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Abstract 

This study examines the crew pairing problem, which is one of the most comprehensive problems encountered in 
airline planning, to generate a set of crew pairings that has minimal cost, covers all flight legs and fulfils legal 
criteria. In addition, this study examines current research related to crew pairing optimization. The contribution of 
this study is developing heuristics based on an improved dynamic-based genetic algorithm, a deadhead-minimizing 
pairing search and a partial solution approach (less-costly alternative pairing search). This study proposes genetic 
algorithm variants and a memetic algorithm approach. In addition, computational results based on real-world data 
from a local airline company in Turkey are presented. The results demonstrate that the proposed approach can 
successfully handle medium sets of crew pairings and generate higher-quality solutions than previous methods.  

Keywords: Airline crew scheduling, Crew pairing, Set-covering, Genetic algorithm, Heuristics.

1. Introduction 

Airline companies have used operations research 
techniques to solve planning and scheduling problems 
since 1950 [1]. These techniques greatly impact 
planning and managing the operations of airlines. 
Advances in computer technology and optimization 
models have allowed more complex issues to be 
addressed and overcome; thus, airline-related problems 
can be solved in a shorter period of time. These models 
have saved millions of dollars, and many airline 
companies have established operations research 
departments [2]. 
      Planning and operational problems are the most 
common issues encountered by airline companies. Each 
problem has its own characteristics and objectives. 
Airline crew scheduling is among the major planning 
problems referred to frequently in the literature. Crew 
expenses are the second largest expense for airlines after 

the cost of fuel. Because fuel costs cannot be reduced, 
effective and economical crew scheduling is highly 
valued by airline companies. Because staff costs are the 
largest expense that can be controlled by airline 
companies, scheduling cabin crew members in the most 
efficient manner is of utmost importance for airline 
planning [3]. Given its economic aspect and huge 
impact on operations, airline crew scheduling, which is 
comprehensive in nature, is an NP-hard optimization 
problem that must be solved under numerous 
constraints. The economic significance and complexity 
of this problem has attracted the attention of the 
operations research community in recent years. To 
facilitate a solution to this problem, various exact and 
meta-heuristics-based methods have been developed [4-
12]. 
       Because of its cumbersome nature, airline crew 
scheduling has been divided into two consecutive 
stages: crew pairing and crew rostering. The main 
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objective of the crew pairing process is to find the 
pairings with minimum cost that cover all flights within 
legal rules. Crew rostering (or crew assignments) is 
conducted for all legal pairings generated in the 
previous stage [13]. This study analyses the crew 
pairing problem. The inputs of the crew pairing problem 
are the flight legs included in the airline’s timetable. 
Considering the scope of the crew pairing process in 
real life, it is not possible to generate all crew pairings 
(which is acceptable for large airlines). Additionally, 
generating a large quantity of crew pairings would make 
the optimization phase more difficult. Most of the 
studies in the literature have solved the problem by 
generating as few crew pairings as possible [14, 9]. 
       In this study, a dynamic-based genetic algorithm is 
proposed for medium-scale scheduling problems. The 
objective is to find a set of minimum-cost crew pairings 
that meets the demand for each flight leg in the airline’s 
timetable within all legal limits. The major differences 
between our study and previous genetic algorithm 
studies are as follows:   
1) A genetic algorithm has been developed to solve 
medium-scale crew pairing problems. 2) Previous 
studies considered a particular element of the generated 
crew pairings and excluded the rest from the solution 
set, whereas in our study, all legal pairings are 
generated and their subsets are considered. 3) The 
length of the chromosome representing a solution 
changes dynamically in each iteration. Thus, the 
chromosome length varies during the optimization run. 
4) Our study also has multi-objective characteristics 
because we represent penalty values for more than one 
KPI (key performance indicator) in the objective 
function. The high cost of crew pairing and the number 
of deadheads have been minimized. For these problems, 
new heuristic algorithms have been developed.  
      The rest of this paper is organized as follows. 
Section 2 provides an overview of the background and 
describes the airline crew pairing problem. Section 3 
explains the proposed evolutionary algorithms. Section 
4 presents a case study from Turkey and compares the 
performances of different evolutionary algorithms 
applied to this case study, and it also describes the 
experimental results and analyses. Finally, Section 5 
presents the conclusions. 
 

2. Background 

2.1. Crew pairing 

Studies on airline crew pairing have used the set-
covering and set-partitioning models. Information on 
studies that have solved airline crew scheduling 
problems by exact, approximate or meta-heuristic 
methods is given in Tables 1 and 2. 
       In most airline crew scheduling research, 
matheuristic studies are performed that utilize both 
heuristic and exact approaches. We can define 
matheuristics as optimization algorithms generated by 
the interoperation of meta-heuristics and mathematical 
programming methods. Column generation and integer 
programming (heuristic branch-and-bound) are the most 
commonly used methods. 

2.2. Memetic algorithm 

A memetic algorithm (MA) is a heuristic algorithm that 
uses local search (LS) techniques and is a genetic 
algorithm and hybrid-structured evolutionary algorithm 
(EA). MAs are enhanced population-based EAs that 
were first developed by Moscato [38] to solve discrete 
optimization problems. The main components of MAs 
are crossover, mutation and hill climbing [39]. LS 
algorithms attempt to improve the current solution. 
Within MAs, hill climbing, tabu search and simulated 
annealing are used as LS algorithms. MAs are used to 
solve NP-hard problems by combining genetic 
algorithms (GAs) and LS techniques [40].  
       Our ultimate objective is to develop a GA that can 
handle medium data sets in an effective manner and 
generate outcomes that are of high quality. 

2.3. Related works 

Because current approaches are not sufficient for 
solving large-scale problems, most studies apply 
integrated heuristics with these approaches. Several 
studies have been performed on the application of GAs 
based on meta-heuristics to the airline crew scheduling 
problem in the literature. In these studies, the set-
partitioning (SP) problem or set-covering (SC) problem 
is generally considered to solve the crew pairing 
optimization problem. Both problems have been shown 
to be NP-complete [41].  
       In Zeren and Ozkol’s study [9] of 700 flights, 
Ozdemir   and   Mohan’s   study  [42]   of   300   flights, 
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Kornilakis and Stamatopoulos’s study [14] of 2100 
flights, Chang’s study [43] of 700 flights and Sou and 
Teghem’s study [7] of 631 flights, the results were 
generated without using all pairs. However, in this 
study, all pairs are produced, and by updating the 
solution space dynamically, the GA yields better 
solutions in big column numbers. 
       Using the dynamic approach proposed in this paper, 
we were able to generate solutions that are of better 
quality using much larger data sets than those used in 
studies that include GAs. An overview of previous work 
on relevant GA studies is provided in Table 3. 

