
Novel search space updating heuristics-based genetic algorithm for optimizing medium-scale
airline crew pairing problems

Nihan Çetin Demirel, Muhammet Deveci

Department of Industrial Engineering, University of Yildiz Technical,
Barbaros Bulvarı 34349 Yildiz

Istanbul, Turkey
E-mail: nihan@yildiz.edu.tr, muhammetdeveci@gmail.com

Abstract

This study examines the crew pairing problem, which is one of the most comprehensive problems encountered in
airline planning, to generate a set of crew pairings that has minimal cost, covers all flight legs and fulfils legal
criteria. In addition, this study examines current research related to crew pairing optimization. The contribution of
this study is developing heuristics based on an improved dynamic-based genetic algorithm, a deadhead-minimizing
pairing search and a partial solution approach (less-costly alternative pairing search). This study proposes genetic
algorithm variants and a memetic algorithm approach. In addition, computational results based on real-world data
from a local airline company in Turkey are presented. The results demonstrate that the proposed approach can
successfully handle medium sets of crew pairings and generate higher-quality solutions than previous methods.

Keywords: Airline crew scheduling, Crew pairing, Set-covering, Genetic algorithm, Heuristics.

1. Introduction

Airline companies have used operations research
techniques to solve planning and scheduling problems
since 1950 [1]. These techniques greatly impact
planning and managing the operations of airlines.
Advances in computer technology and optimization
models have allowed more complex issues to be
addressed and overcome; thus, airline-related problems
can be solved in a shorter period of time. These models
have saved millions of dollars, and many airline
companies have established operations research
departments [2].
 Planning and operational problems are the most
common issues encountered by airline companies. Each
problem has its own characteristics and objectives.
Airline crew scheduling is among the major planning
problems referred to frequently in the literature. Crew
expenses are the second largest expense for airlines after

the cost of fuel. Because fuel costs cannot be reduced,
effective and economical crew scheduling is highly
valued by airline companies. Because staff costs are the
largest expense that can be controlled by airline
companies, scheduling cabin crew members in the most
efficient manner is of utmost importance for airline
planning [3]. Given its economic aspect and huge
impact on operations, airline crew scheduling, which is
comprehensive in nature, is an NP-hard optimization
problem that must be solved under numerous
constraints. The economic significance and complexity
of this problem has attracted the attention of the
operations research community in recent years. To
facilitate a solution to this problem, various exact and
meta-heuristics-based methods have been developed [4-
12].
 Because of its cumbersome nature, airline crew
scheduling has been divided into two consecutive
stages: crew pairing and crew rostering. The main

International Journal of Computational Intelligence Systems, Vol. 10 (2017) 1082–1101

1082

Received 27 April 2017

Accepted 5 July 2017

Copyright © 2017, the Authors. Published by Atlantis Press.
This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/).

objective of the crew pairing process is to find the
pairings with minimum cost that cover all flights within
legal rules. Crew rostering (or crew assignments) is
conducted for all legal pairings generated in the
previous stage [13]. This study analyses the crew
pairing problem. The inputs of the crew pairing problem
are the flight legs included in the airline’s timetable.
Considering the scope of the crew pairing process in
real life, it is not possible to generate all crew pairings
(which is acceptable for large airlines). Additionally,
generating a large quantity of crew pairings would make
the optimization phase more difficult. Most of the
studies in the literature have solved the problem by
generating as few crew pairings as possible [14, 9].
 In this study, a dynamic-based genetic algorithm is
proposed for medium-scale scheduling problems. The
objective is to find a set of minimum-cost crew pairings
that meets the demand for each flight leg in the airline’s
timetable within all legal limits. The major differences
between our study and previous genetic algorithm
studies are as follows:
1) A genetic algorithm has been developed to solve
medium-scale crew pairing problems. 2) Previous
studies considered a particular element of the generated
crew pairings and excluded the rest from the solution
set, whereas in our study, all legal pairings are
generated and their subsets are considered. 3) The
length of the chromosome representing a solution
changes dynamically in each iteration. Thus, the
chromosome length varies during the optimization run.
4) Our study also has multi-objective characteristics
because we represent penalty values for more than one
KPI (key performance indicator) in the objective
function. The high cost of crew pairing and the number
of deadheads have been minimized. For these problems,
new heuristic algorithms have been developed.
 The rest of this paper is organized as follows.
Section 2 provides an overview of the background and
describes the airline crew pairing problem. Section 3
explains the proposed evolutionary algorithms. Section
4 presents a case study from Turkey and compares the
performances of different evolutionary algorithms
applied to this case study, and it also describes the
experimental results and analyses. Finally, Section 5
presents the conclusions.

2. Background

2.1. Crew pairing

Studies on airline crew pairing have used the set-
covering and set-partitioning models. Information on
studies that have solved airline crew scheduling
problems by exact, approximate or meta-heuristic
methods is given in Tables 1 and 2.
 In most airline crew scheduling research,
matheuristic studies are performed that utilize both
heuristic and exact approaches. We can define
matheuristics as optimization algorithms generated by
the interoperation of meta-heuristics and mathematical
programming methods. Column generation and integer
programming (heuristic branch-and-bound) are the most
commonly used methods.

2.2. Memetic algorithm

A memetic algorithm (MA) is a heuristic algorithm that
uses local search (LS) techniques and is a genetic
algorithm and hybrid-structured evolutionary algorithm
(EA). MAs are enhanced population-based EAs that
were first developed by Moscato [38] to solve discrete
optimization problems. The main components of MAs
are crossover, mutation and hill climbing [39]. LS
algorithms attempt to improve the current solution.
Within MAs, hill climbing, tabu search and simulated
annealing are used as LS algorithms. MAs are used to
solve NP-hard problems by combining genetic
algorithms (GAs) and LS techniques [40].
 Our ultimate objective is to develop a GA that can
handle medium data sets in an effective manner and
generate outcomes that are of high quality.

2.3. Related works

Because current approaches are not sufficient for
solving large-scale problems, most studies apply
integrated heuristics with these approaches. Several
studies have been performed on the application of GAs
based on meta-heuristics to the airline crew scheduling
problem in the literature. In these studies, the set-
partitioning (SP) problem or set-covering (SC) problem
is generally considered to solve the crew pairing
optimization problem. Both problems have been shown
to be NP-complete [41].
 In Zeren and Ozkol’s study [9] of 700 flights,
Ozdemir and Mohan’s study [42] of 300 flights,

International Journal of Computational Intelligence Systems, Vol. 10 (2017) 1082–1101

1083

https://en.wikipedia.org/wiki/Optimization_algorithm
https://en.wikipedia.org/w/index.php?title=%28meta%29heuristics&action=edit&redlink=1
https://en.wikipedia.org/wiki/Mathematical_programming
https://en.wikipedia.org/wiki/Mathematical_programming

Ta
bl

e
1.

 O
ve

rv
ie

w
 o

f p
re

vi
ou

s s
tu

di
es

 th
at

 u
se

d
m

et
a-

he
ur

is
tic

s a
nd

 m
at

he
ur

is
tic

s f
or

 th
e

ai
rli

ne
 c

re
w

 sc
he

du
lin

g
pr

ob
le

m
.

A
ut

ho
r

(Y
ea

r)

Fl
ee

t
A

ss
ig

nm
en

t
A

ir
cr

af
t

R
ou

tin
g

C
re

w

Pa
ir

in
g

C
re

w

R
os

te
ri

ng

Pr
ob

le
m

T

yp
e

A
pp

lic
at

io
n

Fl
ig

ht
 D

at
a

D
at

a
A

cc
es

s
A

ir
lin

e/

C
ou

nt
ry

SC

 /S
P

So
lu

tio
n

M
et

ho
ds

La
vo

ie
 e

t a
l.

[1
5]

-

-
x

-
2

W
ee

kl
y

R
ea

l
up

 to
 3

29

Pr
iv

at
e

A
ir

Fr
an

ce

SC

C
ol

um
n

ge
ne

ra
tio

n,

ge
ne

ra
liz

ed

lin
ea

r
pr

og
ra

m
m

in
g

an
d

sh
or

te
st

 p
at

h
Le

vi
ne

 [1
6]

-

-
x

-
-

R
ea

l
-

Pr
iv

at
e

-
SP

H

yb
rid

 g
en

et
ic

 a
lg

or
ith

m
s

C
hu

 e
t a

l.
[1

7]

-
-

x
-

D
ai

ly

R
ea

l
-

Pr
iv

at
e

A
m

er
ic

an

A
irl

in
es

-

Ze
ro

-o
ne

 in
te

ge
r p

ro
gr

am

D
es

au
ln

ie
rs

et

al

.
[1

8]

-
-

x
-

W
ee

kl
y

R
ea

l

be
tw

ee
n

15
4

an
d

ap
pr

ox
im

at
el

y
12

00

Pr
iv

at
e

A
ir

Fr
an

ce

SP

N
on

lin
ea

r
IP

an

d
D

an
tz

ig
-W

ol
fe

de

co
m

po
sit

io
n

M
er

le
 e

t a
l.

[1
9]

-

-
x

-
-

Re
al

98

6
Pr

iv
at

e
-

SP

Li
ne

ar
 p

ro
gr

am
in

g,
 c

ol
um

n
ge

ne
ra

tio
n

Y
an

 a
nd

 C
ha

ng
 [2

0]

-
-

-
x

W
ee

kl
y

R
ea

l
-

Pr
iv

at
e

Ta
iw

an

ai
rli

ne

SP

Sh
or

te
st

pa

th

pr
ob

le
m

an

d
co

lu
m

n
ge

ne
ra

tio
n

M
er

ci
er

 e
t a

l.
[2

1]

-
x

x
-

D
ai

ly

R
ea

l
up

 to
 7

00

Pr
iv

at
e

-
-

B
en

de
rs

de

co
m

po
sit

io
n

an
d

co
lu

m
n

ge
ne

ra
tio

n
Ze

gh
al

 a
nd

 M
in

ou
x

[2
2]

-

-
-

x
M

on
th

ly

R
ea

l
-

Pr
iv

at
e

Tu
ni

sA
ir

-
In

te
ge

r l
in

ea
r p

ro
gr

am

M
ed

ar
d

an
d

Sa
w

hn
ey

 [2
3]

-

-
x

x
-

R
ea

l
-

Pr
iv

at
e

-
SC

/S
P

C
ol

um
n

ge
ne

ra
tio

n

 M
er

ci
er

 a
nd

 S
ou

m
is

[2
4]

-

x
x

-
D

ai
ly

R

ea
l

up
 to

 5
00

Pr

iv
at

e
-

-
B

en
de

rs

de
co

m
po

si
tio

n,

co
lu

m
n

ge
ne

ra
tio

n

 A
hm

ad
B

ey
gi

 e
t

al
.

[2
5]

-

-
x

-
W

ee
kl

y
R

ea
l

32
9

Pr
iv

at
e

U
.S

A

irl
in

es

SP

C
ol

um
n

ge
ne

ra
tio

n

an
d

in
te

ge
r

pr
og

ra
m

m
in

g

Pa
pa

da
ko

s [
26

]
x

x
x

-
D

ai
ly

 a
nd

W

ee
kl

y
R

ea
l

37
2

an
d

ov
er

21

00

Pr
iv

at
e

Eu
ro

pe
an

an

d
N

or
th

A

m
er

ic
an

ai

rli
ne

s

SP

En
ha

nc
ed

B

en
de

rs

de
co

m
po

sit
io

n
an

d
ac

ce
le

ra
te

d
co

lu
m

n
ge

ne
ra

tio
n

D
en

g
an

d
Li

n
[8

]
-

-
x

-
D

ai
ly

Re

al

(O
zd

em
ir

 &

M
oh

an
, 2

00
1)

-

Pr
iv

at
e

-
-

A
nt

co

lo
ny

op

tim
iz

at
io

n
an

d
sw

ar
m

in

te
lli

ge
nc

e

Io
ne

sc
ua

an

d
K

lie
w

er
 [2

7]

-
-

x
-

D
ai

ly

R
ea

l
39

6-
42

7
Pr

iv
at

e
Eu

ro
pe

an

A
irl

in
e

SP

C
ol

um
n

ge
ne

ra
tio

n

Sa
dd

ou
ne

 e
t a

l.
[2

8]

-
-

x
x

D
ai

ly
,

W
ee

kl
y

an
d

M
on

th
ly

R
ea

l
be

tw
ee

n
10

11

an
d

75
27

Pr

iv
at

e
N

or
th

A

m
er

ic
an

A

irl
in

e
SP

C

ol
um

n
ge

ne
ra

tio
n

an
d

bi
-d

yn
am

ic

co
ns

tra
in

t a
gg

re
ga

tio
n

D
uc

k
et

 a
l.

