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Abstract

This study examines the crew pairing problem, which is one of the most comprehensive problems encountered in

airline planning, to generate a set of crew pairings that has minimal cost, covers all flight legs and fulfils legal

criteria. In addition, this study examines current research related to crew pairing optimization. The contribution of

this study is developing heuristics based on an improved dynamic-based genetic algorithm, a deadhead-minimizing

pairing search and a partial solution approach (less-costly alternative pairing search). This study proposes genetic

algorithm variants and a memetic algorithm approach. In addition, computational results based on real-world data

from a local airline company in Turkey are presented. The results demonstrate that the proposed approach can

successfully handle medium sets of crew pairings and generate higher-quality solutions than previous methods.

Keywords: Airline crew scheduling, Crew pairing, Set-covering, Genetic algorithm, Heuristics.

1. Introduction

Airline companies have used operations research
techniques to solve planning and scheduling problems
since 1950 [1]. These techniques greatly impact
planning and managing the operations of airlines.
Advances in computer technology and optimization
models have allowed more complex issues to be
addressed and overcome; thus, airline-related problems
can be solved in a shorter period of time. These models
have saved millions of dollars, and many airline
companies established
departments [2].

Planning and operational problems are the most

have operations  research

common issues encountered by airline companies. Each
problem has its own characteristics and objectives.
Airline crew scheduling is among the major planning
problems referred to frequently in the literature. Crew
expenses are the second largest expense for airlines after

the cost of fuel. Because fuel costs cannot be reduced,
effective and economical crew scheduling is highly
valued by airline companies. Because staff costs are the
largest expense that can be controlled by airline
companies, scheduling cabin crew members in the most
efficient manner is of utmost importance for airline
planning [3]. Given its economic aspect and huge
impact on operations, airline crew scheduling, which is
comprehensive in nature, is an NP-hard optimization
problem that be
constraints. The economic significance and complexity
of this problem has attracted the attention of the
operations research community in recent years. To
facilitate a solution to this problem, various exact and
meta-heuristics-based methods have been developed [4-
12].

Because of its cumbersome nature, airline crew
scheduling has been divided into two consecutive
stages: crew pairing and crew rostering. The main

must solved under numerous
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objective of the crew pairing process is to find the
pairings with minimum cost that cover all flights within
legal rules. Crew rostering (or crew assignments) is
conducted for all legal pairings generated in the
previous stage [13]. This study analyses the crew
pairing problem. The inputs of the crew pairing problem
are the flight legs included in the airline’s timetable.
Considering the scope of the crew pairing process in
real life, it is not possible to generate all crew pairings
(which is acceptable for large airlines). Additionally,
generating a large quantity of crew pairings would make
the optimization phase more difficult. Most of the
studies in the literature have solved the problem by
generating as few crew pairings as possible [14, 9].

In this study, a dynamic-based genetic algorithm is

proposed for medium-scale scheduling problems. The
objective is to find a set of minimum-cost crew pairings
that meets the demand for each flight leg in the airline’s
timetable within all legal limits. The major differences
between our study and previous genetic algorithm
studies are as follows:
1) A genetic algorithm has been developed to solve
medium-scale crew pairing problems. 2) Previous
studies considered a particular element of the generated
crew pairings and excluded the rest from the solution
set, whereas in our study, all legal pairings are
generated and their subsets are considered. 3) The
length of the chromosome representing a solution
changes dynamically in each iteration. Thus, the
chromosome length varies during the optimization run.
4) Our study also has multi-objective characteristics
because we represent penalty values for more than one
KPI (key performance indicator) in the objective
function. The high cost of crew pairing and the number
of deadheads have been minimized. For these problems,
new heuristic algorithms have been developed.

The rest of this paper is organized as follows.
Section 2 provides an overview of the background and
describes the airline crew pairing problem. Section 3
explains the proposed evolutionary algorithms. Section
4 presents a case study from Turkey and compares the
performances of different evolutionary algorithms
applied to this case study, and it also describes the
experimental results and analyses. Finally, Section 5
presents the conclusions.
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2. Background

2.1. Crew pairing

Studies on airline crew pairing have used the set-
covering and set-partitioning models. Information on
studies that have solved airline crew scheduling
problems by exact, approximate or meta-heuristic
methods is given in Tables 1 and 2.

In most airline scheduling research,
matheuristic studies are performed that utilize both
heuristic and exact approaches. We can define
matheuristics as optimization algorithms generated by
the interoperation of meta-heuristics and mathematical
programming methods. Column generation and integer
programming (heuristic branch-and-bound) are the most
commonly used methods.

crew

2.2. Memetic algorithm

A memetic algorithm (MA) is a heuristic algorithm that
uses local search (LS) techniques and is a genetic
algorithm and hybrid-structured evolutionary algorithm
(EA). MAs are enhanced population-based EAs that
were first developed by Moscato [38] to solve discrete
optimization problems. The main components of MAs
are crossover, mutation and hill climbing [39]. LS
algorithms attempt to improve the current solution.
Within MAs, hill climbing, tabu search and simulated
annealing are used as LS algorithms. MAs are used to
solve NP-hard problems by combining genetic
algorithms (GAs) and LS techniques [40].

Our ultimate objective is to develop a GA that can
handle medium data sets in an effective manner and
generate outcomes that are of high quality.

2.3. Related works

Because current approaches are not sufficient for
solving large-scale problems, apply
integrated heuristics with these approaches. Several
studies have been performed on the application of GAs
based on meta-heuristics to the airline crew scheduling
problem in the literature. In these studies, the set-
partitioning (SP) problem or set-covering (SC) problem
is generally considered to solve the crew pairing
optimization problem. Both problems have been shown
to be NP-complete [41].