2.4. Fundamental definitions and rules 

Crew pairing problems attempt to determine the crew 
pairing with minimum costs that would meet the needs 
of each flight leg on the schedule. The airline timetable 
is used as an input at this stage. Then, duties and 
pairings are generated according to the rules laid down 
by the airline companies, the Directorate General of 
Civil Aviation (DGCA) and the Federal Aviation 
Administration (FAA). Fig. 1 shows the duties and crew 
pairings generated in line with the flight legs used in the 
airline’s timetable. The following definitions are used to 
address the crew pairing problem [3]: 
Flight (flight leg or leg): Period between aircraft (AC) 
take off and AC landing.  
Duty: Period comprising one or more flight legs, 
including the briefing time, which is the preparation 
period for the duty, and the debriefing time, which is the 
preparation period of the AC for the next flight crew. 
Crew pairing: Period comprising one or more duties. 
Crew pairings also include the rest periods between 
duties. 
      The limits that must be respected to ensure that a 
duty or crew pairing is legal consist of a rest period, 
connection time, flight time and duty time. Connection 
times for a duty period must be within a certain range 
(minimum and maximum). The total flight time refers to 
the time spent in a duty period, the block time refers to 
the flight time during a duty, and the number of flight 
legs must not exceed the given ranges. A certain period 
is also allocated for briefing before each duty period and 
debriefing at the end of each duty period. The rules 
applied for crew pairing vary according to airlines and 
countries. The rules for the crew pairing problem can be 
found in [46]. 
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time
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time

 
Fig. 1. Example of a crew pairing with an IST airport as the 
crew base. 

Connection time: A connection during duty is called a 
sit connection time, which is the time between two 
consecutive flight legs in a duty. Generally, airlines 
consider minimum and maximum sit connection times, 
which are usually between 30 min and 3 h (sometimes 4 
h). 
Rest: A connection between two duty periods is called a 
rest, layover or overnight connection. 
Brief: The elapsed time before the first leg of the duty. 
Debrief: The elapsed time after the last leg of the duty. 
Deadhead: If a crew member flies as a passenger rather 
than as a cockpit or cabin attendant, this flight is 
regarded as a deadhead flight for that crew member. 
Deadhead flights should be minimized because they 
reduce the passenger transport capacity and the crew 
utilization efficiency [13]. 

3. Proposed Methodologies 

In this study, we propose a fast, strong and dynamic-
based GA approach for airline crew pairing. The 
algorithm’s main logic provides a sub-optimal solution 
for medium-scale problems by solving them in small 
subsets. The proposed method uses a small subset of the 
problem that continuously repeats itself in line with the 
information obtained from the GA solution. The 
pairings that worsen the solution in the subset and the 
pairings that improve the solution in the main set are 
continuously replaced to develop updated heuristics. 
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The proposed methodology consists of five stages. 
(1) All legal crew pairings are generated (pairsAll). (2) 
A subset is formed by randomly (knowledge-based 
random) choosing pairings from the generated crew 
pairings, including all flights (select the initial from 
pairsAll). (3) The steps of the GA are applied to 
optimize the problem. (4) After the GA produces a 
certain iteration, the population’s best chromosome and 
pairings of this chromosome are kept in memory for the 
next round. Then, the loop returns to stage 3, and the 
pairings that will improve the solution (low-cost) in the 
main set are searched instead of the pairings that will 
worsen   the   solution   (high-cost)   in   the   subset.   In 

    
Fig. 2. Stages of the proposed dynamic-based GA 
methodology. 

addition, the other developed heuristics algorithm and 
alternative pairings that will produce the fewest 
deadheads for each flight are searched. (5) The best 
crew-paring solution set is obtained by continuously 
executing procedure stages 3 and 4 until the loop ends. 
The schematic diagram of the proposed methodology 
for the crew pairing problem is shown in Fig. 2. 

3.1. Crew pairing generation 

The aim of this stage is to obtain a set of all legal crew 
pairings. The crew pairing generation method consists 
of two stages: (1) duty generation and (2) pairing 
generation. In the first stage, all legal duties are 
generated using the set of flights (see Section 2.4). A 
depth-first search algorithm is employed for duty 
generation. In the second stage, crew pairings are 
generated from flight duties with a similar algorithm 
(depth-first search algorithm) after duty generation. This 
algorithm searches in the space of all possible subsets of 
all flight legs [14]. 

Algorithm 1 Pseudocode of the pair generation 

 1      Procedure GeneratePairings (pairList) 

 2              currentPair = create an empty pair; 

 3              for each duty do 

 4                      if duty starts from homebase 

 5                              Insert duty to currentPair; 

 6                              SearchForPairings (currentPair, pairList) 

 7                              Remove duty from currentPair; 

 8      Procedure SearchForPairings (currentPair, pairList) 

 9              for each duty (that starts from the arrival station of 

currentPair arrives) do 

 10                     Insert duty to currentPair; 

 11                     if currentPair is valid (whether ends at the 

same homebase city) 

 12                             Insert currentPair to pairList; 

 13                     if currentPair can have more duties 

 14                             SearchForPairings (currentPair, pairList); 

 15                     Remove duty from currentPair; 

The GeneratePairings method is a recursive 
procedure that allows us to search for duty connections 
that form all possible crew pairings. In the first phase, 
all duties are reviewed in the main procedure. For duties 
starting from the homebase, the procedure is executed to 
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search for possible duties that can be added to the 
pairing. The steps of this process are shown between 
lines 2 and 7. In the second phase, however, duties 
finishing at the homebase sub-procedure are executed to 
search for possible duties that can be added to the 
pairing. Any suitable duties are searched for in lines 9 
and 10 and added to the currentPair. In lines 11 and 12, 
the generated pairing is added to the pairList if 
applicable. In lines 13 and 14, if the length of the 
current pairing allows us to add more duties, then 
recursive procedure reruns in the search space. The 
pairList is the list of all valid pairings created by the 
recursive code. 