[2
9]

-

x
x

-
-

R
an

do
m

ge

ne
ra

te
d

-
Pr

iv
at

e
-

SP

C
ol

um
n

ge
ne

ra
tio

n

an
d

D
yn

am
ic

pr

og
ra

m
m

in
g

A
yd

em
ir-

K
ar

ad
ag

 e
t

al
. [

11
]

-
-

x
-

D
ai

ly

R
an

do
m

ge

ne
ra

te
d

10
0

an
d

20
0

Pr
iv

at
e

-
SC

C

ol
um

n
ge

ne
ra

tio
n,

 g
en

et
ic

 a
lg

or
ith

m

A
za

de
h

et
 a

l.
[1

0]

-
-

x
-

D
ai

ly

R
an

do
m

ge

ne
ra

te
d

25
, 5

0,
 1

00

an
d

15
0

Pr
iv

at
e

-
-

Pa
rti

cl
e

sw
ar

m

op
tim

iz
at

io
n,

ge

ne
tic

al

go
rit

hm
 a

nd
 a

nt
 c

ol
on

y
op

tim
iz

at
io

n
C

ac
ch

ia
ni

an

d
Sa

la
za

r-
G

on
zá

le
z

[3
0]

x

x
x

-
D

ai
ly

R

ea
l

10
0-

15
0

Pr
iv

at
e

-
-

LP
-r

el
ax

at
io

n
by

 c
ol

um
n

ge
ne

ra
tio

n

SC
: S

et
 c

ov
er

in
g,

 S
P:

 S
et

 p
ar

tit
io

ni
ng

.

International Journal of Computational Intelligence Systems, Vol. 10 (2017) 1082–1101

1084

Ta

bl
e

2.
 C

on
tin

ue
.

A
ut

ho
r

(Y
ea

r)

Fl
ee

t
A

ss
ig

nm
en

t
A

ir
cr

af
t

R
ou

tin
g

C
re

w

Pa
ir

in
g

C
re

w

R
os

te
ri

ng

Pr
ob

le
m

T

yp
e

A
pp

lic
at

io
n

Fl
ig

ht
 D

at
a

D
at

a
A

cc
es

s
A

ir
lin

e/

C
ou

nt
ry

SC

/S

P
So

lu
tio

n
M

et
ho

ds

M
ut

er
 e

t a
l.

[3
1]

-

-
x

-
D

ai
ly

 a
nd

W

ee
kl

y
R

ea
l

96
, 1

35
, 4

90

Pr
iv

at
e

Tu
rk

ey

SC

R
ow

 a
nd

 c
ol

um
n

ge
ne

ra
tio

n
an

d
m

ul
ti-

la
be

l s
ho

rte
st

 p
at

h

Sa
dd

ou
ne

 e
t a

l.
[3

2]

-
-

x
-

D
ai

ly
,

W
ee

kl
y

an
d

M
on

th
ly

R

ea
l

be
tw

ee
n

10
11

an

d
75

27

Pr
iv

at
e

N
or

th
 A

m
er

ic
an

A

irl
in

e
-

C
ol

um
n

ge
ne

ra
tio

n

Sa
la

za
r-

G
on

zá
le

z
[3

3]

x
x

x
x

-
R

ea
l

be
tw

ee
n

10
0

an
d

15
0

Pr
iv

at
e

B
in

te
r C

an
ar

ia
s

S.
A

-

In
te

ge
r

pr
og

ra
m

m
in

g
an

d
m

ix
ed

in

te
ge

r l
in

ea
r p

ro
gr

am
m

in
g

Ze
re

n
an

d
O

zk
ol

 [1
3]

x

M

on
th

ly

R
ea

l
be

tw
ee

n
15

65
6

an
d

17
31

8
Pr

iv
at

e
Tu

rk
ish

 A
irl

in
es

SC

In

te
ge

r
pr

og
ra

m
m

in
g,

C

ol
um

n
ge

ne
ra

tio
n

an
d

he
ur

ist
ic

s

C
he

n
an

d
Ch

ou
 [3

4]

-
-

-
x

-
R

ea
l

-
Pr

iv
at

e
-

-
G

en
et

ic
 a

lg
or

ith
m

s

K
as

irz
ad

eh
 e

t a
l.

[3
5]

-

-
x

x
-

R
ea

l
-

Pr
iv

at
e

U
S

ca
rri

er

SC

C
ol

um
n

ge
ne

ra
tio

n

Q
ue

sn
el

 e
t a

l.
[3

6]

-
-

x
-

M
on

th
ly

R

ea
l

B
et

w
ee

n
27

1
an

d
47

9,
 a

nd

al
so

 fr
om

14

63
 to

 1
98

7.

Pr
iv

at
e

N
or

th
 A

m
er

ic
an

A

irl
in

e
SP

C

ol
um

n
ge

ne
ra

tio
n

Y
ild

iz
 e

t a
l.

[3
7]

-

-
x

-
W

ee
kl

y
R

ea
l

37
8

an
d

47
0

Pr
iv

at
e

-
SC

C

ol
um

n
ge

ne
ra

tio
n

Ta
bl

e
3.

 O
ve

rv
ie

w
 o

f p
re

vi
ou

s s
tu

di
es

 th
at

 u
se

d
ge

ne
tic

 a
lg

or
ith

m
s f

or
 th

e
ai

rli
ne

 c
re

w
 sc

he
du

lin
g

pr
ob

le
m

.

A
ut

ho
r

(Y
ea

r)

C
re

w

Pa
ir

in
g

C
re

w

R
os

te
ri

ng

Pr
ob

le
m

 T
yp

e
A

pp
lic

at
io

n
Fl

ig
ht

 D
at

a
D

at
a

A
cc

es
s

A
ir

lin
e/

C

ou
nt

ry

Fo
rm

ul
at

io
n

B
ea

sle
y

an
d

Ch
u

[4
4]

x

-
-

R
an

do
m

 g
en

er
at

ed

-
Pr

iv
at

e
-

SC

Le
vi

ne
 [1

6]

x
-

-
R

ea
l

-
Pr

iv
at

e
-

SP

O
zd

em
ir

an
d

M
oh

an
 [4

2]

x
-

D
ai

ly

R
ea

l
-

Pr
iv

at
e

-
-

K
er

at
i e

t a
l.

[4
5]

-

x
-

-
-

Pr
iv

at
e

-
-

K
or

ni
la

ki
s a

nd
 S

ta
m

at
op

ou
lo

s [
14

]
x

-
M

on
th

ly

R
ea

l
21

00

Pr
iv

at
e

O
ly

m
pi

c
A

irw
ay

s
SC

C
ha

ng
 [4

3]

x
x

W
ee

kl
y

R
ea

l
ab

ou
t 7

00

Pr
iv

at
e

Ta
iw

an

-

So
ua

i a
nd

 T
eg

he
m

 [7
]

x
x

D
ai

ly

R
ea

l
up

 to
 6

31

Pr
iv

at
e

-
SP

Ze
re

n
an

d
O

zk
ol

 [9
]

x
-

M
on

th
ly

R

ea
l

71
4

Pr
iv

at
e

Tu
rk

ish
 A

irl
in

es

SC

A
za

de
h

et
 a

l.
[1

0]

x
-

D
ai

ly

R
an

do
m

 g
en

er
at

ed

25
, 5

0,
 1

00
 a

nd
 1

50

Pr
iv

at
e

-
-

International Journal of Computational Intelligence Systems, Vol. 10 (2017) 1082–1101

1085

http://www.sciencedirect.com/science/article/pii/S0305054816302957

Kornilakis and Stamatopoulos’s study [14] of 2100
flights, Chang’s study [43] of 700 flights and Sou and
Teghem’s study [7] of 631 flights, the results were
generated without using all pairs. However, in this
study, all pairs are produced, and by updating the
solution space dynamically, the GA yields better
solutions in big column numbers.
 Using the dynamic approach proposed in this paper,
we were able to generate solutions that are of better
quality using much larger data sets than those used in
studies that include GAs. An overview of previous work
on relevant GA studies is provided in Table 3.

2.4. Fundamental definitions and rules

Crew pairing problems attempt to determine the crew
pairing with minimum costs that would meet the needs
of each flight leg on the schedule. The airline timetable
is used as an input at this stage. Then, duties and
pairings are generated according to the rules laid down
by the airline companies, the Directorate General of
Civil Aviation (DGCA) and the Federal Aviation
Administration (FAA). Fig. 1 shows the duties and crew
pairings generated in line with the flight legs used in the
airline’s timetable. The following definitions are used to
address the crew pairing problem [3]:
Flight (flight leg or leg): Period between aircraft (AC)
take off and AC landing.
Duty: Period comprising one or more flight legs,
including the briefing time, which is the preparation
period for the duty, and the debriefing time, which is the
preparation period of the AC for the next flight crew.
Crew pairing: Period comprising one or more duties.
Crew pairings also include the rest periods between
duties.
 The limits that must be respected to ensure that a
duty or crew pairing is legal consist of a rest period,
connection time, flight time and duty time. Connection
times for a duty period must be within a certain range
(minimum and maximum). The total flight time refers to
the time spent in a duty period, the block time refers to
the flight time during a duty, and the number of flight
legs must not exceed the given ranges. A certain period
is also allocated for briefing before each duty period and
debriefing at the end of each duty period. The rules
applied for crew pairing vary according to airlines and
countries. The rules for the crew pairing problem can be
found in [46].

IST
(Home base) ESB

Connection
time

06:00 07:00

Debrief

ESB IST

08:15 09:15

IST ORY

11:05 14:20

Brief

O
v
e
r
 N

ig
h

t
R

e
s
t

ORY IST

09:30 12:45

Debrief

IST GZT

14:10 15:55

GZT IST

16:50 18:40

Brief

Time Away from Base

Total Duty Time Total Duty Time

Crew pairing

Duty Period 1 Duty Period 2

Connection
time

Connection
time

Connection
time

Fig. 1. Example of a crew pairing with an IST airport as the
crew base.

Connection time: A connection during duty is called a
sit connection time, which is the time between two
consecutive flight legs in a duty. Generally, airlines
consider minimum and maximum sit connection times,
which are usually between 30 min and 3 h (sometimes 4
h).
Rest: A connection between two duty periods is called a
rest, layover or overnight connection.
Brief: The elapsed time before the first leg of the duty.
Debrief: The elapsed time after the last leg of the duty.
Deadhead: If a crew member flies as a passenger rather
than as a cockpit or cabin attendant, this flight is
regarded as a deadhead flight for that crew member.
Deadhead flights should be minimized because they
reduce the passenger transport capacity and the crew
utilization efficiency [13].

3. Proposed Methodologies

In this study, we propose a fast, strong and dynamic-
based GA approach for airline crew pairing. The
algorithm’s main logic provides a sub-optimal solution
for medium-scale problems by solving them in small
subsets. The proposed method uses a small subset of the
problem that continuously repeats itself in line with the
information obtained from the GA solution. The
pairings that worsen the solution in the subset and the
pairings that improve the solution in the main set are
continuously replaced to develop updated heuristics.

International Journal of Computational Intelligence Systems, Vol. 10 (2017) 1082–1101

1086

The proposed methodology consists of five stages.
(1) All legal crew pairings are generated (pairsAll). (2)
A subset is formed by randomly (knowledge-based
random) choosing pairings from the generated crew
pairings, including all flights (select the initial from
pairsAll). (3) The steps of the GA are applied to
optimize the problem. (4) After the GA produces a
certain iteration, the population’s best chromosome and
pairings of this chromosome are kept in memory for the
next round. Then, the loop returns to stage 3, and the
pairings that will improve the solution (low-cost) in the
main set are searched instead of the pairings that will
worsen the solution (high-cost) in the subset. In

Fig. 2. Stages of the proposed dynamic-based GA
methodology.

addition, the other developed heuristics algorithm and
alternative pairings that will produce the fewest
deadheads for each flight are searched. (5) The best
crew-paring solution set is obtained by continuously
executing procedure stages 3 and 4 until the loop ends.
The schematic diagram of the proposed methodology
for the crew pairing problem is shown in Fig. 2.