In Zeren and Ozkol’s study [9] of 700 flights,
Ozdemir and Mohan’s study [42] of 300 flights,

most studies


https://en.wikipedia.org/wiki/Optimization_algorithm
https://en.wikipedia.org/w/index.php?title=%28meta%29heuristics&action=edit&redlink=1
https://en.wikipedia.org/wiki/Mathematical_programming
https://en.wikipedia.org/wiki/Mathematical_programming
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Kornilakis and Stamatopoulos’s study [14] of 2100
flights, Chang’s study [43] of 700 flights and Sou and
Teghem’s study [7] of 631 flights, the results were
generated without using all pairs. However, in this
study, all pairs are produced, and by updating the
solution space dynamically, the GA yields better
solutions in big column numbers.

Using the dynamic approach proposed in this paper,
we were able to generate solutions that are of better
quality using much larger data sets than those used in
studies that include GAs. An overview of previous work
on relevant GA studies is provided in Table 3.

2.4. Fundamental definitions and rules

Crew pairing problems attempt to determine the crew
pairing with minimum costs that would meet the needs
of each flight leg on the schedule. The airline timetable
is used as an input at this stage. Then, duties and
pairings are generated according to the rules laid down
by the airline companies, the Directorate General of
Civil Aviation (DGCA) and the Federal Aviation
Administration (FAA). Fig. 1 shows the duties and crew
pairings generated in line with the flight legs used in the
airline’s timetable. The following definitions are used to
address the crew pairing problem [3]:

Flight (flight leg or leg): Period between aircraft (AC)
take off and AC landing.

Duty: Period comprising one or more flight legs,
including the briefing time, which is the preparation
period for the duty, and the debriefing time, which is the
preparation period of the AC for the next flight crew.
Crew pairing: Period comprising one or more duties.
Crew pairings also include the rest periods between
duties.

The limits that must be respected to ensure that a
duty or crew pairing is legal consist of a rest period,
connection time, flight time and duty time. Connection
times for a duty period must be within a certain range
(minimum and maximum). The total flight time refers to
the time spent in a duty period, the block time refers to
the flight time during a duty, and the number of flight
legs must not exceed the given ranges. A certain period
is also allocated for briefing before each duty period and
debriefing at the end of each duty period. The rules
applied for crew pairing vary according to airlines and
countries. The rules for the crew pairing problem can be
found in [46].
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Crew pairing

T

Total Duty Time Total Duty Time

Connection Connection
G I T 3 o I o O L

BT ESB ESBIST ST ORY ORY  IST ST 6Zr  GIT IST
(Home base)

06:00  07:00

Connection Connection

Over Night Rest

0815 0915 1105 1420 0930 1245 1410 1855 1630 1840

—

Duty Period | Duty Period 2

f Time Away from Base }

Fig. 1. Example of a crew pairing with an IST airport as the
crew base.

Connection time: A connection during duty is called a
sit connection time, which is the time between two
consecutive flight legs in a duty. Generally, airlines
consider minimum and maximum sit connection times,
which are usually between 30 min and 3 h (sometimes 4
h).

Rest: A connection between two duty periods is called a
rest, layover or overnight connection.

Brief: The elapsed time before the first leg of the duty.
Debrief: The elapsed time after the last leg of the duty.
Deadhead: If a crew member flies as a passenger rather
than as a cockpit or cabin attendant, this flight is
regarded as a deadhead flight for that crew member.
Deadhead flights should be minimized because they
reduce the passenger transport capacity and the crew
utilization efficiency [13].

3. Proposed Methodologies

In this study, we propose a fast, strong and dynamic-
based GA approach for airline crew pairing. The
algorithm’s main logic provides a sub-optimal solution
for medium-scale problems by solving them in small
subsets. The proposed method uses a small subset of the
problem that continuously repeats itself in line with the
information obtained from the GA solution. The
pairings that worsen the solution in the subset and the
pairings that improve the solution in the main set are
continuously replaced to develop updated heuristics.



ATLANTIS
PRESS

International Journal of Computational Intelligence Systems, Vol. 10 (2017) 1082-1101

The proposed methodology consists of five stages.
(1) All legal crew pairings are generated (pairsAll). (2)
A subset is formed by randomly (knowledge-based
random) choosing pairings from the generated crew
pairings, including all flights (select the initial from
pairsAll). (3) The steps of the GA are applied to
optimize the problem. (4) After the GA produces a
certain iteration, the population’s best chromosome and
pairings of this chromosome are kept in memory for the
next round. Then, the loop returns to stage 3, and the
pairings that will improve the solution (low-cost) in the
main set are searched instead of the pairings that will
worsen the solution (high-cost) in the subset. In

Set of

/ .

f Flight
Flights ___( Depth-first search
v | algorithm

Generate all legal ) |
duty periods T
- L
Duties || Stage 1: Crew pairing
generation

).

(1) Local, time and
temporary
constraints
(2) Number of flight
legs

¥
" Generate all legal

Huge number of
possibilities Pairings

| pairsAll

Stage 2: Initialize active
pairings

pairsActive

Stage 3: Genetic
algorithm

Optumization with set

covering model

Termmation
criterion 7

Deadhead-minimizing search
Partial solution search

\
r
v

Population
update
heunstic 7

Update heuristics

N

>

Stage 4: Reset active
pairings with best
chromosome

\

Fig. 2. Stages of the proposed dynamic-based GA

methodology.

Main set
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addition, the other developed heuristics algorithm and
alternative pairings that will produce the fewest
deadheads for each flight are searched. (5) The best
crew-paring solution set is obtained by continuously
executing procedure stages 3 and 4 until the loop ends.
The schematic diagram of the proposed methodology
for the crew pairing problem is shown in Fig. 2.