For an airline crew pairing problem that consists of 
f flights, d duties and p pairings of duties, the cost 
function of the CPP (crew pairing problem) can be 
defined as follows: 
The total duty duration is used as the duty cost in the 
code and can be formulated as given in Eq. (1): 

𝐷𝐷𝐷𝐷 𝑐𝑐𝑐𝑐 = 𝑀𝑀𝑀�𝐶𝑗
𝑑𝑑𝑑𝑑� = �𝑎𝑖𝑖 �𝐶𝑖

𝑓𝑓𝑓𝑓ℎ𝑡 +�𝑎𝑙𝑙𝑢𝑖𝑖𝐶𝑖𝑙𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

𝑓

𝑙=1

� 
𝑓

𝑖=1

 

∀𝑗 = 1,2 … , 𝑑 

The first and second part of the duty cost equation can 
be defined as follows: 

(1) Required pay for each flight in each duty and 
(2) Connection time between flights. 

The first and second part of the pairing cost equation 
can be defined as in Eq. (2): 

(1) Required pay for each duty in each pairing (duty 
cost) and 

(2) Connection time expenses between duties (hotel 
cost). 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑐𝑐𝑐𝑐 = 𝑀𝑀𝑀�𝐶𝑘
𝑝𝑝𝑝𝑝� = �𝑏𝑗𝑗 �𝐶𝑗

𝑑𝑑𝑑𝑑 + �𝑏𝑞𝑞ℎ𝑗𝑗𝐶𝑗𝑗𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟
𝑑

𝑞=1

� 
𝑑

𝑗=1

 

∀𝑘 = 1,2, … , 𝑝 

 
 

The elapsed time includes a briefing period before the 
first leg of the duty and a debriefing period after the last 
leg of the duty. 
i=1,2,….f (f Є F: set of all flight legs) 
j=1,2,…,d (d Є D: set of all legal duties) 
k=1,2,…,p (p Є P: set of all legal pairings) 

 

 

Table 4. Mathematical notation of crew pairings. 
Notation Define 

𝑪𝒋
𝒅𝒅𝒅𝒅 The basic payment for a duty j. 

𝑪𝒊
𝒇𝒇𝒇𝒇𝒇𝒇 The cost of each flight i. 

𝑪𝒊𝒊𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄 𝑻𝑻𝑻𝑻 The connection time cost between two 
consecutive flights i and l. 

𝑪𝒋𝒋𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓 The rest time cost between two 
consecutive duties j and q. 

𝒂𝒊𝒊 If flight i is covered by duty j, 𝑎𝑖𝑖 = 1; 
otherwise, 𝑎𝑖𝑖 = 0. 

𝒂𝒍𝒍 If flight l is covered by duty j, 𝑎𝑙𝑙 = 1; 
otherwise, 𝑎𝑙𝑙 = 0. 

𝒖𝒊𝒊 If flight i follow flight l, 𝑢𝑖𝑖 = 1; 
otherwise, 𝑢𝑖𝑖 = 0. 

𝒃𝒋𝒋 If duty “j” is covered by pairing k, 
𝑏𝑗𝑗 = 1; otherwise, 𝑏𝑗𝑗 = 0. 

𝒃𝒒𝒒 If duty “q” is covered by pairing k, 
𝑏𝑞𝑞 = 1; otherwise, 𝑏𝑞𝑞 = 0. 

𝒉𝒋𝒋 If duty j follows duty q, ℎ𝑗𝑗 = 1; 
otherwise, ℎ𝑗𝑗 = 0. 

  

Algorithm 2 Pseudocode of the initial subset 
1 Procedure InitializeActivePairs (Flights, pairsAll, 

pairsActive, maxStep) 
2          initialize step = 0 
 3              While (step < maxStep) 
 4                     initialize temporaryFlights = Flights 
 5                     initialize coveredFlightList = {} 
 6                     While (temporaryFlights.length > 0) 
 7                           select a random flight Fi out of 
temporaryFlights. 
 8                           if (Fi has not been included by 
coveredFlightList yet) 
 9                       find the "crew pairing list" PL that includes 
pairings that cover Fi with minimum deadheading (by 
checking coveredFlightList) out of pairsAll.   
 10                                  select a random pairing P out of PL 
and Insert P to pairsActive. 
 11                                  add all flights of P to 
coveredFlightList. 
 12                         remove Fi from temporaryFlights. 
 13                   step++ 
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3.2. Initial pairing (subset) selection with heuristic 
solution 

Unlike other studies, this study generates a knowledge-
based random subset \to cover all flights among all 
generated pairings, and then this subset continues to 
renew itself. A heuristics approach is developed below 
for generating the initial subset. 

3.3. Set covering master model for optimization 

Selecting the set with the best crew pairing is modelled 
as an SC or SP problem in the literature. The SC model 
is used in this study because there is a clear analogy 
between the SC model and the crew pairing problem. In 
this model, each row represents a flight in the airline 
time table, and each column represents a generated crew 
pairing. In addition, F represents the flight set, and P 
represents the legal pairings created by these flights. 
The SC problem for the crew pairing problem can be 
defined as follows [6, 13]:  
       The SC model perfectly fits and provides all the 
representation needs of the crew pairing problem. 
Set covering: 

𝑀𝑀𝑀(𝑧) = � 𝑐𝑗 ∗  𝑥𝑗                 
p

j=1

        
 

(3) 
 

Which is subject to 

�𝑎𝑖𝑖 ∗  𝑥𝑗 ≥ 1                ∀𝑖 ∈ F
p

j=1

        (4) 

 
 𝑥𝑗 ∈ {0,1}                          ∀𝑗 ∈ P  

 𝑥𝑗 =  �1            𝑖𝑖 𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑗 𝑖𝑖 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠;  
0            𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒                            

  

𝑎𝑖𝑖 = �1            𝑖𝑖 𝑓𝑓𝑓𝑓ℎ𝑡 𝑙𝑙𝑙 𝑖 𝑖𝑖 𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑏𝑏 𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑗;     
0            𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒                                                             

  

 
Eq. (3) shows the objective function in which the 

total cost is calculated. Eq. (4) indicates the constraint 
that guarantees that all flights (rows) are covered at least 
once. If this equation equals 1 (=1), then it becomes an 
SP model. 