3.1. Crew pairing generation

The aim of this stage is to obtain a set of all legal crew
pairings. The crew pairing generation method consists
of two stages: (1) duty generation and (2) pairing
generation. In the first stage, all legal duties are
generated using the set of flights (see Section 2.4). A
depth-first search algorithm is employed for duty
generation. In the second stage, crew pairings are
generated from flight duties with a similar algorithm
(depth-first search algorithm) after duty generation. This
algorithm searches in the space of all possible subsets of
all flight legs [14].

Algorithm 1 Pseudocode of the pair generation

 1 Procedure GeneratePairings (pairList)

 2 currentPair = create an empty pair;

 3 for each duty do

 4 if duty starts from homebase

 5 Insert duty to currentPair;

 6 SearchForPairings (currentPair, pairList)

 7 Remove duty from currentPair;

 8 Procedure SearchForPairings (currentPair, pairList)

 9 for each duty (that starts from the arrival station of

currentPair arrives) do

 10 Insert duty to currentPair;

 11 if currentPair is valid (whether ends at the

same homebase city)

 12 Insert currentPair to pairList;

 13 if currentPair can have more duties

 14 SearchForPairings (currentPair, pairList);

 15 Remove duty from currentPair;

The GeneratePairings method is a recursive
procedure that allows us to search for duty connections
that form all possible crew pairings. In the first phase,
all duties are reviewed in the main procedure. For duties
starting from the homebase, the procedure is executed to

International Journal of Computational Intelligence Systems, Vol. 10 (2017) 1082–1101

1087

search for possible duties that can be added to the
pairing. The steps of this process are shown between
lines 2 and 7. In the second phase, however, duties
finishing at the homebase sub-procedure are executed to
search for possible duties that can be added to the
pairing. Any suitable duties are searched for in lines 9
and 10 and added to the currentPair. In lines 11 and 12,
the generated pairing is added to the pairList if
applicable. In lines 13 and 14, if the length of the
current pairing allows us to add more duties, then
recursive procedure reruns in the search space. The
pairList is the list of all valid pairings created by the
recursive code.

For an airline crew pairing problem that consists of
f flights, d duties and p pairings of duties, the cost
function of the CPP (crew pairing problem) can be
defined as follows:
The total duty duration is used as the duty cost in the
code and can be formulated as given in Eq. (1):

𝐷𝐷𝐷𝐷 𝑐𝑐𝑐𝑐 = 𝑀𝑀𝑀�𝐶𝑗
𝑑𝑑𝑑𝑑� = �𝑎𝑖𝑖 �𝐶𝑖

𝑓𝑓𝑓𝑓ℎ𝑡 +�𝑎𝑙𝑙𝑢𝑖𝑖𝐶𝑖𝑙𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

𝑓

𝑙=1

�
𝑓

𝑖=1

∀𝑗 = 1,2 … , 𝑑

The first and second part of the duty cost equation can
be defined as follows:

(1) Required pay for each flight in each duty and
(2) Connection time between flights.

The first and second part of the pairing cost equation
can be defined as in Eq. (2):

(1) Required pay for each duty in each pairing (duty
cost) and

(2) Connection time expenses between duties (hotel
cost).

𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑐𝑐𝑐𝑐 = 𝑀𝑀𝑀�𝐶𝑘
𝑝𝑝𝑝𝑝� = �𝑏𝑗𝑗 �𝐶𝑗

𝑑𝑑𝑑𝑑 + �𝑏𝑞𝑞ℎ𝑗𝑗𝐶𝑗𝑗𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟
𝑑

𝑞=1

�
𝑑

𝑗=1

∀𝑘 = 1,2, … , 𝑝

The elapsed time includes a briefing period before the
first leg of the duty and a debriefing period after the last
leg of the duty.
i=1,2,….f (f Є F: set of all flight legs)
j=1,2,…,d (d Є D: set of all legal duties)
k=1,2,…,p (p Є P: set of all legal pairings)

Table 4. Mathematical notation of crew pairings.
Notation Define

𝑪𝒋
𝒅𝒅𝒅𝒅 The basic payment for a duty j.

𝑪𝒊
𝒇𝒇𝒇𝒇𝒇𝒇 The cost of each flight i.

𝑪𝒊𝒊𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄 𝑻𝑻𝑻𝑻 The connection time cost between two
consecutive flights i and l.

𝑪𝒋𝒋𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓 The rest time cost between two
consecutive duties j and q.

𝒂𝒊𝒊 If flight i is covered by duty j, 𝑎𝑖𝑖 = 1;
otherwise, 𝑎𝑖𝑖 = 0.

𝒂𝒍𝒍 If flight l is covered by duty j, 𝑎𝑙𝑙 = 1;
otherwise, 𝑎𝑙𝑙 = 0.

𝒖𝒊𝒊 If flight i follow flight l, 𝑢𝑖𝑖 = 1;
otherwise, 𝑢𝑖𝑖 = 0.

𝒃𝒋𝒋 If duty “j” is covered by pairing k,
𝑏𝑗𝑗 = 1; otherwise, 𝑏𝑗𝑗 = 0.

𝒃𝒒𝒒 If duty “q” is covered by pairing k,
𝑏𝑞𝑞 = 1; otherwise, 𝑏𝑞𝑞 = 0.

𝒉𝒋𝒋 If duty j follows duty q, ℎ𝑗𝑗 = 1;
otherwise, ℎ𝑗𝑗 = 0.

Algorithm 2 Pseudocode of the initial subset
1 Procedure InitializeActivePairs (Flights, pairsAll,

pairsActive, maxStep)
2 initialize step = 0
 3 While (step < maxStep)
 4 initialize temporaryFlights = Flights
 5 initialize coveredFlightList = {}
 6 While (temporaryFlights.length > 0)
 7 select a random flight Fi out of
temporaryFlights.
 8 if (Fi has not been included by
coveredFlightList yet)
 9 find the "crew pairing list" PL that includes
pairings that cover Fi with minimum deadheading (by
checking coveredFlightList) out of pairsAll.
 10 select a random pairing P out of PL
and Insert P to pairsActive.
 11 add all flights of P to
coveredFlightList.
 12 remove Fi from temporaryFlights.
 13 step++

International Journal of Computational Intelligence Systems, Vol. 10 (2017) 1082–1101

1088

3.2. Initial pairing (subset) selection with heuristic
solution

Unlike other studies, this study generates a knowledge-
based random subset \to cover all flights among all
generated pairings, and then this subset continues to
renew itself. A heuristics approach is developed below
for generating the initial subset.

3.3. Set covering master model for optimization

Selecting the set with the best crew pairing is modelled
as an SC or SP problem in the literature. The SC model
is used in this study because there is a clear analogy
between the SC model and the crew pairing problem. In
this model, each row represents a flight in the airline
time table, and each column represents a generated crew
pairing. In addition, F represents the flight set, and P
represents the legal pairings created by these flights.
The SC problem for the crew pairing problem can be
defined as follows [6, 13]:
 The SC model perfectly fits and provides all the
representation needs of the crew pairing problem.
Set covering:

𝑀𝑀𝑀(𝑧) = � 𝑐𝑗 ∗ 𝑥𝑗
p

j=1

(3)

Which is subject to

�𝑎𝑖𝑖 ∗ 𝑥𝑗 ≥ 1 ∀𝑖 ∈ F
p

j=1

 (4)

 𝑥𝑗 ∈ {0,1} ∀𝑗 ∈ P

 𝑥𝑗 = �1 𝑖𝑖 𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑗 𝑖𝑖 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠;
0 𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒

𝑎𝑖𝑖 = �1 𝑖𝑖 𝑓𝑓𝑓𝑓ℎ𝑡 𝑙𝑙𝑙 𝑖 𝑖𝑖 𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑏𝑏 𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑗;
0 𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒

Eq. (3) shows the objective function in which the

total cost is calculated. Eq. (4) indicates the constraint
that guarantees that all flights (rows) are covered at least
once. If this equation equals 1 (=1), then it becomes an
SP model.

3.3.1. Genetic algorithm optimization

Genetic algorithm have been introduced by Holland
[47] to understand the adaptive search processes of
natural systems. GAs are inspired by the evolutionary
phases of biological organisms in nature. GAs can be

applied to combinatorial optimization and machine
learning and represent a popular class of EAs [48]. The
primary logic of genetic algorithm attempt to improve a
population of candidate solutions by iteratively applying
a set of genetic operators (crossover and mutation) and
creating new individuals then replacing the old
individuals with the ones. The proposed GA for solving
the crew pairing problem is described in this section.
 Representation is the most important part of a GA.
Binary coding is used for the crew pairing problem, and
two types of models are recommended for the solution
to the crew pairing problem by incorporating a GA.
These models are column-based presentation [44] and
row-based presentation [49]. Column-based
presentation is considered in this study.

3.3.1.1. Initialise the population

The initial population is the first stage of the GA. Each
chromosome in this population represents a possible
solution to a problem. A heuristics approach is
suggested to cover each flight while the initial
population is generated.

Algorithm 3 Initial population algorithm
1 Procedure InitialPopulation (pairsActive, Flights,

Population)
2 for (each chromosome in population)
 3 for (each flight Fi in Flights list)
 4 if (Fi is covered by pairsActive list)
 5 if (number of covers in chromosome
of Fi < 1)
 6 find the "crew pairing list" PL
that includes Fi out of pairsActive.
 7 if (PL ≥ 1)
 8 select a random pairing P
out of PL.
 9 insert P to chromosome.
 10 add chromosome to Population.

 We generate the initial population using the
InitialPopulation method with the pairsActive and
Flights lists. The pairsActive list is a pairing subset that
is chosen among all pairings and covers each flight at
least n time(s). The Flights list is a set in which all
flights exist. The populationSize points to the
chromosome number in the population. In line 2, the
“for” loop activates each chromosome in the
population. In lines 3 and 4, whether any pairing in
pairsActive covers each Fi flight is verified. If this Fi

International Journal of Computational Intelligence Systems, Vol. 10 (2017) 1082–1101

1089

flight is covered, then whether this flight has been
covered before in the genes of the chromosome in line 5
is verified. If this Fi flight has not been previously
covered in the genes of the chromosome, then the
pairings that cover this flight in line 6, i.e., crew pairing
list (PL), are identified. In lines 7, 8 and 9, if there is a
pairing P that covers this flight and the number of
pairings is more than one, then a P is randomly chosen
among the PL and added to the chromosome; in other
words, the related chromosome’s gene is true. The loop
starts for the first chromosome of the population. After
all flights are activated, the loop is added into the
chromosome list in line 10 and continues until the break
condition is met.

3.3.1.2. Fitness function

The fitness value of a chromosome equals the objective
function of the problem. The fitness value indicates the
degree to which a chromosome fits the structure of the
objective function (max or min). The main objective is
to minimize the total cost of the objective function. The
fitness function is used to calculate the cost of each
chromosome in the population. The best set solution
(chromosome) must cover all flights in the airline’s
timetable. Calculating the fitness function is not
standard, and although similarities may be observed,
each work is unique. The fitness function adopted in this
study is defined in Eq. (5) using the following terms:
cj = cost of pairing 𝑗;
si = cost of flight 𝑖;
hj = hotel transportation cost of pairing 𝑗;
nj = number of night stays of pairing 𝑗;
i = 1,2 … … … f (𝑓 Є 𝐹: set of all flight legs);
j = 1,2 … … … p (p Є P: set of all pairings).

𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 (𝑀𝑀𝑀) = ��𝑐𝑗𝑥𝑗 + �𝑠𝑖𝑦𝑖

𝑓

𝑖=1

𝑎𝑖𝑖�
𝑝

𝑗=1

+ �𝑛𝑗ℎ𝑗𝑥𝑗

𝑝

𝑗=1

 (5)

Parameters of the model;
𝑐𝑗 > 0, 𝑠𝑖 > 0 𝑎𝑎𝑎 ℎ𝑗 > 0 ;

x(𝑗) ∈ {0,1} ∀𝑗 ∈ P

𝑥(𝑗) = �1 if pairing 𝑗 is selected;
0 otherwise

𝑦(𝑖) = �1 if flight 𝑖 is a deadhead;
0 otherwise

𝑎(𝑖, 𝑗) = �1 if flight leg 𝑖 is covered by pairing 𝑗;
0 otherwise

 Eq. (5) shows that the first statement of the equation
provides the total cost of the crew pairings in the
solution set of the chromosomes (see details in Section
3.1). The second statement provides the total deadhead
cost that would occur in the event of multiple coverages
of a flight in the solution set. Deadheads represent the
crew staff, excluding the actual commissioned crew,
who travel to another base as passengers on the aircraft.
If a flight is covered more than once, then the flight
would bring an extra cost to the airline. The penalty
value here is calculated by setting it equal to the cost of
a deadhead flight. The third statement is the hotel
transportation costs.

3.3.1.3. Genetic operators

Because the crossover and mutation operator is the stage
of transferring genetic information to the new
generation, the selection phase of the chromosomes that
cross will be important. In this study, a binary
tournament selection method was used because it
performed better than other selection operators. After
selecting the ancestor (mother and father) chromosomes
to produce new children, the crossover operator is
applied. Single point crossovers, two point crossovers,
and uniform crossings have been attempted using
crossover operators, and the single point crossover is the
best performing operator of the algorithm. The bit-flip
mutation operator was applied to ensure that the
algorithm does not catch local (local) maxima and local
minimum spots.

3.3.1.4. Local search heuristics

3.3.1.4.1. Repair heuristic

The child chromosomes obtained after the crossover and
mutation processes are not guaranteed to be feasible.
Beasley and Chu [44] attempted to repair non-feasible
chromosomes that could be formed by the method they
proposed. A chromosome should be covered by each leg
in flight set. Eq. (6) determines the crew pairing that
should be added to the solution set to cover unscheduled
flights.

𝐶𝐶𝐶𝐶 𝑜𝑜 𝑐𝑐𝑐𝑐 𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜 𝑛𝑛𝑛 𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑓𝑓𝑓𝑓ℎ𝑡𝑡 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑖𝑖 𝐶𝐶 (6)

International Journal of Computational Intelligence Systems, Vol. 10 (2017) 1082–1101

1090

 As a first step, to make non-feasible chromosomes
feasible, flights not covered in the solution set and the
possible crew pairings that can be included in the
solution set to allow these flights to be covered in the
solution set are identified. The above equation is used to
determine which crew pairings to include in the solution
set so that non-covered flights are covered. The steps of
the algorithm used in the study are as follows
(Algorithm 4):

Algorithm 4 Pseudocode of the repair
1 Procedure Repair (Flights, pairsActive)
 2 initialize notCoveredFlightList = {}
 3 for each flight Fi in Flights do
 4 if (Fi can not be covered by chromosome)
 5 Insert Fi to notCoveredFlightList;
 6 if (notCoveredFlightList is empty such that all
flights covered in the solution)
 7 exit;
 8 for each flight Fj in notCoveredFlightList do
 9 find the best (according to Eq. 6) pairing Pi
out of pairsActive that covers Fj
 10 add Pi to chromosome.
 11 update notCoveredFlightList (remove all
flights of Pi from notCoveredFlightList).

 The pseudocode for the repair of unsuitable
chromosomes is shown in Algorithm 4. For the Repair
function in line 1, the Flights and pairsActive lists are
used as input. Flights is the list of all flights, and
pairsActive (subset) is a pairing subset selected from the
pairings in pairsAll that covers all flights. In line 2,
notCoveredFlightList is generated for the flights that are
not covered in the solution set (chromosome). Between
lines 3 and 5, whether all flights in the flight list are
covered in the solution set is determined, and the flights
that are not covered are added to the
notCoveredFlightList set. In lines 6 and 7, if all flights
are covered, the solution ends. In line 8, optimum
pairing is searched for each flight that is not covered in
the notCoveredFlightList set. In lines 9 and 10, the best
pairing is found according to equality 4, and the found
pairing is added to the solution set (pairsActive). In line
11, if each flight other than Fj in this pairing covers one
of the flights in the notCoveredFlightList set, then this
flight is removed from the notCoveredFlightList set.

3.3.1.4.2. Modified best-improvement local search
method

A local optimization step is incorporated to render the
solution algorithm more effective. This algorithm is a
local optimization process that ensures that the fitness of
a chromosome is not impaired once it is made feasible,
even when it is omitted from the solution set of
redundant crew pairings [44]. This process is
implemented immediately after the initial population
and mutation processes. Many strategies can be applied
for the LS and include (1) first improvement and (2)
best improvement. Here, best improvement of the LS is
applied. To obtain the best improvement using this
strategy, all possible moves are tested for a solution so
that the best neighbouring solution can be selected [48].
The pseudocode for the best improvement is given in
Algorithm 5.

Algorithm 5 Local optimization heuristic
1 Procedure LocalSearch (Population, Flights,

pairsActive)
2 for (each chromosome in population)
 3 for (each pair Pi in pairsActive)
 4 if (Pi is covered by chromosome)
 5 setGene (Pi, false)
 6 if (all flights in Flights not covered
by chromosome)
 7 setGene (Pi, true)

 Even if crew pairings are removed from the solution
set, the pseudocode of the local optimization heuristics
where the chromosome compliance is not violated is as
presented in Algorithm 5. In line 2, the algorithm runs
for each chromosome in the population. In line 3, the
loop runs for each pairing Pi for pairsActive. In lines 4
and 5, if Pi is in the solution set, then it is removed from
the Pi solution set. In lines 6 and 7, if all flights in the
Flights set are not covered, then Pi is returned to the
solution set.

3.3.1.5. Population replacement strategies

The last step of the GA is population replacement. In
this step, the surviving parent and child chromosomes
are selected. Because the number of populations is
fixed, a chromosome selection strategy ensures that this
number remains fixed. The two main approaches used
in the population replacement stage are the generational
and steady-state approaches [48]. This study adopts the
steady-state approach. An elitist approach is also tested;

International Journal of Computational Intelligence Systems, Vol. 10 (2017) 1082–1101

1091

however, the steady-state approach is preferred because
it delivered better results. In this approach, one or two
offspring are generated in each iteration. Then, this
child chromosome replaces (1) the worst individual in
the population or (2) its parents.

3.4. Update heuristics

3.4.1. Deadhead-minimizing pairing search
heuristic

This stage can be considered an alternative pairing
search stage. The purpose of the developed heuristics
approach is to decrease the number of deadheads
because they decrease passenger capacity and crew
utility efficiency. Therefore, the airlines always require
that the number of deadheads be kept at an optimum
level [13]. The best chromosome among those in the
population is identified first, and the remaining
chromosomes in the population are then removed from
the solution set. In addition, the best chromosome is an
alternative solution. Finally, alternative pairings that
will decrease the number of deadheads are searched by
checking how many times each flight was covered
among the best chromosome, i.e., pairings in the
alternative solution. This search procedure is conducted
between all pairings that are generated, starting from the
ones that cover deadheads the most, and alternative
identified pairings are added to the subset. An example
alternative pairing search that will decrease the number
of deadheads is shown in Fig. 3.
 In the above example, the most covered flight
among the pairings in the best chromosome is f3. The
pairings that cover this flight are shown as Px1, Px2 and
Px3, and the flight legs are f1, f2, f3, f4, f5, f6 and f7. The
alternative pairings that cover f3 together with f1, f2, f4,
f5, f6 and f7 among all pairings are Py1, Py2, Py3 and Py4.
Although flight f3 in the best chromosome is covered by
pairings Px1, Px2 and Px3, it can be covered by pairings
Py2 and Py3 together with all flights by the suggested
method. Here, the aim is to make more than one flight
covered in the solution set minimum. In this manner, the
costs in the goal function can be decreased.
 An alternative pairing search algorithm pseudocode
that will decrease the number of deadheads is shown in
Algorithm 6. In line 1, the bestChromosome, Flights,
pairsAll and pairsActive lists are used as input for the
SearchForDeadheadMin function. bestChromosome

f3 f4Py2 f5 f6

f1 f2Py3 f3 f7

f1 f3 f4 f5

f3 f6 f7

f2 f3

Px1

Px2

Px3

f1 f2 f3

f1 f3

Py1

Py4

Fig. 3. Alternative pairing search example.

Algorithm 6 Pseudocode of the deadhead-minimizing pairing
search
1 Procedure SearchForDeadheadMinimizingPairs

(bestChromosome, Flights, pairsAll, pairsActive)
2 initialize pairsActive = bestChromosome.pairs
 3 While (true)
 4 find the next flight Fi that is covered by the
solution the most
 5 if (Fi can not be found)
 6 exit;
 7 find the "crew pairing list" PL that includes Fi
out of pairsActive.
 8 find the "flight list" FL that includes all the
flights that are covered by PL.
 9 search for a “new pairing list” NPL out of
pairsAll that covers all flights in FL with no deadheads.
 10 add all pairings from NPL to pairsActive.

includes the genes of the best chromosome (of the
solution set) obtained as a result of a certain iteration
study of the GA, i.e., the list of pairings; Flights is the
list of all flights; pairsAll is the list of all pairings; and
pairsActive (subset) is a pairing subset that is chosen
among the pairings in pairsAll that covers all flights. In
line 4, the flights Fi that are most covered in the solution
set (bestChromosome) are present. In line 5 and 6, if no
Fi is found to be covered more than once, then the

International Journal of Computational Intelligence Systems, Vol. 10 (2017) 1082–1101

1092

solution ends. In line 7, pairings that cover flight Fi are
found in pairsActive, and the PL list is generated. In line
8, the flight list, i.e., the set FL, which is covered by PL
and includes all flights, is found. In lines 9 and 10, new
pairings that cover all flights in the FL list and do not
include any deadheads are searched, and the NPL list is
generated. Then, all pairings in the NPL list are added to
the pairsActive list.

3.4.2. Less-costly alternative pairing search

The less-costly approach can be called the partial
solution search. This approach is a procedure for
searching for high-quality pairings (low-cost) from the
main set (pairsAll) to replace low-quality pairings
(high-cost) from the best chromosome or subset
(pairsActive). In other words, the approach can be called
the low-cost pairing search procedure. Initially, the
pairing with the lowest quality is identified, and a high-
quality pairing search is conducted in the main set for
flights in the pairing with the lowest quality. This
continues until high-quality pairings are found for
flights in the pairing with the lowest quality. First, a
quality index (QI) is identified, and it is calculated as
shown in Eq. (7). According to the values of this index,
the pairings are listed from highest quality to lowest.
The pairing with the smallest index value corresponds to
the pairing with the lowest quality.

Quality Index (QI) =
𝑇𝑇𝑇𝑇𝑇 𝑏𝑏𝑏𝑏𝑏 𝑡𝑡𝑡𝑡
𝑇𝑇𝑇𝑇𝑇 𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑡𝑡𝑡𝑡

=
� 𝑎𝑖𝑖 𝑀𝑖

𝑓𝑓𝑓
f

i=1

∑ ∑ (𝑏𝑗𝑗 𝑀𝑗
𝑡𝑡𝑡 + 𝑏𝑗𝑗𝑏𝑞𝑞ℎ𝑗𝑗𝑀𝑗𝑗

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟) 𝑑
𝑞=1

𝑑
𝑗=1

 ∀ 𝑘 = 1,2, … . , 𝑝

 (7)

 The pseudocode of the alternative pairing search
algorithm that will decrease the number of pairings with
low quality is shown in Algorithm 7. According to this
algorithm, an example of a less-costly pairing search
with four pairings and thirteen flights is depicted in Fig.
4. In line 3, the pairing with the lowest quality, Pi, is
found in the best chromosome. Here, the algorithm
starts searching from the pairing with the lowest quality.
Then, after the pairing with the lowest quality, we aim
to find the next pairing with the lowest quality. In lines
4 and 5, if Pi cannot be found, then the solution ends. In
line 6, this pairing is used as an initialized value for the

Table 5. Mathematical notation of the quality index.