3.1. Crew pairing generation

The aim of this stage is to obtain a set of all legal crew
pairings. The crew pairing generation method consists
of two stages: (1) duty generation and (2) pairing
generation. In the first stage, all legal duties are
generated using the set of flights (see Section 2.4). A
depth-first search algorithm is employed for duty
generation. In the second stage, crew pairings are
generated from flight duties with a similar algorithm
(depth-first search algorithm) after duty generation. This
algorithm searches in the space of all possible subsets of
all flight legs [14].

Algorithm 1 Pseudocode of the pair generation

1 Procedure GeneratePairings (pairList)
currentPair = create an empty pair;
for each duty do

if duty starts from homebase

2
3
4
5 Insert duty to currentPair;
6 SearchForPairings (currentPair, pairList)
7 Remove duty from currentPair;

8  Procedure SearchForPairings (currentPair, pairList)

9 for each duty (that starts from the arrival station of
currentPair arrives) do

10

11

Insert duty to currentPair;
if currentPair is valid (whether ends at the

same homebase city)

12 Insert currentPair to pairList;

13 if currentPair can have more duties

14 SearchForPairings (currentPair, pairList);
15 Remove duty from currentPair;

The GeneratePairings method is a recursive
procedure that allows us to search for duty connections
that form all possible crew pairings. In the first phase,
all duties are reviewed in the main procedure. For duties
starting from the homebase, the procedure is executed to
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search for possible duties that can be added to the
pairing. The steps of this process are shown between
lines 2 and 7. In the second phase, however, duties
finishing at the homebase sub-procedure are executed to
search for possible duties that can be added to the
pairing. Any suitable duties are searched for in lines 9
and 10 and added to the currentPair. In lines 11 and 12,
the generated pairing is added to the pairList if
applicable. In lines 13 and 14, if the length of the
current pairing allows us to add more duties, then
recursive procedure reruns in the search space. The
pairList is the list of all valid pairings created by the
recursive code.

For an airline crew pairing problem that consists of
f flights, d duties and p pairings of duties, the cost
function of the CPP (crew pairing problem) can be
defined as follows:
The total duty duration is used as the duty cost in the
code and can be formulated as given in Eq. (1):

f f
Duty cost = Ml'n((:jduw) = z a;; (Ciflight + z a”uilciclonnectianﬂme>

i=1 =1

vji=12..d

The first and second part of the duty cost equation can
be defined as follows:

(1) Required pay for each flight in each duty and
(2) Connection time between flights.

The first and second part of the pairing cost equation
can be defined as in Eq. (2):

(1) Required pay for each duty in each pairing (duty
cost) and

(2) Connection time expenses between duties (hotel
cost).

d d
Pairing cost = Min(CP*") = Z bjx deuty + Z bgich;qClstreriod
j=1 q=1
vk=12,..,p

The elapsed time includes a briefing period before the
first leg of the duty and a debriefing period after the last
leg of the duty.

i=1,2,...f(f € F: set of all flight legs)

j=1,2,...,d (d € D: set of all legal duties)

k=1,2,...p (p € P: set of all legal pairings)
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Table 4. Mathematical notation of crew pairings.

Notation Define

cty The basic payment for a duty ;.
j

C{ light The cost of each flight i.

The connection time cost between two
consecutive flights 7 and /.

Cconnection Time
il

C}Tg“"e”"d The rest time cost between two
consecutive duties j and g.

a; If flight i is covered by duty j, a;; = 1;
otherwise, a;; = 0.

a; If flight / is covered by duty j, a;; = 1;
otherwise, a;; = 0.

u;; If flight i follow flight /, u; =1;
otherwise, u; = 0.

bj If duty “4” is covered by pairing £,
bjx = 1; otherwise, by, = 0.

bgy If duty “g” is covered by pairing £,
bgr = 1; otherwise, by = 0.

hj, If duty j follows duty ¢, hj, =1;

otherwise, hjg = 0.

Algorithm 2 Pseudocode of the initial subset

1 Procedure InitializeActivePairs (Flights, pairsAll,
pairsActive, maxStep)

2 initialize step =0

3 While (step < maxStep)

4 initialize temporaryFlights = Flights

5 initialize coveredFlightList = {}

6 While (temporaryFlights.length > 0)

7 select a random flight F; out of
temporaryFlights.

8 if (F; has not been included by
coveredFlightList yet)

9 find the "crew pairing list" PL that includes

pairings that cover F; with minimum deadheading (by
checking coveredFlightList) out of pairsAIl.

10 select a random pairing P out of PL
and Insert P to pairsActive.

11 add all flights of P to
coveredFlightList.

12 remove F; from temporaryFlights.

13 step++
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3.2. Initial pairing (subset) selection with heuristic
solution

Unlike other studies, this study generates a knowledge-
based random subset \to cover all flights among all
generated pairings, and then this subset continues to
renew itself. A heuristics approach is developed below
for generating the initial subset.

3.3. Set covering master model for optimization

Selecting the set with the best crew pairing is modelled
as an SC or SP problem in the literature. The SC model
is used in this study because there is a clear analogy
between the SC model and the crew pairing problem. In
this model, each row represents a flight in the airline
time table, and each column represents a generated crew
pairing. In addition, F represents the flight set, and P
represents the legal pairings created by these flights.
The SC problem for the crew pairing problem can be
defined as follows [6, 13]:

The SC model perfectly fits and provides all the
representation needs of the crew pairing problem.