3.3.1. Genetic algorithm optimization 

Genetic algorithm have been introduced by Holland 
[47] to understand the adaptive search processes of 
natural systems. GAs are inspired by the evolutionary 
phases of biological organisms in nature. GAs can be 

applied to combinatorial optimization and machine 
learning and represent a popular class of EAs [48]. The 
primary logic of genetic algorithm attempt to improve a 
population of candidate solutions by iteratively applying 
a set of genetic operators (crossover and mutation) and 
creating new individuals then replacing the old 
individuals with the ones. The proposed GA for solving 
the crew pairing problem is described in this section.  
      Representation is the most important part of a GA. 
Binary coding is used for the crew pairing problem, and 
two types of models are recommended for the solution 
to the crew pairing problem by incorporating a GA. 
These models are column-based presentation [44] and 
row-based presentation [49]. Column-based 
presentation is considered in this study. 

3.3.1.1. Initialise the population 

The initial population is the first stage of the GA. Each 
chromosome in this population represents a possible 
solution to a problem. A heuristics approach is 
suggested to cover each flight while the initial 
population is generated.  

Algorithm 3 Initial population algorithm 
1 Procedure InitialPopulation (pairsActive, Flights, 

Population) 
2          for (each chromosome in population) 
 3                      for (each flight Fi in Flights list) 
 4                              if (Fi is covered by pairsActive list)  
 5                                      if (number of covers in chromosome 
of Fi < 1) 
 6                                             find the "crew pairing list" PL 
that includes Fi out of pairsActive. 
 7                                             if (PL ≥ 1) 
 8                                                    select a random pairing P 
out of PL. 
 9                                                    insert P to chromosome. 
 10                    add chromosome to Population. 

      We generate the initial population using the 
InitialPopulation method with the pairsActive and 
Flights lists. The pairsActive list is a pairing subset that 
is chosen among all pairings and covers each flight at 
least n time(s). The Flights list is a set in which all 
flights exist. The populationSize points to the 
chromosome number in the population. In line 2, the 
“for” loop activates each chromosome in the 
population. In lines 3 and 4, whether any pairing in 
pairsActive covers each Fi flight is verified. If this Fi 
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flight is covered, then whether this flight has been 
covered before in the genes of the chromosome in line 5 
is verified. If this Fi flight has not been previously 
covered in the genes of the chromosome, then the 
pairings that cover this flight in line 6, i.e., crew pairing 
list (PL), are identified. In lines 7, 8 and 9, if there is a 
pairing P that covers this flight and the number of 
pairings is more than one, then a P is randomly chosen 
among the PL and added to the chromosome; in other 
words, the related chromosome’s gene is true. The loop 
starts for the first chromosome of the population. After 
all flights are activated, the loop is added into the 
chromosome list in line 10 and continues until the break 
condition is met. 

3.3.1.2. Fitness function 

The fitness value of a chromosome equals the objective 
function of the problem. The fitness value indicates the 
degree to which a chromosome fits the structure of the 
objective function (max or min). The main objective is 
to minimize the total cost of the objective function. The 
fitness function is used to calculate the cost of each 
chromosome in the population. The best set solution 
(chromosome) must cover all flights in the airline’s 
timetable. Calculating the fitness function is not 
standard, and although similarities may be observed, 
each work is unique. The fitness function adopted in this 
study is defined in Eq. (5) using the following terms:   
cj = cost of pairing 𝑗; 
si = cost of flight 𝑖; 
hj = hotel transportation cost of pairing 𝑗; 
nj = number of night stays of pairing 𝑗; 
i = 1,2 … … … f (𝑓 Є 𝐹: set of all flight legs); 
j = 1,2 … … … p (p Є P: set of all pairings). 

𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 (𝑀𝑀𝑀) = ��𝑐𝑗𝑥𝑗 + �𝑠𝑖𝑦𝑖

𝑓

𝑖=1

𝑎𝑖𝑖�
𝑝

𝑗=1

+ �𝑛𝑗ℎ𝑗𝑥𝑗

𝑝

𝑗=1

 (5) 

 
Parameters of the model; 
𝑐𝑗 > 0,    𝑠𝑖 > 0  𝑎𝑎𝑎     ℎ𝑗 > 0  ; 

x(𝑗) ∈ {0,1}                  ∀𝑗 ∈ P 

𝑥(𝑗)    = �1                  if pairing 𝑗 is selected;   
0                   otherwise                         

 

𝑦(𝑖)    = �1                  if flight 𝑖 is a deadhead;  
0                  otherwise                           

  

𝑎(𝑖, 𝑗) = �1           if flight leg 𝑖 is covered by pairing 𝑗; 
0                         otherwise                                   

 

      Eq. (5) shows that the first statement of the equation 
provides the total cost of the crew pairings in the 
solution set of the chromosomes (see details in Section 
3.1). The second statement provides the total deadhead 
cost that would occur in the event of multiple coverages 
of a flight in the solution set. Deadheads represent the 
crew staff, excluding the actual commissioned crew, 
who travel to another base as passengers on the aircraft. 
If a flight is covered more than once, then the flight 
would bring an extra cost to the airline. The penalty 
value here is calculated by setting it equal to the cost of 
a deadhead flight. The third statement is the hotel 
transportation costs. 

3.3.1.3. Genetic operators 

Because the crossover and mutation operator is the stage 
of transferring genetic information to the new 
generation, the selection phase of the chromosomes that 
cross will be important. In this study, a binary 
tournament selection method was used because it 
performed better than other selection operators. After 
selecting the ancestor (mother and father) chromosomes 
to produce new children, the crossover operator is 
applied. Single point crossovers, two point crossovers, 
and uniform crossings have been attempted using 
crossover operators, and the single point crossover is the 
best performing operator of the algorithm. The bit-flip 
mutation operator was applied to ensure that the 
algorithm does not catch local (local) maxima and local 
minimum spots. 

3.3.1.4. Local search heuristics 

3.3.1.4.1. Repair heuristic 

The child chromosomes obtained after the crossover and 
mutation processes are not guaranteed to be feasible. 
Beasley and Chu [44] attempted to repair non-feasible 
chromosomes that could be formed by the method they 
proposed. A chromosome should be covered by each leg 
in flight set. Eq. (6) determines the crew pairing that 
should be added to the solution set to cover unscheduled 
flights.  