Notation Define
𝑀𝑖

𝑓𝑓𝑓 The flight time of flight i.

𝑀𝑗
𝑡𝑡𝑡 The total duty time of duty j.

𝑎𝑖𝑖 If flight i is covered by duty j, 𝑎𝑖𝑖 = 1;
otherwise, 𝑎𝑖𝑖 = 0.

𝑏𝑗𝑗 If duty j is covered by pairing k, 𝑏𝑗𝑗 = 1;
otherwise, 𝑏𝑗𝑗 = 0.

𝑏𝑞𝑞 If duty q is covered by pairing k, 𝑏𝑞𝑞 = 1;
otherwise, 𝑏𝑞𝑞 = 0.

ℎ𝑗𝑗 If duty j follows duty q, ℎ𝑗𝑗 = 1;
otherwise, ℎ𝑗𝑗 = 0.

𝑀𝑗𝑗
𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

The required rest time between two
consecutive duties j and q.

i=1,2,….f (f Є F: set of all flight legs)
j=1,2,…,d (d Є D: set of all legal duties)
k=1,2,…,p (p Є P: set of all legal pairings)

f1 f2 f3

f7

f8 f9

f6f4 f5

Px1

Px2

Px3

f10 f11 f12Px4 f13

f4

f5

f5

f5

High costly pair
L

o
w

e
s
t

q
a
u

li
ty

 v
a
lu

e

Py1

Py2

Py3

Less-costly alternative
pairing search

Fig. 4. Alternative less-costly pairing search example.

flights in Pi in the searchFlights set. In line 7, the
coveredFlightList set is generated for the searched
flights. In line 8, a low-cost/high-quality pairing is
searched for each flight Fi in the searchFlights set.
While conducting the search, this flight should not be
covered by the coveredFlightList set at the same time.
In line 9, the best pairing Pn (new pairing) that covers

International Journal of Computational Intelligence Systems, Vol. 10 (2017) 1082–1101

1093

flight Fi in pairsAll is found, and this pairing is added to
pairsActive in line 10. In line 11, all flights of the
chosen Pn are added to the coveredFlightList list. In line
12, a search is conducted of Pn for each flight Fj. In line
13, a low-cost Pj that covers flight Fj is found. In line
14, all flights that are not covered in the new pairing Pj
(and those that are not covered in the coveredFlightList
set) are added to the searchFlights set.

Algorithm 7 Pseudocode of the less-costly alternative pairing
search
1 Procedure SearchForLessCostlyAlternativePairings

(bestChromosome, pairsAll, pairsActive)
 2 While (true)
 3 find the next pairing Pi that has the lowest
quality value (a metric that is used to give quality points to
pairings, with higher points indicating better quality) out of
bestChromosome.pairs.
 4 if (Pi can not be found)
 5 exit;
 6 initialize searchFlights = flights of Pi
 7 initialize coveredFlightList = {}
 8 for (each flight Fi that is in searchFlights but
not in coveredFlightList)
 9 find the best (according to the quality
metric) pairing Pn out of pairsAll that covers Fi but does not
include any of the flights in coveredFlightList.
 10 add Pn to pairsActive.
 11 add all flights of Pn to coveredFlightList.
 12 for (each flight Fj that is in Pn)
 13 find the pairing Pj that covers Fj in
the last solution (bestChromosome.pairs).
 14 add all uncovered flights (those not
in coveredFlightList) of Pj to searchFlights.

3.5. General overview

The final status of the solution approach of the crew
pairing optimization problem is indicated in Fig. 5 and
Algorithm 8. As shown in the algorithm, flight legs are
taken from the airline’s timetable as input. In line 3, all
possible duties are generated from the flight legs that
are taken as input. In line 4, all possible pairings are
generated by taking duties that are generated in line 3.
In line 5, pairsActiveList is a function that generates a
pairing subset that is chosen from pairsAll. In line 6, we
generate the initial population using the Flights and
pairsActive lists. In line 7, the loop runs until the break
condition is met. In lines 8, 9, 10 and 11, optimization is
performed with the GA until the loop reaches a certain
number of iterations. In line 12, the best chromosome of

the population is found at the end of the loop. In line 13,
alternative pairings that will decrease the number of
deadheads are searched by considering the mostly
covered flights of pairings in the best chromosome. In
line 14, starting from the pairing with the lowest quality
in the best chromosome, alternative high-quality
pairings are searched.

Fig. 5. Overview of the proposed approach.

Algorithm 8 Overview of the proposed algorithm
1 Procedure Optimization_Crew_Pairing_Problem

(Flights, maxIteration)
2 initialize iteration=0
3 dutyList=Generate_Duties (Flights)
 4 pairsAllList=Generate_AllPairs (dutyList)
 5 pairsActiveList = initializeActivePairs(Flights,
pairsAllList);
 6 Initialize population (flights, pairsActive);
 7 While (iteration < maxIteration) do
 8 Solve_Subset_Genetic_Algorithm
(pairsActiveList, Flights)
 9 If (termination criterion is satisfied)
 10 Exit;
 11 If (Update heuristic run is necessary)
 12 Find the bestChromosome
 13 Run_Search_Pair_
Deadhead_Minimizing_Approach (bestChromosome, Flights,
pairsAllList, pairsActive)
 14
Run_Search_Less_Costly_Alternative_Pair_Approach
(bestChromosome, Flights, pairsAllList, pairsActive)
 15 iteration++
 16 end While

International Journal of Computational Intelligence Systems, Vol. 10 (2017) 1082–1101

1094

4. Computational Results

The flight data used in this study are associated with the
airline timetable of the A310 fleet owned by an airline
company in Turkey. This schedule includes 591, 608,
714, 810, 906 and 1002 monthly flight legs for testing.
The programme was run on a computer with an Intel®
Core ™ 64 2.40-GHz processor on the Java Eclipse
platform. Each trial was repeated 30 times. This study
assumes that all crew members reside in Istanbul (IST).
The test instances and flight legs are presented in Table 6.

The GA is executed for 20,000 iterations, and a
subset is updated once every 1000 iterations (excluding
pairings of the best chromosome). In this manner, the
length of the chromosome dynamically changes once
every 1000 iterations. Parent selection is performed
using binary tournament selection with a tour size of 4.
The population size is set to 30, and the crossover
probability is set to 0.8. For each generation of an EA,
only two offspring are generated, and they replace the
worst individuals of the parent population.

Table 6. Legs and pairings of test instances.

Instances Flights legs Duties Pairings (main set)

1 591 1826 82332
2 608 1907 88624
3 714 2064 208255
4 810 2467 320866
5 906 2771 532115
6 1002 3333 1121408

 The duties column in the table above shows the total
number of duties generated from monthly flight legs.
These duties are generated with a depth-first search
algorithm. The pairing column indicates the total
number of pairings (the main set) that are generated
within the framework of legal restrictions using the duty
list. In the same manner as for the duty enumeration, a
depth-first search algorithm is used to generate all legal
pairings.
 In this study, this problem is integrated into three
different EAs as an optimization problem: (1) two GA
variants and (2) a MA. The overall structure of the prop-
osed EAs (GA1, GA2 and MA) is shown in Table 7.
 In GA1, a subset is formed by a deadhead-
minimizing pairing search. The initial population of
individuals is created randomly. A repair heuristic is
then applied on each and every individual within the

initial population. Subsequently, in each iteration cycle,
two parents (individuals) are selected using the binary
tournament selection method. This method chooses the
individual with the best fitness among several randomly
chosen individuals from the initial population with the
tour size. Two new children are then created by
applying the crossover to those selected parents, and the
children are mutated afterwards. A repair heuristic is
applied to potentially non-feasible chromosomes. Then,
the worst two individuals in the population are replaced
with the best two of the parents and offspring. The
subset is updated in each specific iteration until the
termination criterion is satisfied. Finally, the best
solution is identified.
 In the second approach, GA2 is used. Similar to
GA1, GA2 starts with a randomly generated initial
population and applies repair heuristics to each
individual in the population. Deadhead-minimizing and
less-costly pairing search algorithms are integrated and
used in GA2. Third, after forming the initial population
of GA2, a local optimization technique is applied, and
this algorithm is called an MA. The other steps in the
MA are the same as those of the GA (GA2).
 MAs and GAs developed by other authors have also
been tested, and the results are provided in Table 8. The
KPIs in this table show that among the proposed
algorithms, the MA generated better results. However,
statistical methods should be used to determine whether
significant differences occurred between these
algorithms.

The Mann-Whitney-Wilcoxon test is used as a
statistical test of the pairwise average performance of
two given algorithms for non-parametric tests [50]. The
results show that the proposed MA provides less-costly
crew pairings.

Table 7. Proposed evolutionary algorithms.

Improving Heuristics
Evolutionary algorithms
GA1 GA2 MA

Deadhead-minimizing pairing
searching

x x x

Less-costly alternative pairing
searching

- x x

Local optimization techniques - - x

 The proposed algorithm was compared with the
results of previous studies performed with the same
EAs, and the results show that it exhibits significant
performance. Kornilakis and Stamatopoulos [14] and

International Journal of Computational Intelligence Systems, Vol. 10 (2017) 1082–1101

1095

Ta
bl

e
8.

 K
PI

-C
os

t r
ep

or
t I

 fo
r p

ro
po

se
d

ap
pr

oa
ch

es
.

K
PI

In

st
an

ce
 3

In
st

an
ce

 4

In

st
an

ce
 5

In
st

an
ce

 6

G
A

1
G

A
2

M
em

et
ic

G
A

1
G

A
2

M
em

et
ic

G
A

1
G

A
2

M
em

et
ic

G
A

1
G

A
2

M
em

et
ic

of
 su

bs
et

s
35

2
80

0
76

7

40
4

61
4

58
5

46

2
73

6
79

4

48
0

11
58

88

1

of
 p

ai
rin

gs
 (s

el
ec

te
d)

26

4
28

5
28

2

30
9

32
4

33
1

34

4
36

2
35

3

34
9

39
6

41
2

of

 d
ut

ie
s

38
8

37
6

37
3

43

2
42

3
42

2

49
1

46
4

45
4

52

7
50

5
51

2

of
 d

ut
y

da
ys

48

4
47

3
47

0

52
9

52
0

51
9

58

8
56

1
55

1

62
4

60
2

60
9

of

 o
ve

rn
ig

ht
s

12
4

91

91

12

3
99

91

14
7

10
2

10
1

17

8
10

9
10

0

of
 d

ea
dh

ea
ds

39

32

36

36

32

28

45

28

28

40

34

30

To
ta

l d
ut

y
tim

e
(h

)
36

50
.0

8
36

16
.4

2
36

32
.8

3

39
48

.5
8

39
38

.0
0

39
18

.1
7

42

64
.1

7
41

92
.3

3
41

90
.2

5

44
90

.7
5

44
58

.8
3

44
47

.1
7

To
ta

l p
ai

rin
g

du
ra

tio
n

(h
)

84
23

.8
8

77
02

.9
3

75
76

.3
5

87

10
.1

8
81

86
.5

5
80

02
.9

7

96
40

.5
3

84
66

.4
7

84
16

.3
5

10

53
7.

50

90
42

.8
8

88
00

.5
2

To
ta

l b
lo

ck
 ti

m
e

(h
)

26
20

.0
0

26
03

.2
5

26
08

.8
3

27

80
.3

3
27

80
.6

7
27

70
.5

0

29
74

.0
0

29
37

.9
2

29
35

.5
0

31

09
.3

3
30

93
.2

5
30

85
.3

3
To

ta
l o

ve
rn

ig
ht

 d
ur

at
io

n
(h

)
22

79
.7

5
15

73
.5

8
14

35
.5

8

22
13

.1
7

16
70

.6
7

14
97

.0
8

27

38
.9

2
16

40
.2

5
16

12
.1

7

34
25

.0
8

18
97

.5
0

16
49

.5
8

To
ta

l d
ea

dh
ea

d
tim

e
(h

)
22

1.
42

19

8.
17

20

9.
33

20
8.