Set covering:

p
Min(z) = G * X;

3
j=1

Which is subject to

p
Zaij*xj21 Vi €F @)
=1

x; € {0,1} VjEP

X = {1 if pairing j is selected;

J 0 otherwise

if flight legiis covered by pairing j;
otherwise

Eq. (3) shows the objective function in which the
total cost is calculated. Eq. (4) indicates the constraint
that guarantees that all flights (rows) are covered at least
once. If this equation equals 1 (=1), then it becomes an
SP model.

3.3.1. Genetic algorithm optimization

Genetic algorithm have been introduced by Holland
[47] to understand the adaptive search processes of
natural systems. GAs are inspired by the evolutionary
phases of biological organisms in nature. GAs can be

applied to combinatorial optimization and machine
learning and represent a popular class of EAs [48]. The
primary logic of genetic algorithm attempt to improve a
population of candidate solutions by iteratively applying
a set of genetic operators (crossover and mutation) and
creating new individuals then replacing the old
individuals with the ones. The proposed GA for solving
the crew pairing problem is described in this section.

Representation is the most important part of a GA.
Binary coding is used for the crew pairing problem, and
two types of models are recommended for the solution
to the crew pairing problem by incorporating a GA.
These models are column-based presentation [44] and
row-based presentation [49]. Column-based
presentation is considered in this study.

3.3.1.1. Initialise the population

The initial population is the first stage of the GA. Each
chromosome in this population represents a possible
solution to a problem. A heuristics approach is
suggested to cover each flight while the initial
population is generated.

Algorithm 3 Initial population algorithm

1 Procedure InitialPopulation (pairsActive, Flights,
Population)

2 for (each chromosome in population)

3 for (each flight F; in Flights list)

4 if (F} is covered by pairsActive list)

5 if (number of covers in chromosome

of F;<1)

6 find the "crew pairing list" PL
that includes F; out of pairsActive.

7 if (PL>1)

8 select a random pairing P
out of PL.

9 insert P to chromosome.

10 add chromosome to Population.

1089

We generate the initial population using the
InitialPopulation method with the pairsActive and
Flights lists. The pairsActive list is a pairing subset that
is chosen among all pairings and covers each flight at
least n time(s). The Flights list is a set in which all

flights exist. The populationSize points to the
chromosome number in the population. In line 2, the
“for” loop activates each chromosome in the

population. In lines 3 and 4, whether any pairing in
pairsActive covers each F; flight is verified. If this F;
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flight is covered, then whether this flight has been
covered before in the genes of the chromosome in line 5
is verified. If this F; flight has not been previously
covered in the genes of the chromosome, then the
pairings that cover this flight in line 6, i.e., crew pairing
list (PL), are identified. In lines 7, 8 and 9, if there is a
pairing P that covers this flight and the number of
pairings is more than one, then a P is randomly chosen
among the PL and added to the chromosome; in other
words, the related chromosome’s gene is true. The loop
starts for the first chromosome of the population. After
all flights are activated, the loop is added into the
chromosome list in line 10 and continues until the break
condition is met.

3.3.1.2. Fitness function

The fitness value of a chromosome equals the objective
function of the problem. The fitness value indicates the
degree to which a chromosome fits the structure of the
objective function (max or min). The main objective is
to minimize the total cost of the objective function. The
fitness function is used to calculate the cost of each
chromosome in the population. The best set solution
(chromosome) must cover all flights in the airline’s
timetable. Calculating the fitness function is not
standard, and although similarities may be observed,
each work is unique. The fitness function adopted in this
study is defined in Eq. (5) using the following terms:

¢; = cost of pairing j;

s; = cost of flight i;

h; = hotel transportation cost of pairing j;
n; = number of night stays of pairing j;
i=12.. ... f (f € F:set of all flight legs);

i=12.. ... p (p € P: set of all pairings).

p

14 f
Fitness function (Min) = Z (cjx]- + Z SV al-]-> + Z nihix;  (5)
= i=1

j=1

Parameters of the model;
>0 5>0 and h]->0;

x(j) € {0,1} Vj EP

~ (1 if pairing j is selected;
*() = {0 otherwise

~ (1 if flight i is a deadhead;
y® = {0 otherwise
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o (1 if flight leg i is covered by pairing j;

a(,j) = {0 .
otherwise

Eq. (5) shows that the first statement of the equation
provides the total cost of the crew pairings in the
solution set of the chromosomes (see details in Section
3.1). The second statement provides the total deadhead
cost that would occur in the event of multiple coverages
of a flight in the solution set. Deadheads represent the
crew staff, excluding the actual commissioned crew,
who travel to another base as passengers on the aircraft.
If a flight is covered more than once, then the flight
would bring an extra cost to the airline. The penalty
value here is calculated by setting it equal to the cost of
a deadhead flight. The third statement is the hotel
transportation costs.

3.3.1.3. Genetic operators

Because the crossover and mutation operator is the stage
the
generation, the selection phase of the chromosomes that

of transferring genetic information to new
cross will be important. In this study, a binary
tournament selection method was used because it
performed better than other selection operators. After
selecting the ancestor (mother and father) chromosomes
to produce new children, the crossover operator is
applied. Single point crossovers, two point crossovers,
and uniform crossings have been attempted using
crossover operators, and the single point crossover is the
best performing operator of the algorithm. The bit-flip
mutation operator was applied to ensure that the
algorithm does not catch local (local) maxima and local
minimum spots.

3.3.1.4. Local search heuristics

3.3.1.4.1. Repair heuristic

The child chromosomes obtained after the crossover and
mutation processes are not guaranteed to be feasible.
Beasley and Chu [44] attempted to repair non-feasible
chromosomes that could be formed by the method they
proposed. A chromosome should be covered by each leg
in flight set. Eq. (6) determines the crew pairing that
should be added to the solution set to cover unscheduled
flights.