𝐶𝐶𝐶𝐶 𝑜𝑜 𝑐𝑐𝑐𝑐 𝑝𝑝𝑝𝑝𝑝𝑝𝑝 
𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜 𝑛𝑛𝑛 𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑓𝑓𝑓𝑓ℎ𝑡𝑡 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑖𝑖  𝐶𝐶 (6) 
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      As a first step, to make non-feasible chromosomes 
feasible, flights not covered in the solution set and the 
possible crew pairings that can be included in the 
solution set to allow these flights to be covered in the 
solution set are identified. The above equation is used to 
determine which crew pairings to include in the solution 
set so that non-covered flights are covered. The steps of 
the algorithm used in the study are as follows 
(Algorithm 4):  

Algorithm 4 Pseudocode of the repair 
1 Procedure Repair (Flights, pairsActive) 
 2               initialize notCoveredFlightList = {} 
 3              for each flight Fi in Flights do 
 4                       if (Fi can not be covered by chromosome)         
 5                              Insert Fi to notCoveredFlightList; 
 6               if (notCoveredFlightList is empty such that all 
flights covered in the solution) 
 7                       exit; 
 8              for each flight Fj in notCoveredFlightList do 
 9                      find the best (according to Eq. 6) pairing Pi 
out of pairsActive that covers Fj  
 10                  add Pi to chromosome. 
 11                  update notCoveredFlightList (remove all 
flights of Pi from notCoveredFlightList). 

       The pseudocode for the repair of unsuitable 
chromosomes is shown in Algorithm 4. For the Repair 
function in line 1, the Flights and pairsActive lists are 
used as input. Flights is the list of all flights, and 
pairsActive (subset) is a pairing subset selected from the 
pairings in pairsAll that covers all flights. In line 2, 
notCoveredFlightList is generated for the flights that are 
not covered in the solution set (chromosome). Between 
lines 3 and 5, whether all flights in the flight list are 
covered in the solution set is determined, and the flights 
that are not covered are added to the 
notCoveredFlightList set. In lines 6 and 7, if all flights 
are covered, the solution ends. In line 8, optimum 
pairing is searched for each flight that is not covered in 
the notCoveredFlightList set. In lines 9 and 10, the best 
pairing is found according to equality 4, and the found 
pairing is added to the solution set (pairsActive). In line 
11, if each flight other than Fj in this pairing covers one 
of the flights in the notCoveredFlightList set, then this 
flight is removed from the notCoveredFlightList set. 

3.3.1.4.2. Modified best-improvement local search 
method 

A local optimization step is incorporated to render the 
solution algorithm more effective. This algorithm is a 
local optimization process that ensures that the fitness of 
a chromosome is not impaired once it is made feasible, 
even when it is omitted from the solution set of 
redundant crew pairings [44]. This process is 
implemented immediately after the initial population 
and mutation processes. Many strategies can be applied 
for the LS and include (1) first improvement and (2) 
best improvement. Here, best improvement of the LS is 
applied. To obtain the best improvement using this 
strategy, all possible moves are tested for a solution so 
that the best neighbouring solution can be selected [48]. 
The pseudocode for the best improvement is given in 
Algorithm 5. 

Algorithm 5 Local optimization heuristic 
1 Procedure LocalSearch (Population, Flights, 

pairsActive) 
2          for (each chromosome in population) 
 3                      for (each pair Pi in pairsActive) 
 4                              if (Pi is covered by chromosome)  
 5                                      setGene (Pi, false) 
 6                                      if (all flights in Flights not covered 
by chromosome) 
 7                                             setGene (Pi, true) 

       Even if crew pairings are removed from the solution 
set, the pseudocode of the local optimization heuristics 
where the chromosome compliance is not violated is as 
presented in Algorithm 5. In line 2, the algorithm runs 
for each chromosome in the population. In line 3, the 
loop runs for each pairing Pi for pairsActive. In lines 4 
and 5, if Pi is in the solution set, then it is removed from 
the Pi solution set. In lines 6 and 7, if all flights in the 
Flights set are not covered, then Pi is returned to the 
solution set. 

3.3.1.5. Population replacement strategies 

The last step of the GA is population replacement. In 
this step, the surviving parent and child chromosomes 
are selected. Because the number of populations is 
fixed, a chromosome selection strategy ensures that this 
number remains fixed. The two main approaches used 
in the population replacement stage are the generational 
and steady-state approaches [48]. This study adopts the 
steady-state approach. An elitist approach is also tested; 
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however, the steady-state approach is preferred because 
it delivered better results. In this approach, one or two 
offspring are generated in each iteration. Then, this 
child chromosome replaces (1) the worst individual in 
the population or (2) its parents. 

3.4. Update heuristics 

3.4.1. Deadhead-minimizing pairing search 
heuristic 

This stage can be considered an alternative pairing 
search stage. The purpose of the developed heuristics 
approach is to decrease the number of deadheads 
because they decrease passenger capacity and crew 
utility efficiency. Therefore, the airlines always require 
that the number of deadheads be kept at an optimum 
level [13]. The best chromosome among those in the 
population is identified first, and the remaining 
chromosomes in the population are then removed from 
the solution set. In addition, the best chromosome is an 
alternative solution. Finally, alternative pairings that 
will decrease the number of deadheads are searched by 
checking how many times each flight was covered 
among the best chromosome, i.e., pairings in the 
alternative solution. This search procedure is conducted 
between all pairings that are generated, starting from the 
ones that cover deadheads the most, and alternative 
identified pairings are added to the subset. An example 
alternative pairing search that will decrease the number 
of deadheads is shown in Fig. 3.  
       In the above example, the most covered flight 
among the pairings in the best chromosome is f3. The 
pairings that cover this flight are shown as Px1, Px2 and 
Px3, and the flight legs are f1, f2, f3, f4, f5, f6 and f7. The 
alternative pairings that cover f3 together with f1, f2, f4, 
f5, f6 and f7 among all pairings are Py1, Py2, Py3 and Py4. 
Although flight f3 in the best chromosome is covered by 
pairings Px1, Px2 and Px3, it can be covered by pairings 
Py2 and Py3 together with all flights by the suggested 
method. Here, the aim is to make more than one flight 
covered in the solution set minimum. In this manner, the 
costs in the goal function can be decreased. 
       An alternative pairing search algorithm pseudocode 
that will decrease the number of deadheads is shown in 
Algorithm 6. In line 1, the bestChromosome, Flights, 
pairsAll and pairsActive lists are used as input for the 
SearchForDeadheadMin    function.    bestChromosome 

 

f3 f4Py2 f5 f6

f1 f2Py3 f3 f7

f1 f3 f4 f5

f3 f6 f7

f2 f3

Px1

Px2

Px3

f1 f2 f3

f1 f3

Py1

Py4
 

Fig. 3. Alternative pairing search example. 

