference frame be represented by the state vector   rvu ,,ν .  

ex
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by

bo



 
Fig.1 ship’s movement in the horizontal plane 
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For a large class of surface vessel, we can use following mathematical model to describe the 
low-frequency motion. 

 ( )  Mν Dν τ R b   (31) 

 uτ B u   (32) 

 1
b b

  b T b E ω   (33) 

Where  TZYXτ denote the propeller thrust, 3Rb is a vector of bias forces and moments on 

the supposition that the forces due to wind wave and drift are slowly varying.  r
u

 3RB is a constant 

matrix which represents the transmission between the input and the thrust.  )3(  rrRu is the input, 
 332211 ,,diag TTTT is a diagonal matrix of positive bias time constants and  654 ,,diag bE is a 

diagonal matrix scaling the amplitude of the environment disturbance. If a small Froude number is 
assumed, the inertia matrix 0 MM which includes hydrodynamic added inertia can be written: 

 

0 0

0

0

u

v G r

G r z r

m X

m Y mx Y

mx Y I N

 
    
   

M


 

 

  (34) 

For a straight-line stable ship, Dwill be a strictly positive damping matrix due to linear wave drift 
damping and laminar skin friction. The linear damping matrix is defined as: 

 

0 0

0

0

u

v r

v r

X

Y Y

N N

 
    
   

D   (35) 

Where m is the vessel mass and zI is the moment of inertia about the vessel-fixed z-axis. Gx is the 
center of gravity about the vessel-fixed z-axis. The zero-frequency added mass in surge, sway and 
yaw due to accelerations along the corresponding axes are defined as 0uX  , 0vY and 0rN  , rY is the 
added mass coupled in sway and yaw and is also defined as negative. 

In this article, the second order model is used to describe the ship motion caused by first order 
wave force, the state space modal is shown below. 

 11

221 22 22

h
h

      
       
      

00 I ξξ
ω

EΩ Ω ξξ


   (36) 

   1

2
h

 
  

 

ξ
η 0 I

ξ
  (37) 

Where 3
1 Rξ  and 3

2 Rξ  denote the WF state vector,  2
03

2
02

2
0121 ,,-diag Ω , 

 03302201122 2,2,2-diag Ω , },,{diag 3212 hE . 
3.2 EnKF Observer Design 

In this paper, the main task is to design a Nonlinear Observer for Ships Based on Ensemble 
Kalman Filter which can filter out high frequency motion so that the low frequency motion feedback 
to the control system owing to Dynamic Positioning measuring system usually only get the vessel's 
position and heading information. 

Observation equation as follows: 
 d d d dx t t  f(x) Bu E β   (38) 

 , 1, 2,3k k k k   y Hx υ   (39) 

Where 15],,,[ Rvbηξx   is state vector and  333333  00IΓH . The desired north position, 

east position and heading angle can be written as   3Ru  
rrr yx  which is a controllable vector.  

15Rβ is standard Brownian motion, so βd is standard Gaussian process. 3Ry k is the output vector 
which represents the DGPS and gyrocompass measurements polluted by the measured noise when the 
time is kTt  and 3Rx k is the state vector of the system. T is the measurement cycle of the DGPS and 
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gyrocompass. The covariance matrix kR is related to the accuracy of ),N(~ kk R0υ which is the 
measurement noise vector. Equation vector f(x)  , input matrix B and process noise amplitude 
matrix E can be written: 

 
 

  
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
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  (41) 

 

h 6 3 6 3

3 3 3 3 3 3

3 3 b 3 3

3 3 3 3 s

 
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 

 

 
 
 
 
 
 

E 0 0

0 0 0
E

0 E 0

0 0 E

  (42) 

  3 3 3 3 3 3  H Γ I 0 0   (43) 

Considering the continuous-discrete system： 

 d ( ) ( ( ), )d d ( )t t t t t x f x Q β   (44) 

 ( , ) , 1, 2,3,k k kk k   z h x v   (45) 

Where nt Rx )( independent with )(d t is the n-dimensional state vector of the system. )(f is the 

equation matrix with corresponding dimension. nnRQ is the gain matrix of process noise.  
m

k Rz  is the m-dimensional output vector, ie measurement vector at time step k. ijiji RvvE ][ and 

)(h is the matrix with corresponding dimension. 
Apply the numerical solution method composed by the Euler method and the Milstein method to 

introducing the discrete Kalman filter algorithm to the study of observer in continuous-discrete 
nonlinear system. So, disperse the system process equation (32) by using the 1.5-order Itô-Taylor 
method. 