Cost of crew pairing
Number of non covered flights included in CP

(6)
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As a first step, to make non-feasible chromosomes
feasible, flights not covered in the solution set and the
possible crew pairings that can be included in the
solution set to allow these flights to be covered in the
solution set are identified. The above equation is used to
determine which crew pairings to include in the solution
set so that non-covered flights are covered. The steps of
the algorithm used in the study are as follows
(Algorithm 4):

Algorithm 4 Pseudocode of the repair

1 Procedure Repair (Flights, pairsActive)

2 initialize notCoveredFlightList = {}

3 for each flight F; in Flights do

4 if (F; can not be covered by chromosome)
5 Insert F; to notCoveredFlightList;

6 if (notCoveredFlightList is empty such that all
flights covered in the solution)

7 exit;

8 for each flight F; in notCoveredFlightList do

9 find the best (according to Eg. 6) pairing P;
out of pairsActive that covers F;

10 add P; to chromosome.

11 update notCoveredFlightList (remove all

flights of P; from notCoveredFlightList).

The pseudocode for the repair of unsuitable
chromosomes is shown in Algorithm 4. For the Repair
function in line 1, the Flights and pairsActive lists are
used as input. Flights is the list of all flights, and
pairsActive (subset) is a pairing subset selected from the
pairings in pairsAll that covers all flights. In line 2,
notCoveredFlightList is generated for the flights that are
not covered in the solution set (chromosome). Between
lines 3 and 5, whether all flights in the flight list are
covered in the solution set is determined, and the flights
that are not covered are added to the
notCoveredFlightList set. In lines 6 and 7, if all flights
are covered, the solution ends. In line 8§, optimum
pairing is searched for each flight that is not covered in
the notCoveredFlightList set. In lines 9 and 10, the best
pairing is found according to equality 4, and the found
pairing is added to the solution set (pairsActive). In line
11, if each flight other than F; in this pairing covers one
of the flights in the notCoveredFlightList set, then this
flight is removed from the notCoveredFlightList set.
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3.3.1.4.2. Modified best-improvement local search

method

A local optimization step is incorporated to render the
solution algorithm more effective. This algorithm is a
local optimization process that ensures that the fitness of
a chromosome is not impaired once it is made feasible,
even when it is omitted from the solution set of
redundant [44]. This process is
implemented immediately after the initial population
and mutation processes. Many strategies can be applied
for the LS and include (1) first improvement and (2)
best improvement. Here, best improvement of the LS is
applied. To obtain the best improvement using this
strategy, all possible moves are tested for a solution so
that the best neighbouring solution can be selected [48].
The pseudocode for the best improvement is given in
Algorithm 5.

crew pairings

Algorithm 5 Local optimization heuristic

1 Procedure LocalSearch (Population, Flights,

pairsActive)
2 for (each chromosome in population)
3 for (each pair P; in pairsActive)
4 if (P; is covered by chromosome)
5 setGene (P, false)
6 if (all flights in Flights not covered
by chromosome)
7 setGene (P;, true)

Even if crew pairings are removed from the solution
set, the pseudocode of the local optimization heuristics
where the chromosome compliance is not violated is as
presented in Algorithm 5. In line 2, the algorithm runs
for each chromosome in the population. In line 3, the
loop runs for each pairing P; for pairsActive. In lines 4
and 5, if P; is in the solution set, then it is removed from
the P; solution set. In lines 6 and 7, if all flights in the
Flights set are not covered, then P; is returned to the
solution set.

3.3.1.5. Population replacement strategies

The last step of the GA is population replacement. In
this step, the surviving parent and child chromosomes
are selected. Because the number of populations is
fixed, a chromosome selection strategy ensures that this
number remains fixed. The two main approaches used
in the population replacement stage are the generational
and steady-state approaches [48]. This study adopts the
steady-state approach. An elitist approach is also tested;
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however, the steady-state approach is preferred because
it delivered better results. In this approach, one or two
offspring are generated in each iteration. Then, this
child chromosome replaces (1) the worst individual in
the population or (2) its parents.

3.4. Update heuristics

3.4.1. Deadhead-minimizing search

heuristic

pairing

This stage can be considered an alternative pairing
search stage. The purpose of the developed heuristics
approach is to decrease the number of deadheads
because they decrease passenger capacity and crew
utility efficiency. Therefore, the airlines always require
that the number of deadheads be kept at an optimum
level [13]. The best chromosome among those in the
population is identified first, and the remaining
chromosomes in the population are then removed from
the solution set. In addition, the best chromosome is an
alternative solution. Finally, alternative pairings that
will decrease the number of deadheads are searched by
checking how many times each flight was covered
among the best chromosome, i.e., pairings in the
alternative solution. This search procedure is conducted
between all pairings that are generated, starting from the
ones that cover deadheads the most, and alternative
identified pairings are added to the subset. An example
alternative pairing search that will decrease the number
of deadheads is shown in Fig. 3.

In the above example, the most covered flight
among the pairings in the best chromosome is f;. The
pairings that cover this flight are shown as P,,;, P, and
P.;, and the flight legs are 1}, 5, f3, f4, f5, fs and f7. The
alternative pairings that cover f; together with f;, f5, f4,
J5, Js and f7 among all pairings are P,;, P,,, Py; and P,,.
Although flight f; in the best chromosome is covered by
pairings P,;, P, and P,;, it can be covered by pairings
Py, and P,; together with all flights by the suggested
method. Here, the aim is to make more than one flight
covered in the solution set minimum. In this manner, the
costs in the goal function can be decreased.

An alternative pairing search algorithm pseudocode
that will decrease the number of deadheads is shown in
Algorithm 6. In line 1, the bestChromosome, Flights,
pairsAll and pairsActive lists are used as input for the

SearchForDeadheadMin function. bestChromosome
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Fig. 3. Alternative pairing search example.