Algorithm 6 Pseudocode of the deadhead-minimizing pairing 
search 
1 Procedure SearchForDeadheadMinimizingPairs 

(bestChromosome, Flights, pairsAll, pairsActive) 
2          initialize pairsActive = bestChromosome.pairs 
 3              While (true) 
 4                      find the next flight Fi that is covered by the 
solution the most 
 5                      if (Fi can not be found) 
 6                             exit; 
 7                      find the "crew pairing list" PL that includes Fi 
out of pairsActive. 
 8                      find the "flight list" FL that includes all the 
flights that are covered by PL. 
 9                      search for a “new pairing list” NPL out of 
pairsAll that covers all flights in FL with no deadheads. 
 10                    add all pairings from NPL to pairsActive. 

includes the genes of the best chromosome (of the 
solution set) obtained as a result of a certain iteration 
study of the GA, i.e., the list of pairings; Flights is the 
list of all flights; pairsAll is the list of all pairings; and 
pairsActive (subset) is a pairing subset that is chosen 
among the pairings in pairsAll that covers all flights. In 
line 4, the flights Fi that are most covered in the solution 
set (bestChromosome) are present. In line 5 and 6, if no 
Fi is found to be covered more than once, then the 
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solution ends. In line 7, pairings that cover flight Fi are 
found in pairsActive, and the PL list is generated. In line 
8, the flight list, i.e., the set FL, which is covered by PL 
and includes all flights, is found. In lines 9 and 10, new 
pairings that cover all flights in the FL list and do not 
include any deadheads are searched, and the NPL list is 
generated. Then, all pairings in the NPL list are added to 
the pairsActive list. 

3.4.2. Less-costly alternative pairing search  

The less-costly approach can be called the partial 
solution search. This approach is a procedure for 
searching for high-quality pairings (low-cost) from the 
main set (pairsAll) to replace low-quality pairings 
(high-cost) from the best chromosome or subset 
(pairsActive). In other words, the approach can be called 
the low-cost pairing search procedure. Initially, the 
pairing with the lowest quality is identified, and a high-
quality pairing search is conducted in the main set for 
flights in the pairing with the lowest quality. This 
continues until high-quality pairings are found for 
flights in the pairing with the lowest quality. First, a 
quality index (QI) is identified, and it is calculated as 
shown in Eq. (7). According to the values of this index, 
the pairings are listed from highest quality to lowest. 
The pairing with the smallest index value corresponds to 
the pairing with the lowest quality. 

Quality Index (QI) =
𝑇𝑇𝑇𝑇𝑇 𝑏𝑏𝑏𝑏𝑏 𝑡𝑡𝑡𝑡
𝑇𝑇𝑇𝑇𝑇 𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑡𝑡𝑡𝑡

    

=  
� 𝑎𝑖𝑖 𝑀𝑖

𝑓𝑓𝑓
f

i=1

∑ ∑ (𝑏𝑗𝑗 𝑀𝑗
𝑡𝑡𝑡 + 𝑏𝑗𝑗𝑏𝑞𝑞ℎ𝑗𝑗𝑀𝑗𝑗

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟)        𝑑
𝑞=1

𝑑
𝑗=1

    

 ∀ 𝑘 = 1,2, … . , 𝑝 

 (7)  

       The pseudocode of the alternative pairing search 
algorithm that will decrease the number of pairings with 
low quality is shown in Algorithm 7. According to this 
algorithm, an example of a less-costly pairing search 
with four pairings and thirteen flights is depicted in Fig. 
4. In line 3, the pairing with the lowest quality, Pi, is 
found in the best chromosome. Here, the algorithm 
starts searching from the pairing with the lowest quality. 
Then, after the pairing with the lowest quality, we aim 
to find the next pairing with the lowest quality. In lines 
4 and 5, if Pi cannot be found, then the solution ends. In 
line 6, this pairing is used as an initialized value for the 

Table 5. Mathematical notation of the quality index. 

Notation Define 
𝑀𝑖

𝑓𝑓𝑓 The flight time of flight i. 

𝑀𝑗
𝑡𝑡𝑡 The total duty time of duty j. 

𝑎𝑖𝑖 If flight i is covered by duty j, 𝑎𝑖𝑖 = 1; 
otherwise, 𝑎𝑖𝑖 = 0. 

𝑏𝑗𝑗 If duty j is covered by pairing k, 𝑏𝑗𝑗 = 1; 
otherwise, 𝑏𝑗𝑗 = 0. 

𝑏𝑞𝑞 If duty q is covered by pairing k, 𝑏𝑞𝑞 = 1; 
otherwise, 𝑏𝑞𝑞 = 0. 

ℎ𝑗𝑗  If duty j follows duty q, ℎ𝑗𝑗 = 1; 
otherwise, ℎ𝑗𝑗 = 0. 

𝑀𝑗𝑗
𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟  

The required rest time between two 
consecutive duties j and q. 

i=1,2,….f (f Є F: set of all flight legs) 
j=1,2,…,d (d Є D: set of all legal duties) 
k=1,2,…,p (p Є P: set of all legal pairings) 
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Fig. 4. Alternative less-costly pairing search example. 

flights in Pi in the searchFlights set. In line 7, the 
coveredFlightList set is generated for the searched 
flights. In line 8, a low-cost/high-quality pairing is 
searched for each flight Fi in the searchFlights set. 
While conducting the search, this flight should not be 
covered by the coveredFlightList set at the same time. 
In line 9, the best pairing Pn (new pairing) that covers 
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flight Fi in pairsAll is found, and this pairing is added to 
pairsActive in line 10. In line 11, all flights of the 
chosen Pn are added to the coveredFlightList list. In line 
12, a search is conducted of Pn for each flight Fj. In line 
13, a low-cost Pj that covers flight Fj is found. In line 
14, all flights that are not covered in the new pairing Pj 
(and those that are not covered in the coveredFlightList 
set) are added to the searchFlights set. 