It is assumed that )(tx is known, then the approximate numerical solution at time t can be written 
as: 

           
  

   2
0

,

1
, , ,

2
d t t

t t t t t t t t          

f x

x x f x f x Q f x e


  (46) 

Where ε and e are related Gaussian random vectors, they can be generated by two standard 
Gaussian random vector ),( 21 nn  : 

 1ε n   (47) 

 3/2 2
1

1

2 2
    

 

n
e n   (48) 

Hence, the covariance matrix can be written as: 
 [ ] n E εε I   (49) 

 21
[ ]

2 ne  E ε I   (50) 

 31
[ ]

3 nee  E I   (51) 

Besides, the two differential operator, 0 and are defined as: 
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0 , ,
1 , , 1

1

2

n n

i p j j p i
i j p qi p qt  

  
   

    f Q Q f
x x x

  (52) 

 
1

n

j ij
i i


 

 Q
x

  (53) 

f is square matrix, its element at position  ji, is  njifij ,,3,2,1,  . 

At discrete time, the process equation to remove the noise is expressed as: 

            2
0

1
, , ,

2d t t t f t t x t t    f x x x f   (54) 

Based on the above discussion, we can transform the continuous model to discrete form. Now that 
we can design ship observer with EnKF state estimation algorithm, and the algorithm process was 
mentioned above. 

4. Simulation Results and Analysis 

A dynamic positioning ship parameters for the simulation are shown in table 1. 
Table 1. Part of one DP vessel’s hull parameters 

parameters values parameters values 

length/m 175 
rolling radius of 

gyration/m 
8.3310 

width/m 25.4 
pitching radius 
of gyration /m 

42.000 

draught/m 9.5 
yawing radius 
of gyration /m 

42.000 

quality 
of hull /kg 

24, 
609,620

center of 
flotage/m 

(-2.5470,0, 
5.2070) 

drainage /m3 
24. 
009 

center of 
gravity/m 

(-2.5475,0, 
9.5500) 

coefficient of 
square 

0.5690
wetted surface 

area/m2 
4927.6 

Choose the mathematical model of the ship LF motion as (31), the parameters are： 

 

7

7 7

7 10

2.641532 10 0 0

0 3.345547 10 1.491735 10

0 1.491735 10 6.520948 10

 
    
   

M   (55) 

 

4

5 6

6 8

2.220421 10 0 0

0 2.220421 10 1.774611 10

0 1.774611 10 7.150578 10

 
     
    

D   (56) 

The time constant matrixT in (33) is: 

 

2500 0 0

0 2500 0

0 0 2500

 
   
  

T   (57) 

Choose the mathematical model of the ship WF motion as (36). The relative damping factor 
is 0.15i  , the dominant frequency of the wave spectrum is 9.00 i . Sea state is 3. The height of 
significant wave is 0.5~1.25m. 
4.1 Simulation with Gaussian White Noise 

In order to verify the designed observer’s performance, select CKF observer for comparison, the 
simulation time is 200 s, the simulation results are shown in figure 3 to 5. 
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 Fig.2 Horizontal position of vessel                        Fig.3 Ship surge displacement 
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Fig.4 Ship sway displacement                                      Fig.5 Ship yaw angle 

4.2 Simulation with Gaussian White Noise Add Outliers 
Add the outliers in measurements on 50s, other parameters keep the same value as above, and the 

simulation results are shown in figure 6 to 8. 
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Fig.6 Ship surge displacement                              Fig.7 Ship sway displacement 
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Fig.8 Ship yaw angle 
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5. Summary 

From the simulation results, EnKF observer and CKF observer proposed can estimate the position 
and heading of the ship in white noise environment, and the estimated curve after Ensemble Kalman 
filter is smoother, and bring better feedback for the controller.  

In summary, the simulation results verify the validity of the EnKF observer. The disadvantage is 
that the non-Gaussian noise has not been modeled and simulated. This is for further study. 
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