Algorithm 6 Pseudocode of the deadhead-minimizing pairing
search

1 Procedure SearchForDeadheadMinimizingPairs
(bestChromosome, Flights, pairsAll, pairsActive)

2 initialize pairsActive = bestChromosome.pairs
3 While (true)

4 find the next flight F; that is covered by the
solution the most

5 if (F; can not be found)

6 exit;

7 find the "crew pairing list" PL that includes F;
out of pairsActive.

8 find the "flight list" FL that includes all the
flights that are covered by PL.

9 search for a “new pairing list” NPL out of

pairsAll that covers all flights in FL with no deadheads.
10 add all pairings from NPL to pairsActive.

includes the genes of the best chromosome (of the
solution set) obtained as a result of a certain iteration
study of the GA, i.e., the list of pairings; Flights is the
list of all flights; pairsAll is the list of all pairings; and
pairsActive (subset) is a pairing subset that is chosen
among the pairings in pairsAll that covers all flights. In
line 4, the flights F; that are most covered in the solution
set (bestChromosome) are present. In line 5 and 6, if no
F; is found to be covered more than once, then the
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solution ends. In line 7, pairings that cover flight F; are
found in pairsActive, and the PL list is generated. In line
8, the flight list, i.e., the set FL, which is covered by PL
and includes all flights, is found. In lines 9 and 10, new
pairings that cover all flights in the FL list and do not
include any deadheads are searched, and the NPL list is
generated. Then, all pairings in the NPL list are added to
the pairsActive list.

3.4.2. Less-costly alternative pairing search

The less-costly approach can be called the partial
solution search. This approach is a procedure for
searching for high-quality pairings (low-cost) from the
main set (pairsAll) to replace low-quality pairings
(high-cost) from the best chromosome or subset
(pairsActive). In other words, the approach can be called
the low-cost pairing search procedure. Initially, the
pairing with the lowest quality is identified, and a high-
quality pairing search is conducted in the main set for
flights in the pairing with the lowest quality. This
continues until high-quality pairings are found for
flights in the pairing with the lowest quality. First, a
quality index (QI) is identified, and it is calculated as
shown in Eq. (7). According to the values of this index,
the pairings are listed from highest quality to lowest.
The pairing with the smallest index value corresponds to
the pairing with the lowest quality.

Total block time
Total pairing time

f
2 fly
aij Mi
i=1

d d tft requiredRest
j=1 Zqzl(b]'k M]’ + bjkbqkhqujq )

Quality Index (QI) =

@)
Vk=12,...,p

The pseudocode of the alternative pairing search
algorithm that will decrease the number of pairings with
low quality is shown in Algorithm 7. According to this
algorithm, an example of a less-costly pairing search
with four pairings and thirteen flights is depicted in Fig.
4. In line 3, the pairing with the lowest quality, P;, is
found in the best chromosome. Here, the algorithm
starts searching from the pairing with the lowest quality.
Then, after the pairing with the lowest quality, we aim
to find the next pairing with the lowest quality. In lines
4 and 5, if P; cannot be found, then the solution ends. In
line 6, this pairing is used as an initialized value for the
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Table 5. Mathematical notation of the quality index.

Notation Define

M The flight time of flight .

M]Ff t The total duty time of duty ;.

a;j If flight i is covered by duty j, a;; = 1;
otherwise, a;; = 0.

bk If duty j is covered by pairing k, b, = 1;
otherwise, b = 0.

bgx If duty g is covered by pairing &, by = 1;
otherwise, b = 0.

hjq If duty j follows duty g, hjg = 1;

otherwise, hj; = 0.

The required rest time between two

MrequiredRest . L
consecutive duties j and g.

ja

i=1,2,..f(f € F: set of all flight legs)
j=1,2,....d (d € D: set of all legal duties)
k=1,2,...p (p € P: set of all legal pairings)

Less-costly alterative
pairing search

High costly pair

)
[
BDD

D!

D

Lowest
qaulity value

Fig. 4. Alternative less-costly pairing search example.

flights in P; in the searchFlights set. In line 7, the
coveredFlightList set is generated for the searched
flights. In line 8, a low-cost/high-quality pairing is
searched for each flight F; in the searchFlights set.
While conducting the search, this flight should not be
covered by the coveredFlightList set at the same time.
In line 9, the best pairing P, (new pairing) that covers
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flight F; in pairsAll is found, and this pairing is added to
pairsActive in line 10. In line 11, all flights of the
chosen P, are added to the coveredFlightList list. In line
12, a search is conducted of P, for each flight F}. In line
13, a low-cost P; that covers flight F; is found. In line
14, all flights that are not covered in the new pairing P;
(and those that are not covered in the coveredFlightList
set) are added to the searchFlights set.

Algorithm 7 Pseudocode of the less-costly alternative pairing
search

1 Procedure SearchForLessCostlyAlternativePairings
(bestChromosome, pairsAll, pairsActive)

2 While (true)

3 find the next pairing P; that has the lowest

quality value (a metric that is used to give quality points to

pairings, with higher points indicating better quality) out of

bestChromosome.pairs.

4 if (P; can not be found)

5 exit;

6 initialize searchFlights = flights of P;

7 initialize coveredFlightList = {}

8 for (each flight F; that is in searchFlights but

not in coveredFlightList)

9 find the best (according to the quality
metric) pairing P, out of pairsAll that covers F; but does not
include any of the flights in coveredFlightList.

10 add P, to pairsActive.

11 add all flights of P, to coveredFlightList.
12 for (each flight F; that is in P,)

13 find the pairing P; that covers F; in

the last solution (bestChromosome.pairs).
14 add all uncovered flights (those not
in coveredFlightList) of P; to searchFlights.