Algorithm 7 Pseudocode of the less-costly alternative pairing 
search 
1 Procedure SearchForLessCostlyAlternativePairings 

(bestChromosome, pairsAll, pairsActive) 
 2              While (true) 
 3                  find the next pairing Pi that has the lowest 
quality value (a metric that is used to give quality points to 
pairings, with higher points indicating better quality) out of 
bestChromosome.pairs. 
 4                     if (Pi can not be found) 
 5                            exit; 
 6                      initialize searchFlights = flights of Pi 
 7                      initialize coveredFlightList = {} 
 8                      for (each flight Fi that is in searchFlights but 
not in coveredFlightList) 
 9                         find the best (according to the quality 
metric) pairing Pn out of pairsAll that covers Fi but does not 
include any of the flights in coveredFlightList. 
 10                            add Pn to pairsActive. 
 11                            add all flights of Pn to coveredFlightList. 
 12                            for (each flight Fj that is in Pn) 
 13                                     find the pairing Pj that covers Fj in 
the last solution (bestChromosome.pairs). 
 14                                     add all uncovered flights (those not 
in coveredFlightList) of Pj to searchFlights. 

3.5. General overview 

The final status of the solution approach of the crew 
pairing optimization problem is indicated in Fig. 5 and 
Algorithm 8. As shown in the algorithm, flight legs are 
taken from the airline’s timetable as input. In line 3, all 
possible duties are generated from the flight legs that 
are taken as input. In line 4, all possible pairings are 
generated by taking duties that are generated in line 3. 
In line 5, pairsActiveList is a function that generates a 
pairing subset that is chosen from pairsAll. In line 6, we 
generate the initial population using the Flights and 
pairsActive lists. In line 7, the loop runs until the break 
condition is met. In lines 8, 9, 10 and 11, optimization is 
performed with the GA until the loop reaches a certain 
number of iterations. In line 12, the best chromosome of 

the population is found at the end of the loop. In line 13, 
alternative pairings that will decrease the number of 
deadheads are searched by considering the mostly 
covered flights of pairings in the best chromosome. In 
line 14, starting from the pairing with the lowest quality 
in the best chromosome, alternative high-quality 
pairings are searched.  

 
Fig. 5. Overview of the proposed approach. 

Algorithm 8 Overview of the proposed algorithm  
1 Procedure Optimization_Crew_Pairing_Problem 

(Flights, maxIteration) 
2          initialize iteration=0 
3          dutyList=Generate_Duties (Flights) 
 4               pairsAllList=Generate_AllPairs (dutyList) 
 5     pairsActiveList = initializeActivePairs(Flights, 
pairsAllList); 
 6            Initialize population (flights, pairsActive); 
 7              While (iteration < maxIteration) do  
 8                      Solve_Subset_Genetic_Algorithm 
(pairsActiveList, Flights) 
 9                      If (termination criterion is satisfied) 
 10                              Exit; 
 11                    If (Update heuristic run is necessary) 
 12                            Find the bestChromosome 
 13                            Run_Search_Pair_ 
Deadhead_Minimizing_Approach (bestChromosome, Flights, 
pairsAllList, pairsActive) 
 14                            
Run_Search_Less_Costly_Alternative_Pair_Approach 
(bestChromosome, Flights, pairsAllList, pairsActive) 
 15                    iteration++ 
 16            end While 
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4. Computational Results 

The flight data used in this study are associated with the 
airline timetable of the A310 fleet owned by an airline 
company in Turkey. This schedule includes 591, 608, 
714, 810, 906 and 1002 monthly flight legs for testing. 
The programme was run on a computer with an Intel® 
Core ™ 64 2.40-GHz processor on the Java Eclipse 
platform. Each trial was repeated 30 times. This study 
assumes that all crew members reside in Istanbul (IST). 
The test instances and flight legs are presented in Table 6. 

The GA is executed for 20,000 iterations, and a 
subset is updated once every 1000 iterations (excluding 
pairings of the best chromosome). In this manner, the 
length of the chromosome dynamically changes once 
every 1000 iterations. Parent selection is performed 
using binary tournament selection with a tour size of 4. 
The population size is set to 30, and the crossover 
probability is set to 0.8. For each generation of an EA, 
only two offspring are generated, and they replace the 
worst individuals of the parent population. 

Table 6. Legs and pairings of test instances. 

Instances Flights legs Duties Pairings (main set) 

1 591 1826 82332 
2 608 1907 88624 
3 714 2064 208255 
4 810 2467 320866 
5 906 2771 532115 
6 1002 3333 1121408 

       The duties column in the table above shows the total 
number of duties generated from monthly flight legs. 
These duties are generated with a depth-first search 
algorithm. The pairing column indicates the total 
number of pairings (the main set) that are generated 
within the framework of legal restrictions using the duty 
list. In the same manner as for the duty enumeration, a 
depth-first search algorithm is used to generate all legal 
pairings.  
       In this study, this problem is integrated into three 
different EAs as an optimization problem: (1) two GA 
variants and (2) a MA. The overall structure of the prop-
osed EAs (GA1, GA2 and MA) is shown in Table 7.  
      In GA1, a subset is formed by a deadhead-
minimizing pairing search. The initial population of 
individuals is created randomly. A repair heuristic is 
then applied on each and every individual within the 

initial population. Subsequently, in each iteration cycle, 
two parents (individuals) are selected using the binary 
tournament selection method. This method chooses the 
individual with the best fitness among several randomly 
chosen individuals from the initial population with the 
tour size. Two new children are then created by 
applying the crossover to those selected parents, and the 
children are mutated afterwards. A repair heuristic is 
applied to potentially non-feasible chromosomes. Then, 
the worst two individuals in the population are replaced 
with the best two of the parents and offspring. The 
subset is updated in each specific iteration until the 
termination criterion is satisfied. Finally, the best 
solution is identified. 
      In the second approach, GA2 is used. Similar to 
GA1, GA2 starts with a randomly generated initial 
population and applies repair heuristics to each 
individual in the population. Deadhead-minimizing and 
less-costly pairing search algorithms are integrated and 
used in GA2. Third, after forming the initial population 
of GA2, a local optimization technique is applied, and 
this algorithm is called an MA. The other steps in the 
MA are the same as those of the GA (GA2). 
      MAs and GAs developed by other authors have also 
been tested, and the results are provided in Table 8. The 
KPIs in this table show that among the proposed 
algorithms, the MA generated better results. However, 
statistical methods should be used to determine whether 
significant differences occurred between these 
algorithms.  

The Mann-Whitney-Wilcoxon test is used as a 
statistical test of the pairwise average performance of 
two given algorithms for non-parametric tests [50]. The 
results show that the proposed MA provides less-costly 
crew pairings. 

Table 7. Proposed evolutionary algorithms. 