33

20
9.

00

18
8.

67

25

9.
67

18

7.
50

18

2.
67

23
7.

00

21
0.

17

19
4.

33

To
ta

l n
um

be
r o

f p
ilo

ts
 fo

r d
ut

ie
s

10
50

10

24

10
18

11
36

11

19

11
17

12
60

12

01

11
80

13
28

12

83

12
96

Pa

iri
ng

 g
en

er
at

io
n

ru
nt

im
e

(m
in

)
2.

13

1.
93

2.

24

3.

54

3.
36

3.

44

6.

05

5.
80

5.

56

12

.9
7

12
.0

2
11

.7
9

To
ta

l r
un

tim
e

(m
in

)
4.

16

4.
49

3.

91

6.

96

5.
71

7.

08

10

.9
9

18
.4

0
8.

55

67

.2
9

98
.9

0
36

.4
1

C
O

ST

D

ut
y

da
y

co
st

36

86
48

36

77
61

36

84
46

38
98

21

39
09

53

39
03

53

41

40
97

40

95
73

40

82
51

42
67

45

42
87

23

42
90

56

H
ot

el
 c

os
t

13
67

85

94
41

5
86

13
5

13

27
90

10

02
40

89

82
5

16

43
35

98

41
5

96
73

0

20
55

05

11
38

50

98
97

5
H

ot
el

 tr
an

sp
or

ta
tio

n
co

st
14

88

10
92

10

92

14

76

11
88

10

92

17

64

12
24

12

12

21

36

13
08

12

00

D
ea

dh
ea

d
co

st
13

28
5

11
89

0
12

56
0

12

50
0

12
54

0
11

32
0

15

58
0

11
25

0
10

96
0

14

22
0

12
61

0
11

66
0

To
ta

l c
os

t
52

02
06

47

51
58

46

82
33

53
65

87

50
49

21

49
25

90

59

57
76

52

04
62

51

71
53

64
86

06

55
64

91

54
08

91

Ta
bl

e
9.

 K
PI

-C
os

t r
ep

or
t I

I f
or

 p
er

fo
rm

an
ce

 c
om

pa
ris

on
s o

f p
re

vi
ou

sl
y

pr
op

os
ed

 m
em

et
ic

 a
lg

or
ith

m
 (M

A
) a

pp
ro

ac
he

s.

K
PI

In

st
an

ce
 3

In
st

an
ce

 4

In

st
an

ce
 5

In
st

an
ce

 6

K
S

ZO

M
em

et
ic

K
S

ZO

M
em

et
ic

K
S

ZO

M
em

et
ic

K
S

ZO

M
em

et
ic

of
 su

bs
et

40

98

49
45

76

7

47
59

57

47

58
5

52

70

53
56

79

4

57
89

71

00

88
1

of

 p
ai

rin
g

(s
el

ec
te

d)

21
4

20
7

28
2

22

4
23

0
33

1

25
2

24
2

35
3

27

8
29

0
41

2

of
 d

ut
ie

s
41

2
40

7
37

3

47
2

46
5

42
2

54

6
51

9
45

4

58
9

59
3

51
2

of

 d
ut

y
da

ys

51
0

50
4

47
0

57

0
56

3
51

9

64
4

61
8

55
1

68

7
69

1
60

9

of
 o

ve
rn

ig
ht

s
19

8
20

0
91

24
8

23
5

91

29

4
27

7
10

1

31
1

30
3

10
0

of

 d
ea

dh
ea

ds

96

85

36

14

3
12

1
28

16
8

13
6

28

19

4
20

1
30

To

ta
l d

ut
y

tim
e

(h
)

38
57

.8
3

38
18

.6
7

36
32

.8
3

43

28
.0

8
42

06
.5

0
39

18
.1

7

46
63

.0
0

45
82

.6
7

41
90

.2
5

49

65
.0

0
49

94
.5

0
44

47
.1

7
To

ta
l p

ai
rin

g
du

ra
tio

n
(h

)
10

26
8.

35

10
03

3.
05

75

76
.3

5

11
44

6.
77

11

34
1.

00

80
02

.9
7

12

93
3.

47

12
51

4.
65

84

16
.3

5

13
36

3.
92

13

39
0.

55

88
00

.5
2

To
ta

l b
lo

ck
 ti

m
e

(h
)

27
46

.5
8

27
10

.9
2

26
08

.8
3

30

18
.9

2
29

22
.3

3
27

70
.5

0

32
11

.7
5

31
61

.6
7

29
35

.5
0

33

84
.8

3
33

93
.5

8
30

85
.3

3
To

ta
l o

ve
rn

ig
ht

 d
ur

at
io

n
(h

)
40

02
.9

2
38

34
.0

0
14

35
.5

8

46
96

.9
2

46
86

.8
3

14
97

.0
8

57

94
.8

3
55

07
.8

3
16

12
.1

7

58
78

.9
2

58
83

.3
3

16
49

.5
8

To
ta

l d
ea

dh
ea

d
tim

e
(h

)
45

9.
25

40

5.
75

20

9.
33

61
8.

42

46
4.

92

18
8.

67

68

8.
33

61

3.
75

18

2.
67

74
1.

50

78
6.

42

19
4.

33

To
ta

l n
um

be
r o

f p
ilo

ts
 fo

r d
ut

ie
s

10
96

10

84

10
18

12
16

12

05

11
17

13
66

13

07

11
80

14
53

14

57

12
96

Pa

iri
ng

 g
en

er
at

io
n

ru
n

tim
e

(m
in

s)

2.
05

2.

13

2.
24

3.
49

3.

69

3.
44

5.
81

5.

71

5.
56

11
.7

1
11

.8
1

11
.7

9
To

ta
l r

un
 ti

m
e

(m
in

s)

5.
25

7.

01

3.
91

7.
40

9.

60

7.
08

10
.5

7
12

.1
5

8.
55

18
.0

8
21

.2
2

36
.4

1
C

O
ST

D
ut

y
da

y
co

st

37
59

26

37
19

43

36
84

46

40

49
91

39

92
50

39

03
53

42
83

18

42
04

09

40
82

51

44

91
00

45

04
33

42

90
56

H

ot
el

 c
os

t
24

01
75

23

00
40

86

13
5

28

18
15

28

12
10

89

82
5

34

76
90

33

04
70

96

73
0

35

27
35

35

30
00

98

97
5

H
ot

el
 tr

an
sp

or
ta

tio
n

co
st

23
76

24

00

10
92

29
76

28

2
10

92

35

28

33
24

12

12

37

32

36
36

12

00

D
ea

dh
ea

d
co

st
27

55
5

24
34

5
12

56
0

37

10
5

27
89

5
11

32
0

41

30
0

36
82

5
10

96
0

44

49
0

47
18

5
11

66
0

To
ta

l c
os

t
64

60
32

62

87
28

46

82
33

72
68

87

71
11

75

49
25

90

82

08
36

79

10
28

51

71
53

85
00

57

85
42

54

54
08

91

International Journal of Computational Intelligence Systems, Vol. 10 (2017) 1082–1101

1096

Ta

bl
e

8.
 C

on
tin

ue
.

K
PI

In

st
an

ce
 1

In
st

an
ce

 2

G
A

1
G

A
2

M
em

et
ic

G
A

1
G

A
2

M
em

et
ic

of
 su

bs
et

44

1
13

13

11
48

40
2

13
25

13

33

of

 p
ai

rin
g

(s
el

ec
te

d)

21
2

19
8

20
6

20

8
20

5
21

7

of
 d

ut
ie

s
36

3
34

5
35

0

36
0

35
1

35
9

of

 d
ut

y
da

ys

39
9

38
1

38
6

39

7
38

7
39

5

of
 o

ve
rn

ig
ht

s
15

1
14

7
14

4

15
2

14
6

14
2

of

 d
ea

dh
ea

ds

77

71

63

70

64

80

To

ta
l d

ut
y

tim
e

(h
)

29
72

.7
5

29
29

.3
3

28
97

.0
8

29

94
.5

8
29

69
.9

2
30

01
.0

0
To

ta
l p

ai
rin

g
du

ra
tio

n
(h

)
63

98
.0

2
61

84
.1

3
62

04
.2

8

65
25

.8
7

62
59

.8
7

62
36

.1
0

To
ta

l b
lo

ck
 ti

m
e

(h
)

20
52

.1
7

20
20

.3
3

20
01

.1
7

20

60
.0

0
20

45
.6

7
20

58
.4

2
To

ta
l o

ve
rn

ig
ht

 d
ur

at
io

n
(h

)
25

12
.1

7
23

69
.2

5
24

10
.9

2

26
14

.0
0

23
88

.8
3

23
28

.1
7

To
ta

l d
ea

dh
ea

d
tim

e
(h

)
47

0.
42

42

3.
00

38

3.
08

43
4.

58

41
4.

08

43
0.

17

To
ta

l n
um

be
r o

f p
ilo

ts
 fo

r d
ut

ie
s

81
4

77
7

78
7

81

0
79

0
80

4
Pa

ir
ge

ne
ra

tio
n

ru
n

tim
e

(m
in

s)

1.
03

1.

05

1.
02

1.
21

1.

19

1.
12

To

ta
l r

un
 ti

m
e

(m
in

s)

2.
08

4.

44

2.
49

2.
45

2.

64

3.
16

C

O
ST

D
ut

y
da

y
co

st

23
31

51

22
88

93

22
76

02

23

47
12

23

22
62

23

44
76

H

ot
el

 c
os

t
15

07
30

14

21
55

14

46
55

15
68

40

14
33

30

13
96

90

H
ot

el
 tr

an
sp

or
ta

tio
n

co
st

18

12

17
64

17

28

18

24

17
52

17

04

D
ea

dh
ea

d
co

st
28

22
5

25
38

0
22

98
5

26

07
5

24
84

5
25

81
0

To
ta

l c
os

t
41

39
18

39

81
92

39

69
70

41
94

51

40
21

89

40
16

80

Ta
bl

e
10

. S
um

m
ar

y
re

po
rt

w
ith

 p
er

ce
nt

 im
pr

ov
em

en
t (

%
).

C
om

pa
ris

on
 o

f t
he

 p
ro

po
se

d

m
et

ho
d

K
PI

 /
10

0
In

st
an

ce
 3

In

st
an

ce
 4

In

st
an

ce
 5

In

st
an

ce
 6

K
or

ni
la

ki
s a

nd

St
am

at
op

ou
lo

s [
14

]

To
ta

l d
ea

dh
ea

d
tim

e
(h

)
2.

19
%

3.

27
%

3.

76
%

3.

81
%

of
 d

ut
y

da
ys

1.

08
%

1.

09
%

1.

16
%

1.

12
%

of
 o

ve
rn

ig
ht

s
2.

17
%

2.

72
%

2.

91
%

3.

11
%

To

ta
l c

os
t

1.
37

%

1.
47

%

1.
58

%

1.
57

%

Ze
re

n
an

d
O

zk
ol

 [1
3]

To
ta

l d
ea

dh
ea

d
tim

e
(h

)
1.

93
%

2.

46
%

3.

35
%

4.

04
%

of
 d

ut
y

da
ys

2.

19
%

1.

08
%

1.

12
%

1.

13
%

of
 o

ve
rn

ig
ht

s
2.

36
%

2.

58
%

2.

74
%

3.

03
%

To

ta
l c

os
t

1.
34

%

1.
44

%

1.
52

%

1.
57

%

N
ot

e:
 K

S=
K

or
ni

la
ki

s a
nd

 S
ta

m
at

op
ou

lo
s [

14
] a

nd
 Z

O
=Z

er
en

 a
nd

 O
zk

ol
 [1

3]
.

International Journal of Computational Intelligence Systems, Vol. 10 (2017) 1082–1101

1097

(a) Instance 6

(b) Instance 6

(c) Instance 6

(d) Instance 6

(e) Instance 6

(f) Instance 6

(g) Instance 6

(h) Instance 6

Fig. 6. Summary of the KPI to compare the proposed approaches (instance 6).