3.5. General overview

The final status of the solution approach of the crew
pairing optimization problem is indicated in Fig. 5 and
Algorithm 8. As shown in the algorithm, flight legs are
taken from the airline’s timetable as input. In line 3, all
possible duties are generated from the flight legs that
are taken as input. In line 4, all possible pairings are
generated by taking duties that are generated in line 3.
In line 5, pairsActivelList is a function that generates a
pairing subset that is chosen from pairsA!/l. In line 6, we
generate the initial population using the Flights and
pairsActive lists. In line 7, the loop runs until the break
condition is met. In lines 8, 9, 10 and 11, optimization is
performed with the GA until the loop reaches a certain
number of iterations. In line 12, the best chromosome of
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the population is found at the end of the loop. In line 13,
alternative pairings that will decrease the number of
deadheads are searched by considering the mostly
covered flights of pairings in the best chromosome. In
line 14, starting from the pairing with the lowest quality
in the best chromosome,
pairings are searched.

alternative high-quality

Mam set
(ll lgal parn)

Genefic Alporifh
(Optimization)

Yow siredetiie
e pariacinve

lplenbes
() D pit sk
i Loy pang s |

Fig. 5. Overview of the proposed approach.

Algorithm 8 Overview of the proposed algorithm

1 Procedure Optimization_Crew_Pairing Problem
(Flights, maxIteration)

2 initialize iteration=0

3 dutyList=Generate_Duties (Flights)

4 pairsAllList=Generate AllPairs (dutyList)

5 pairsActiveList = initializeActivePairs(Flights,
pairsAllList);

6 Initialize population (flights, pairsActive);

7 While (iteration < maxIteration) do

8 Solve_Subset Genetic_Algorithm
(pairsActiveList, Flights)

9 If (termination criterion is satisfied)

10 Exit;

11 If (Update heuristic run is necessary)

12 Find the bestChromosome

13 Run_Search_Pair

Deadhead Minimizing_Approach (bestChromosome, Flights,
pairsAllList, pairsActive)
14
Run_Search_Less_Costly Alternative Pair Approach
(bestChromosome, Flights, pairsAllList, pairsActive)
15
16

iteration++
end While

Best solutions
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4. Computational Results

The flight data used in this study are associated with the
airline timetable of the A310 fleet owned by an airline
company in Turkey. This schedule includes 591, 608,
714, 810, 906 and 1002 monthly flight legs for testing.
The programme was run on a computer with an Intel®
Core ™ 64 2.40-GHz processor on the Java Eclipse
platform. Each trial was repeated 30 times. This study
assumes that all crew members reside in Istanbul (IST).
Thetestinstances and flight legs are presented in Table 6.

The GA is executed for 20,000 iterations, and a
subset is updated once every 1000 iterations (excluding
pairings of the best chromosome). In this manner, the
length of the chromosome dynamically changes once
every 1000 iterations. Parent selection is performed
using binary tournament selection with a tour size of 4.
The population size is set to 30, and the crossover
probability is set to 0.8. For each generation of an EA,
only two offspring are generated, and they replace the
worst individuals of the parent population.

Table 6. Legs and pairings of test instances.

Instances Flights legs  Duties Pairings (main set)
1 591 1826 82332
2 608 1907 88624
3 714 2064 208255
4 810 2467 320866
5 906 2771 532115
6 1002 3333 1121408

The duties column in the table above shows the total
number of duties generated from monthly flight legs.
These duties are generated with a depth-first search
algorithm. The pairing column indicates the total
number of pairings (the main set) that are generated
within the framework of legal restrictions using the duty
list. In the same manner as for the duty enumeration, a
depth-first search algorithm is used to generate all legal
pairings.

In this study, this problem is integrated into three
different EAs as an optimization problem: (1) two GA
variants and (2) a MA. The overall structure of the prop-
osed EAs (GA1, GA2 and MA) is shown in Table 7.

In GAIl, a subset is formed by a deadhead-
minimizing pairing search. The initial population of
individuals is created randomly. A repair heuristic is
then applied on each and every individual within the
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initial population. Subsequently, in each iteration cycle,
two parents (individuals) are selected using the binary
tournament selection method. This method chooses the
individual with the best fitness among several randomly
chosen individuals from the initial population with the
tour size. Two new children are then created by
applying the crossover to those selected parents, and the
children are mutated afterwards. A repair heuristic is
applied to potentially non-feasible chromosomes. Then,
the worst two individuals in the population are replaced
with the best two of the parents and offspring. The
subset is updated in each specific iteration until the
termination criterion is satisfied. Finally, the best
solution is identified.

In the second approach, GA2 is used. Similar to
GAl, GA2 starts with a randomly generated initial
population and applies repair heuristics to each
individual in the population. Deadhead-minimizing and
less-costly pairing search algorithms are integrated and
used in GA2. Third, after forming the initial population
of GA2, a local optimization technique is applied, and
this algorithm is called an MA. The other steps in the
MA are the same as those of the GA (GA2).

MAs and GAs developed by other authors have also
been tested, and the results are provided in Table 8. The
KPIs in this table show that among the proposed
algorithms, the MA generated better results. However,
statistical methods should be used to determine whether
significant  differences occurred between these
algorithms.

The Mann-Whitney-Wilcoxon test is used as a
statistical test of the pairwise average performance of
two given algorithms for non-parametric tests [50]. The
results show that the proposed MA provides less-costly
crew pairings.

Table 7. Proposed evolutionary algorithms.