Improving Heuristics 
Evolutionary algorithms 
GA1   GA2   MA 

Deadhead-minimizing pairing 
searching 

x  x  x 

Less-costly alternative pairing 
searching 

-  x  x 

Local optimization techniques -  -  x 

       The proposed algorithm was compared with the 
results of previous studies performed with the same 
EAs, and the results show that it exhibits significant 
performance.  Kornilakis  and  Stamatopoulos  [14]  and 
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(a) Instance 6 

 
(b) Instance 6 

 
(c)  Instance 6 

 
(d)  Instance 6 

 
(e)  Instance 6 

 
(f)  Instance 6 

 
(g)  Instance 6 

 
(h)  Instance 6 

Fig. 6. Summary of the KPI to compare the proposed approaches (instance 6). 
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Zeren and Ozkol [13] sought to eliminate poor-quality 
crew rotations to reduce performance problems in their 
studies, and they successfully eliminated poor-quality 
crew pairings as long as they stored high-quality crew 
pairings of a certain amount. 

In other words, a pairing subset is generated by 
choosing a pairing of a certain amount from the main set 
of all pairings, and it is provided to the GA as input. The 
difference in our study is that the pairing subset is 
dynamically and continuously renewed because the GA 
is optimized. Comparisons of previously proposed MA 
approaches are summarized in Table 9. 
       Three important parameters are presented in Tables 
8 and 9: total man-days, deadheads, and layovers/ 
overnights. The solutions are generally evaluated via 
these three parameters. Evaluating other parameters is 
meaningful if these three values are close to each other. 
Because financial costs are not determined, the total 
cost can provide insights for planning, although the 
solutions are always evaluated with the three important 
parameters because of operational difficulties. 
According to the planning period, the overnight, 
deadhead and man-day parameters are prioritized based 
on their level of importance. 
       Novel dynamic-based GA variations and a MA 
approach are proposed to obtain a crew pairing solution 
set with the minimum cost. In Fig. 6, graphics are 
shown for the following KPIs (e.g., instance 6) obtained 
via the optimization of the proposed approaches: 
number of deadheads: total number of deadheads; dead-
head time: total flight times of deadheads; duty days: 
total number of duty days; overnight stays: total number 
of overnight stays; overnight duration: total time of 
overnight stays; and fitness: total crew pairing cost.  
       In Table 10, a summary of the critical assessment 
parameters of the crew pairing is shown, and it indicates 
that the proposed approach is successful at decreasing 
the total deadhead time. The deadhead factor is an 
important KPI, especially in high seasons because the 
airline’s income will decrease when passenger seats are 
used by the crew. Another important KPI is the number 
of duty days. In certain months, the airline companies 
encounter difficulties securing a sufficient number of 
pilots, particularly in December when certain pilots 
have reached their annual flight time limits. Therefore, 
the number of duty days is an important factor. The 
number of overnights is another factor that must be at 
the optimum level because it affects the accommodation 

costs of the airline companies. The total cost value 
shows a general optimization performance. The results 
show that the proposed approach generates outstanding 
total cost values.  
      Fig. 6 and Table 10 show that the MA-generated 
solutions present better deadhead, duty day, overnight 
stay, and total cost values. 

5. Conclusions and Future Directions 

In this study, a dynamic-based MA approach and GA 
variations are proposed for the airline crew pairing 
problem, which has been intensively studied in the 
literature. Because crew pairing is a main cost-
identifying stage of the crew scheduling process, 
approaches that decrease crew costs, increase crew 
utility and generate optimum crew pairings are of 
significant importance. KPIs, such as deadhead time, 
number of duty days, and number of overnight stays, are 
submitted along with the financial costs related to crew 
pairing optimization. These indicators are of significant 
importance because they facilitate the management of 
operational challenges in real-world problems.  

A unique model and strategies have been 
developed after reviewing current approaches during the 
development of the proposed solution. The 
computational results section shows that the proposed 
strategy generates highly competitive results when 
compared with current approaches. The proposed 
approach is particularly successful at decreasing 
deadhead time and the number of overnight stays.  
The main contributions of this study are as follows: 
• A dynamic-based GA has been developed for 

solving the medium-scale airline crew pairing 
problem; 

• An alternative pairing search (deadhead-
minimizing search) approach has been developed 
that will decrease the deadhead factor;  

• A low-cost (high-quality) alternative pairing search 
(partial solution search) approach has been 
developed. 
Dynamic-based GAs and changes in chromosome 

length in each iteration were used to resolve the crew 
pairing problem. The advantage of the proposed 
approach is that it seeks the solution set with the 
minimum cost that covers all flights via a GA by 
generating subsets from millions of main sets. However, 
using millions of generated crew pairings in the GA as 
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direct input renders the problem impossible to solve and 
slows the performance of the algorithm, thereby leading 
to sub-optimal results. Therefore, one subset is 
considered instead of all pairings. This subset 
dynamically changes, i.e., the main set and the subset 
exchange pairings. The pairings that lead to a sub-
optimal solution from the pairing subset are excluded 
from the solution, and the pairings that lead to an 
optimal solution from the main set are chosen and added 
to the subset.  

The second contribution is an alternative pairing 
search approach that will decrease the number of 
deadheads. In this method, a heuristics approach that 
searches and finds the pairings that generate the fewest 
deadheads for each flight is developed, and it sends the 
pairings that lead to the best solution from the main set 
to the subset. Concurrently, the approach checks the 
number of covering flights in the pairings in the subset 
as explained in Section 3.4.1. If a flight is covered more 
than once (deadhead) in the pairings, the alternative 
pairings that decrease the number of deadheads are 
sought. This search is performed for all pairings starting 
from the deadhead that is most covered, and it adds the 
identified alternative pairings to the subset.  

The third contribution is that high-quality pairings 
are searched from the main set and low-quality pairings 
in the subset are not searched by checking the pairings 
in the best chromosome. In other words, a low-cost 
pairing search is performed. As stated in Section 3.4.2, 
the pairing with the lowest quality is first identified, and 
then a high-quality pairing search is performed from the 
main set for the flights in the pairing with the lowest 
quality for this lowest quality pairing. This procedure 
continues until it finds the highest-quality pairings for 
flights in the pairings with the lowest quality. This 
procedure is conducted according to the quality metric 
that is assigned to the pairings beforehand.  

Detailed comparisons are presented in the tables 
above, and they clearly show that the proposed 
approach can generate competitive results when 
compared with current approaches that use state-of-the-
art solvers (the deadhead-minimizing pairing search and 
less-costly alternative pairing search algorithms). 
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