0
200
400
600
800

1000
1200

0 4000 8000 12000 16000 20000

GA1 GA2 MA

Iteration

T
ot

al
 d

ut
y

da
ys

0

200

400

600

800

0 4000 8000 12000 16000 20000

GA1 GA2 MA

Iteration

T
ot

al
 o

ve
rn

ig
ht

 st
ay

s

0

200

400

600

800

1000

0 4000 8000 12000 16000 20000

GA1 GA2 MA

Iteration

T
ot

al
 d

ea
dh

ed
s

0

200000

400000

600000

800000

0 4000 8000 12000 16000 20000

GA1 GA2 MA

Iteration

T
ot

al
 d

ut
y

0

200000

400000

600000

800000

1000000

0 4000 8000 12000 16000 20000

GA1 GA2 MA

Iteration

T
ot

al
 h

ot
el

 c
os

t

0

2000

4000

6000

8000

10000

0 4000 8000 12000 16000 20000

GA1 GA2 MA

Iteration

T
ot

al
 h

oe
l t

ra
ns

po
rt

at
io

n
co

st

0

50000

100000

150000

200000

250000

300000

0 4000 8000 12000 16000 20000

GA1 GA2 MA

Iteration

T
ot

al
 d

ea
dh

ea
d

co
st

0

500000

1000000

1500000

2000000

0 4000 8000 12000 16000 20000

GA1 GA2 MA

Iteration

T
ot

al
 c

os
t (

fit
ne

ss
)

International Journal of Computational Intelligence Systems, Vol. 10 (2017) 1082–1101

1098

Zeren and Ozkol [13] sought to eliminate poor-quality
crew rotations to reduce performance problems in their
studies, and they successfully eliminated poor-quality
crew pairings as long as they stored high-quality crew
pairings of a certain amount.

In other words, a pairing subset is generated by
choosing a pairing of a certain amount from the main set
of all pairings, and it is provided to the GA as input. The
difference in our study is that the pairing subset is
dynamically and continuously renewed because the GA
is optimized. Comparisons of previously proposed MA
approaches are summarized in Table 9.
 Three important parameters are presented in Tables
8 and 9: total man-days, deadheads, and layovers/
overnights. The solutions are generally evaluated via
these three parameters. Evaluating other parameters is
meaningful if these three values are close to each other.
Because financial costs are not determined, the total
cost can provide insights for planning, although the
solutions are always evaluated with the three important
parameters because of operational difficulties.
According to the planning period, the overnight,
deadhead and man-day parameters are prioritized based
on their level of importance.
 Novel dynamic-based GA variations and a MA
approach are proposed to obtain a crew pairing solution
set with the minimum cost. In Fig. 6, graphics are
shown for the following KPIs (e.g., instance 6) obtained
via the optimization of the proposed approaches:
number of deadheads: total number of deadheads; dead-
head time: total flight times of deadheads; duty days:
total number of duty days; overnight stays: total number
of overnight stays; overnight duration: total time of
overnight stays; and fitness: total crew pairing cost.
 In Table 10, a summary of the critical assessment
parameters of the crew pairing is shown, and it indicates
that the proposed approach is successful at decreasing
the total deadhead time. The deadhead factor is an
important KPI, especially in high seasons because the
airline’s income will decrease when passenger seats are
used by the crew. Another important KPI is the number
of duty days. In certain months, the airline companies
encounter difficulties securing a sufficient number of
pilots, particularly in December when certain pilots
have reached their annual flight time limits. Therefore,
the number of duty days is an important factor. The
number of overnights is another factor that must be at
the optimum level because it affects the accommodation

costs of the airline companies. The total cost value
shows a general optimization performance. The results
show that the proposed approach generates outstanding
total cost values.
 Fig. 6 and Table 10 show that the MA-generated
solutions present better deadhead, duty day, overnight
stay, and total cost values.

5. Conclusions and Future Directions

In this study, a dynamic-based MA approach and GA
variations are proposed for the airline crew pairing
problem, which has been intensively studied in the
literature. Because crew pairing is a main cost-
identifying stage of the crew scheduling process,
approaches that decrease crew costs, increase crew
utility and generate optimum crew pairings are of
significant importance. KPIs, such as deadhead time,
number of duty days, and number of overnight stays, are
submitted along with the financial costs related to crew
pairing optimization. These indicators are of significant
importance because they facilitate the management of
operational challenges in real-world problems.

A unique model and strategies have been
developed after reviewing current approaches during the
development of the proposed solution. The
computational results section shows that the proposed
strategy generates highly competitive results when
compared with current approaches. The proposed
approach is particularly successful at decreasing
deadhead time and the number of overnight stays.
The main contributions of this study are as follows:
• A dynamic-based GA has been developed for

solving the medium-scale airline crew pairing
problem;

• An alternative pairing search (deadhead-
minimizing search) approach has been developed
that will decrease the deadhead factor;

• A low-cost (high-quality) alternative pairing search
(partial solution search) approach has been
developed.
Dynamic-based GAs and changes in chromosome

length in each iteration were used to resolve the crew
pairing problem. The advantage of the proposed
approach is that it seeks the solution set with the
minimum cost that covers all flights via a GA by
generating subsets from millions of main sets. However,
using millions of generated crew pairings in the GA as

International Journal of Computational Intelligence Systems, Vol. 10 (2017) 1082–1101

1099

direct input renders the problem impossible to solve and
slows the performance of the algorithm, thereby leading
to sub-optimal results. Therefore, one subset is
considered instead of all pairings. This subset
dynamically changes, i.e., the main set and the subset
exchange pairings. The pairings that lead to a sub-
optimal solution from the pairing subset are excluded
from the solution, and the pairings that lead to an
optimal solution from the main set are chosen and added
to the subset.

The second contribution is an alternative pairing
search approach that will decrease the number of
deadheads. In this method, a heuristics approach that
searches and finds the pairings that generate the fewest
deadheads for each flight is developed, and it sends the
pairings that lead to the best solution from the main set
to the subset. Concurrently, the approach checks the
number of covering flights in the pairings in the subset
as explained in Section 3.4.1. If a flight is covered more
than once (deadhead) in the pairings, the alternative
pairings that decrease the number of deadheads are
sought. This search is performed for all pairings starting
from the deadhead that is most covered, and it adds the
identified alternative pairings to the subset.

The third contribution is that high-quality pairings
are searched from the main set and low-quality pairings
in the subset are not searched by checking the pairings
in the best chromosome. In other words, a low-cost
pairing search is performed. As stated in Section 3.4.2,
the pairing with the lowest quality is first identified, and
then a high-quality pairing search is performed from the
main set for the flights in the pairing with the lowest
quality for this lowest quality pairing. This procedure
continues until it finds the highest-quality pairings for
flights in the pairings with the lowest quality. This
procedure is conducted according to the quality metric
that is assigned to the pairings beforehand.

Detailed comparisons are presented in the tables
above, and they clearly show that the proposed
approach can generate competitive results when
compared with current approaches that use state-of-the-
art solvers (the deadhead-minimizing pairing search and
less-costly alternative pairing search algorithms).

Acknowledgements

This study has been supported by the Yildiz Technical
University Scientific Research Projects Coordination

Department, project number 2014-06-03-DOP01. The
authors would like to thank the Turkish Airlines Crew
Planning Department for their help and feedback in this
research project.

References

1. C. Barnhart and K. T. Talluri, Airline operations research
in design and operation of civil and environmental
engineering systems. Edited by ReVelle C. and
McGarity, A., Willey. (1997) 435-469.

2. M. Bazargan, Airline operations and scheduling (1st
Edition. Ashgate Publishing, Ltd.., USA, 2004).

3. M. Bazargan, Airline operations and scheduling (2nd
Edition. Ashgate Publishing, Ltd.., USA, 2010).

4. D. Klabjan, et al., Solving large airline crew scheduling
problems: Random pairing generation and strong
branching. Computational Optimization and Applications
20(1) (2001) 73-91.

5. A. Ekenback, A column generation heuristic for a
combinatorial optimization problem (MsC’s in Computer
Science at the School of Engineering Physics, Royal
Institute of Technology, 2002)

6. C. Barnhart, et al., Airline crew scheduling. In Handbook
of transportation science, (Springer US, 2003), pp. 517-
560.

7. N. Souai and J. Teghem, Genetic algorithm based
approach for the integrated airline crew-pairing and rost-
ering problem. Eur. J. Oper. Res. 199(3) (2009) 674-683.

8. G. F. Deng and W. T. Lin, Ant colony optimization-based
algorithm for airline crew scheduling problem. Expert
Systems with Applications 38(5) (2011) 5787-5793.

9. B. Zeren and I. Ozkol, An improved genetic algorithm for
crew pairing optimization. J. of Intell. Learning Syst. and
Appl. 4 (2012) 70-80.

10. A. Azadeh, et al., A hybrid meta-heuristic algorithm for
optimization of crew scheduling. Applied Soft Computing
13(1) (2013) 158-164.

11. A. Aydemir-Karadag, B. Dengiz and A. Bolat, Crew
pairing optimization based on hybrid approaches.
Comput. Ind. Eng. 65(1) (2013) 87-96.

12. M. Deveci and N. D. Cetin, Airline Crew Pairing
Problem: A Literature Review. 11th Int. Sci. Conf. on
Eco. and Soc. Dev. – Building Resil. Soc., (Zagreb,
Crotia, 2015), pp.103-110.

13. B. Zeren and I. Ozkol, A novel column generation
strategy for large scale airline crew pairing problems.
Expert Systems with Applications 55 (2016) 133-144.

14. H. Kornilakis and P. Stamatopoulos, Crew pairing
optimization with genetic algorithms. In Methods and
Applications of Artificial Intelligence, (Springer Berlin
Heidelberg, 2002), pp. 109-120.

15. S. Lavoie, M. Minoux and E. Odier, A new approach for
crew pairing problems by column generation with an
application to air transportation. Eur. J. Oper. Res. 35(1)
(1988) 45-58.

International Journal of Computational Intelligence Systems, Vol. 10 (2017) 1082–1101

1100

16. D. Levine, Application of a hybrid genetic algorithm to
airline crew scheduling. Comput. Oper. Res. 23(6) (1996)
547-558.

17. H. D. Chu, E. Gelman and E. L. Johnson, Solving large
scale crew scheduling problems. In Inter. in Computer
Science and Operations Research, (Springer US, 1997),
pp. 183-194.

18. G. Desaulniers, et al., Crew pairing at air france. Eur. J.
Oper. Res. 97(2) (1997) 245-259.

19. O. D. Merle, et al., Stabilized column generation.
Discrete Mathematics 194(1) (1999) 229-237.

20. S. Yan and J. C. Chang, Airline cockpit crew scheduling.
Eur. J. Oper. Res. 136(3) (2002) 501-511.

21. A. Mercier, J. F. Cordeau and F. Soumis, A
computational study of Benders decomposition for the
integrated aircraft routing and crew scheduling problem.
Comput Oper. Res. 32(6) (2005) 1451-1476.

22. F. M. Zeghal and M. Minoux, Modeling and solving a
crew assignment problem in air transportation. Eur. J.
Oper. Res. 175(1) (2006) 187-209.

23. C. P. Medard and N. Sawhney, Airline crew scheduling
from planning to operations. Eur. J. Oper. Res. 183(3)
(2007) 1013-1027.

24. A. Mercier and F. Soumis, An integrated aircraft routing,
crew scheduling and flight retiming model. Comput.
Oper. Res. 34(8) (2007) 2251-2265.

25. S. AhmadBeygi, A. Cohn and M. Weir, An integer
programming approach to generating airline crew
pairings. Comput. Oper. Res. 36(4) (2009) 1284-1298.

26. N. Papadakos, Integrated airline scheduling. Comput.
Oper. Res. 36(1) (2009) 176-195.

27. L. Ionescu and N. Kliewer, Increasing flexibility of
airline crew schedules. Procedia-Social and Behavioral
Sciences 20 (2011) 1019-1028.

28. M., Saddoune, et al., Integrated airline crew scheduling:
A bi-dynamic constraint aggregation method using neigh-
borhoods. Eur. J. Oper. Res. 212(3) (2011) 445-454.

29. V. Duck, et al., Increasing stability of crew and aircraft
schedules. Transportation Research Part C: Emerging
Technologies 20(1) (2012) 47-61.