. - Evolutionary algorithms
Improving Heuristics

GAl GA2 MA
Deadhead-minimizing pairing X X X
searching
Less-costly alternative pairing - X X
searching
Local optimization techniques - - X

The proposed algorithm was compared with the
results of previous studies performed with the same
EAs, and the results show that it exhibits significant
performance. Kornilakis and Stamatopoulos [14] and
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Zeren and Ozkol [13] sought to eliminate poor-quality
crew rotations to reduce performance problems in their
studies, and they successfully eliminated poor-quality
crew pairings as long as they stored high-quality crew
pairings of a certain amount.

In other words, a pairing subset is generated by
choosing a pairing of a certain amount from the main set
of all pairings, and it is provided to the GA as input. The
difference in our study is that the pairing subset is
dynamically and continuously renewed because the GA
is optimized. Comparisons of previously proposed MA
approaches are summarized in Table 9.

Three important parameters are presented in Tables
8 and 9: total man-days, deadheads, and layovers/
overnights. The solutions are generally evaluated via
these three parameters. Evaluating other parameters is
meaningful if these three values are close to each other.
Because financial costs are not determined, the total
cost can provide insights for planning, although the
solutions are always evaluated with the three important
parameters because of operational difficulties.
According to the planning period, the overnight,
deadhead and man-day parameters are prioritized based
on their level of importance.

Novel dynamic-based GA variations and a MA
approach are proposed to obtain a crew pairing solution
set with the minimum cost. In Fig. 6, graphics are
shown for the following KPIs (e.g., instance 6) obtained
via the optimization of the proposed approaches:
number of deadheads: total number of deadheads; dead-
head time: total flight times of deadheads; duty days:
total number of duty days; overnight stays: total number
of overnight stays; overnight duration: total time of
overnight stays; and fitness: total crew pairing cost.

In Table 10, a summary of the critical assessment
parameters of the crew pairing is shown, and it indicates
that the proposed approach is successful at decreasing
the total deadhead time. The deadhead factor is an
important KPI, especially in high seasons because the
airline’s income will decrease when passenger seats are
used by the crew. Another important KPI is the number
of duty days. In certain months, the airline companies
encounter difficulties securing a sufficient number of
pilots, particularly in December when certain pilots
have reached their annual flight time limits. Therefore,
the number of duty days is an important factor. The
number of overnights is another factor that must be at
the optimum level because it affects the accommodation
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costs of the airline companies. The total cost value
shows a general optimization performance. The results
show that the proposed approach generates outstanding
total cost values.

Fig. 6 and Table 10 show that the MA-generated
solutions present better deadhead, duty day, overnight
stay, and total cost values.

5. Conclusions and Future Directions

In this study, a dynamic-based MA approach and GA
variations are proposed for the airline crew pairing
problem, which has been intensively studied in the
literature. Because crew pairing is a main cost-
identifying stage of the crew scheduling process,
approaches that decrease crew costs, increase crew
utility and generate optimum crew pairings are of
significant importance. KPIs, such as deadhead time,
number of duty days, and number of overnight stays, are
submitted along with the financial costs related to crew
pairing optimization. These indicators are of significant
importance because they facilitate the management of
operational challenges in real-world problems.

A unique model and strategies have been
developed after reviewing current approaches during the
development of the proposed solution. The
computational results section shows that the proposed
strategy generates highly competitive results when
compared with current approaches. The proposed
approach is particularly successful at decreasing
deadhead time and the number of overnight stays.

The main contributions of this study are as follows:

e A dynamic-based GA has been developed for
solving the medium-scale airline crew pairing
problem;

e An pairing (deadhead-
minimizing search) approach has been developed
that will decrease the deadhead factor;

alternative search

e A low-cost (high-quality) alternative pairing search
(partial solution search) approach has been
developed.

Dynamic-based GAs and changes in chromosome
length in each iteration were used to resolve the crew
pairing problem. The advantage of the proposed
approach is that it seeks the solution set with the
minimum cost that covers all flights via a GA by
generating subsets from millions of main sets. However,
using millions of generated crew pairings in the GA as
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direct input renders the problem impossible to solve and
slows the performance of the algorithm, thereby leading
to sub-optimal results. Therefore, one subset is
considered instead of all pairings. This subset
dynamically changes, i.e., the main set and the subset
exchange pairings. The pairings that lead to a sub-
optimal solution from the pairing subset are excluded
from the solution, and the pairings that lead to an
optimal solution from the main set are chosen and added
to the subset.

The second contribution is an alternative pairing
search approach that will decrease the number of
deadheads. In this method, a heuristics approach that
searches and finds the pairings that generate the fewest
deadheads for each flight is developed, and it sends the
pairings that lead to the best solution from the main set
to the subset. Concurrently, the approach checks the
number of covering flights in the pairings in the subset
as explained in Section 3.4.1. If a flight is covered more
than once (deadhead) in the pairings, the alternative
pairings that decrease the number of deadheads are
sought. This search is performed for all pairings starting
from the deadhead that is most covered, and it adds the
identified alternative pairings to the subset.

The third contribution is that high-quality pairings
are searched from the main set and low-quality pairings
in the subset are not searched by checking the pairings
in the best chromosome. In other words, a low-cost
pairing search is performed. As stated in Section 3.4.2,
the pairing with the lowest quality is first identified, and
then a high-quality pairing search is performed from the
main set for the flights in the pairing with the lowest
quality for this lowest quality pairing. This procedure
continues until it finds the highest-quality pairings for
flights in the pairings with the lowest quality. This
procedure is conducted according to the quality metric
that is assigned to the pairings beforehand.

Detailed comparisons are presented in the tables
above, and they clearly show that the proposed
approach can generate competitive results when
compared with current approaches that use state-of-the-
art solvers (the deadhead-minimizing pairing search and
less-costly alternative pairing search algorithms).
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