30. V. Cacchiani and J. J. Salazar-Gonzalez, A heuristic
approach for an integrated fleet-assignment, aircraft-
routing and crew-pairing problem. Electronic Notes in
Discrete Mathematics 41 (2013) 391-398.

31. I. Muter, et al., Solving a robust airline crew pairing
problem with column generation. Comput. Oper. Res.
40(3) (2013) 815-830.

32. M. Saddoune, G. Desaulniers and F. Soumis, Aircrew
pairings with possible repetitions of the same flight
number. Comput. Oper. Res. 40(3) (2013) 805-814.

33. J. J. Salazar-Gonzalez, Approaches to solve the fleet-
assignment, aircraft-routing, crew-pairing and crew-
rostering problems of a regional carrier. Omega 43
(2014) 71-82.

34. C. H. Chen and J. H. Chou, Multiobjective Optimization
of Airline Crew Roster Recovery Problems Under

Disruption Conditions. IEEE Transactions on Systems,
Man, and Cybernetics: Systems 47(1) (2017) 133-144.

35. A. Kasirzadeh, M. Saddoune and F. Soumis, Airline crew
scheduling: models, algorithms, and data sets. EURO J.
on Transportation and Logistics 6(2) (2017) 111-137.

36. F. Quesnel, G. Desaulniers and F. Soumis, A new heur-
istic branching scheme for the crew pairing problem with
base constraints. Comput. Oper. Res. 80 (2017) 159-172.

37. B. C. Yildiz, F. Gzara and S. Elhedhli, Airline crew
pairing with fatigue: Modeling and analysis.
Transportation Research Part C: Emerging Technologies
74 (2017) 99-112.

38. P. Moscato, On evolution, search, optimization, genetic
algorithms and martial arts: Towards memetic
algorithms.Caltech concurrent computation program,
(C3P Report, 1989) 826, p. 1989.

39. C. Altıntas, et al., Self-generating memetic algorithm for
examination timetabling. 10th International Conference
of the Practice and Theory of Automated Timetabling
(York, UK, 2014).

40. A. Alkan and E. Ozcan, Memetic algorithms for
timetabling. In Evolutionary Computation, 2003.
CEC'03. The 2003 Congress on (Vol. 3,). IEEE, pp.
1796-1802.

41. M. R. Garey and D. S. Johnson, Computers and
Intractibility: A Guide to the Theory of NP-Complete-
ness. Books in the Mathematical Sciences 44(2) (1979).

42. H. T. Ozdemir and C. K. Mohan, Flight graph based
genetic algorithm for crew scheduling in airlines.
Information Sciences 133(3) (2001) 165-173.

43. S. C. Chang, A new aircrew-scheduling model for short-
haul routes. Journal of Air Transport Management 8(4)
(2002) 249-260.

44. J. E. Beasley and P. C. Chu, A genetic algorithm for the
set covering problem. Eur. J. Oper. Res. 94(2) (1996)
392-404.

45. S. Kerati, et al., A heuristic Genetic Algorithm approach
for the airline crew scheduling problem. EU/ME, the
European chapter on metaheuristics, (EURO Working
Group, 2002).

46. Republic of Turkey Ministry of Transport, Maritime
Affairs and Communication. Instruction on Flying
Team’s Task and Resting Terms and Principles of
Application (2014).

47. J. Holland, Adaptation in natural and artificial systems,
(Ann Arbor, MI:University of Michigan Press, 1975).

48. E. G. Talbi, Metaheuristics: from design to
implementation, (John Wiley & Sons., 2009).

49. L. F. G. Hernandez and D. W. Corne, Evolutionary
Divide and Conquer for the Set-Covering Problem, In
AISB Workshop on Evolutionary Computing, (Springer
Berlin Heidelberg, 1996).

50. W. H. Kruskal, Historical notes on the Wilcoxon unpaired
two-sample test. J. Am. Stat. Assoc. 52(279) (1957) 356–
360.

International Journal of Computational Intelligence Systems, Vol. 10 (2017) 1082–1101

1101

	1. Introduction
	2. Background
	2.1. Crew pairing
	2.2. Memetic algorithm
	2.3. Related works
	2.4. Fundamental definitions and rules

	3. Proposed Methodologies
	3.1. Crew pairing generation
	3.2. Initial pairing (subset) selection with heuristic solution
	3.3. Set covering master model for optimization
	3.3.1. Genetic algorithm optimization
	3.3.1.1. Initialise the population
	3.3.1.2. Fitness function
	3.3.1.3. Genetic operators
	3.3.1.4. Local search heuristics
	3.3.1.4.1. Repair heuristic
	3.3.1.4.2. Modified best-improvement local search method

	3.3.1.5. Population replacement strategies

	3.4. Update heuristics
	3.4.1. Deadhead-minimizing pairing search heuristic
	3.4.2. Less-costly alternative pairing search

	3.5. General overview

	4. Computational Results
	5. Conclusions and Future Directions

<<

 /ASCII85EncodePages false

 /AllowTransparency false

 /AutoPositionEPSFiles true

 /AutoRotatePages /None

 /Binding /Left

 /CalGrayProfile (Dot Gain 20%)

 /CalRGBProfile (sRGB IEC61966-2.1)

 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)

 /sRGBProfile (sRGB IEC61966-2.1)

 /CannotEmbedFontPolicy /Error

 /CompatibilityLevel 1.4

 /CompressObjects /Tags

 /CompressPages true

 /ConvertImagesToIndexed true

 /PassThroughJPEGImages true

 /CreateJobTicket false

 /DefaultRenderingIntent /Default

 /DetectBlends true

 /DetectCurves 0.0000

 /ColorConversionStrategy /CMYK

 /DoThumbnails false

 /EmbedAllFonts true

 /EmbedOpenType false

 /ParseICCProfilesInComments true

 /EmbedJobOptions true

 /DSCReportingLevel 0

 /EmitDSCWarnings false

 /EndPage -1

 /ImageMemory 1048576

 /LockDistillerParams false

 /MaxSubsetPct 100

 /Optimize true

 /OPM 1

 /ParseDSCComments true

 /ParseDSCCommentsForDocInfo true

 /PreserveCopyPage true

 /PreserveDICMYKValues true

 /PreserveEPSInfo true

 /PreserveFlatness true

 /PreserveHalftoneInfo false

 /PreserveOPIComments true

 /PreserveOverprintSettings true

 /StartPage 1

 /SubsetFonts true

 /TransferFunctionInfo /Apply

 /UCRandBGInfo /Preserve

 /UsePrologue false

 /ColorSettingsFile ()

 /AlwaysEmbed [true

]

 /NeverEmbed [true

]

 /AntiAliasColorImages false

 /CropColorImages true

 /ColorImageMinResolution 300

 /ColorImageMinResolutionPolicy /OK

 /DownsampleColorImages true

 /ColorImageDownsampleType /Bicubic

 /ColorImageResolution 300

 /ColorImageDepth -1

 /ColorImageMinDownsampleDepth 1

 /ColorImageDownsampleThreshold 1.50000

 /EncodeColorImages true

 /ColorImageFilter /DCTEncode

 /AutoFilterColorImages true

 /ColorImageAutoFilterStrategy /JPEG

 /ColorACSImageDict <<

 /QFactor 0.15

 /HSamples [1 1 1 1] /VSamples [1 1 1 1]

 >>

 /ColorImageDict <<

 /QFactor 0.15

 /HSamples [1 1 1 1] /VSamples [1 1 1 1]

 >>

 /JPEG2000ColorACSImageDict <<

 /TileWidth 256

 /TileHeight 256

 /Quality 30

 >>

 /JPEG2000ColorImageDict <<

 /TileWidth 256

 /TileHeight 256

 /Quality 30

 >>

 /AntiAliasGrayImages false

 /CropGrayImages true

 /GrayImageMinResolution 300

 /GrayImageMinResolutionPolicy /OK

 /DownsampleGrayImages true

 /GrayImageDownsampleType /Bicubic

 /GrayImageResolution 300

 /GrayImageDepth -1

 /GrayImageMinDownsampleDepth 2

 /GrayImageDownsampleThreshold 1.50000

 /EncodeGrayImages true

 /GrayImageFilter /DCTEncode

 /AutoFilterGrayImages true

 /GrayImageAutoFilterStrategy /JPEG

 /GrayACSImageDict <<

 /QFactor 0.15

 /HSamples [1 1 1 1] /VSamples [1 1 1 1]

 >>

 /GrayImageDict <<

 /QFactor 0.15

 /HSamples [1 1 1 1] /VSamples [1 1 1 1]

 >>

 /JPEG2000GrayACSImageDict <<

 /TileWidth 256

 /TileHeight 256

 /Quality 30

 >>

 /JPEG2000GrayImageDict <<

 /TileWidth 256

 /TileHeight 256

 /Quality 30

 >>

 /AntiAliasMonoImages false

 /CropMonoImages true

 /MonoImageMinResolution 1200

 /MonoImageMinResolutionPolicy /OK

 /DownsampleMonoImages true

 /MonoImageDownsampleType /Bicubic

 /MonoImageResolution 1200

 /MonoImageDepth -1

 /MonoImageDownsampleThreshold 1.50000

 /EncodeMonoImages true

 /MonoImageFilter /CCITTFaxEncode

 /MonoImageDict <<

 /K -1

 >>

 /AllowPSXObjects false

 /CheckCompliance [

 /None

]

 /PDFX1aCheck false

 /PDFX3Check false

 /PDFXCompliantPDFOnly false

 /PDFXNoTrimBoxError true

 /PDFXTrimBoxToMediaBoxOffset [

 0.00000

 0.00000

 0.00000

 0.00000

]

 /PDFXSetBleedBoxToMediaBox true

 /PDFXBleedBoxToTrimBoxOffset [

 0.00000

 0.00000

 0.00000

 0.00000

]

 /PDFXOutputIntentProfile ()

 /PDFXOutputConditionIdentifier ()

 /PDFXOutputCondition ()

 /PDFXRegistryName ()

 /PDFXTrapped /False

 /CreateJDFFile false

 /Description <<

 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>

 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>

 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>

 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>

 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>

 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>

 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>

 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>

 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>

 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>

 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>

 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>

 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)

 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>

 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>

 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>

 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>

 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>

 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>

 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)

 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>

 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>

 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>

 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>

 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>

 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>

 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>

 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>

 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>

 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>

 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>

 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)

 >>

 /Namespace [

 (Adobe)

 (Common)

 (1.0)

]

 /OtherNamespaces [

 <<

 /AsReaderSpreads false

 /CropImagesToFrames true

 /ErrorControl /WarnAndContinue

 /FlattenerIgnoreSpreadOverrides false

 /IncludeGuidesGrids false

 /IncludeNonPrinting false

 /IncludeSlug false

 /Namespace [

 (Adobe)

 (InDesign)

 (4.0)

]

 /OmitPlacedBitmaps false

 /OmitPlacedEPS false

 /OmitPlacedPDF false

 /SimulateOverprint /Legacy

 >>

 <<

 /AddBleedMarks false

 /AddColorBars false

 /AddCropMarks false

 /AddPageInfo false

 /AddRegMarks false

 /ConvertColors /ConvertToCMYK

 /DestinationProfileName ()

 /DestinationProfileSelector /DocumentCMYK

 /Downsample16BitImages true

 /FlattenerPreset <<

 /PresetSelector /MediumResolution

 >>

 /FormElements false

 /GenerateStructure false

 /IncludeBookmarks false

 /IncludeHyperlinks false

 /IncludeInteractive false

 /IncludeLayers false

 /IncludeProfiles false

 /MultimediaHandling /UseObjectSettings

 /Namespace [

 (Adobe)

 (CreativeSuite)

 (2.0)

]

 /PDFXOutputIntentProfileSelector /DocumentCMYK

 /PreserveEditing true

 /UntaggedCMYKHandling /LeaveUntagged

 /UntaggedRGBHandling /UseDocumentProfile

 /UseDocumentBleed false

 >>

]

>> setdistillerparams

<<

 /HWResolution [2400 2400]

 /PageSize [612.000 792.000]

>> setpagedevice

