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Abstract—In this paper we study the acoustic scene 
classification using a large dataset. The spectrogram of the large 
acoustic samples are extracted and applied with texture feature 
classification method. First, the acoustic scene database is built 
including various acoustic events. Second the image texture 
features on spectrogram are used to represent the acoustic 
samples. Third the auto-encoder is adopted to build a deep 
neural network classifier. Finally, we verified the proposed 
system on a large number of dataset and compared our results 
with traditional Gaussian mixture model and three-layer neural 
network. The experimental results show that the proposed 
method is effective and promising in big acoustic data 
classification. 
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I.  INTRODUCTION  

Acoustic events classification is an important topic in 
machine learning and data analysis[1-3]. Most of the 
traditional classifiers are built on a relatively small number of 
samples. The feature analysis is also performed on some 
typical acoustic events. The generalization ability of such 
systems are usually not well [4-5].  

Acoustic features such as pitch frequency, formant 
frequencies, formant bandwidth, zero-cross-rate, and other 
spectral features can be used to analyze acoustic signal. The 
human voice can be detected from noise or music using pitch 
feature. The different environment characters can be classified 
by spectral features. The model used to analyze the acoustic 
scene is rooted from pattern recognition field[6-7]. Support 
vector machine is a popular classification algorithm that 
achieves good results on a small sample set. Neural network is 
also an effective learning and modeling algorithm that has 
many applications in machine learning and pattern 
classification.  

In this paper, we study a novel method of construct 
spectrogram features using deep neural network and modeling 
with auto-encoder. The rest of the paper is organized as 
follows: Section 2 briefly introduce the database used in this 
paper; Section 3 provides a novel method to construct 
spectrogram features; Section 4 gives the details on the 

classification algorithm; Section 5 is the experimental results 
and finally conclusion is provided. 

II. THE  DATABASE 

The acoustic data is collected locally in our lab and seven 
categories are included: cry, music, speaking, wide band noise, 
other noise, explosion, and traffic. We collected real world 
noise from various sources and put them in the category of 
other noises. These scenes include supermarket, jet noise, 
construction noise etc. The traffic scene is a special type of 
category the traffic noise is treated as a scene on the road side. 

The data is recorded using one microphone, 44.1k 
sampling rate, 16bit, single channel. The data files are saved in 
WAV format. All samples are labeled by human annotators 
and verified in a listening test by other human annotators. The 
basic data samples can be combined to generate different 
durations. They can also be split to increase the size of 
training and testing sample set. Examples of the data are 
shown in Fig. 1 and Fig. 2. 

 

 

Fig. 1. Spectrogram of cry sound sample. 

 

 

Fig. 2. Spectrogram of music scene sample. 
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TABLE I.  ACOUSTIC SCENE DATABASE 

Scene Total 
Duration 

Sample Size Averaged 
Duration 

SNR 

Cry 6120s 1200 5.1s 10-15dB 

Music 9360s 1300 7.2s 15-30dB 

Speaking 18900s 4200 4.5s 10-15dB 

Wide Band 
Noise 

6500s 1300 5s - 

Other Noise 7500s 1500 5s - 

Explosion 3800s 2000 1.9s 10-15dB 

Traffic 11730s 2300 5.1s 10-15dB 

 

The Statistics on the big data acoustic scene database are 
shown in Table 1. The noise is mixed with the clean data in 
order to simulate the real world environment. The SNR is 
shown in the last column. Various SNR levels are provided in 
order to verify the robustness against noise in the later 
experiments. 

III. SPECTROGRAM  FEATURE  EXTRACTION 

Spectrogram can be combined with auto-encoding to 
achieve better features that used for classification. 

Auto-encoder neural network is an unsupervised learning 
algorithm which allows the output value of the sample to be 
equal to the input ones. If the number of neurons in the hidden 
layer of neural network is much smaller than the input and 
output layers, the auto-encoder neural network is forced to 
learn the compressed representation of the input data. It is very 
difficult to learn the compact representation of these random 
data. The correlation between these associated data can be 
found by the auto-encoding algorithm, and the output layer 
reconstruction will output the input data if there are some 
specific structures implicated in the input data, such as some 
input features related to each other. 

But, in contrast, the sparseness of neurons in the hidden 
layer can be added if the number of neurons in the hidden 
layer is larger or equivalent to that in the input-output layer. 
The correlation between the input data can be still found out 
by the auto-encoding neural network in this way. The 
correlation between the gray value of an image can be found if 
sparse auto-encoding neural network is used to process a 
spectral image. 

Assuming that the neuron activation function[8] is: 

 y ( )f z  

and the activation value (output value) of the first neuron in 
the first layer of the neural network is denoted as[8]: 

 a (l
i )l

if z  

The sigmoid function is generally used as an activation 
function. The range of the sigmoid function is[8]: 


1

( )
1 z

f z
e


  

In the auto-encoding neural network, the BP algorithm is 
used to make the unlabeled input sample equal to the output 
target, that is to say: 

 i iy x   

Meanwhile, the unlabeled sample set is expressed as: 

 1 2={x ,x ,..., x }m   

and m is the number of unlabeled samples. 

The output value of the j-th neuron in the hidden layer in 
the case of the i-th sample input is: 

 * 2 ( )i
jx a x   

The mean activation value of the j-th neuron in the hidden 
layer (l = 2) is expressed as: 
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IV. SPARSE AUTO-ENCODER AND DEEP NEURAL NETWORK 

Its input layer and hidden layer neurons are fully 
connected with each other in sparse auto-encoding neural 
network, which is suitable for low-resolution spectrogram 
images. However, the network training time will be greatly 
extended if we want to extract 100 features from the higher 
resolution image, because the sparse auto-encoding neural 
network has 106 parameters to be learned. 

For a high-resolution spectrogram, the statistical features 
in the local region of the image are similar to those in other 
parts. Therefore, there is no need to make the input layer and 
the hidden layer neurons fully connected. In order to reduce 
the parameter number of high-resolution image Neural, the 
convolution operation is applied to achieve the local network 
connection. The basic idea of local connection network is 
based on the fact that human visual cortical neurons only 
respond to stimuli in some local regions. Local connection 
neural networks only allow implicit layer neurons to connect 
with some input layer neurons. Specifically, features can be 
learned from a large image via a small block, which can be 
trained by a sparse Auto-encoder neural network, and then the 
features of the training image are extracted by using the 
convolution algorithm in turn. Finally, the convolved feature 
image is obtained by convolving the labeled training set and 
test set image with the learned feature parameters. 
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Structure of the classification system is shown in Fig.3. 
Soft-max is used for classification of the acoustic scene. The 
basic principle of soft-max is explained as follows. 

Corresponding to logistic regression, softmax regression is 
an extension of logistic regression used for solving the 
problem of multi-classification. Suppose that the label sample 
set is: 

     1 1 2 2={(x ,x ),(x ,x ),...(x ,x ),... (x ,x ),1<i<m}i i m m ,

where the class labels of softmax regression belong to 
[0,1] ,the class labels of logistic regression are  , where k 
refers to the number of classification categories. We set k = 3 
in the experiment, that is, forest fire, red and red leaves. The 
sample set used to train the softmax regression model is the 
pooled feature of the labeled training set. After adding the 
regularized weighting attenuation term to the softmax 
regression model, the new cost function is a convex function, 
and there exists a unique minimum value. Therefore, some 
iterative algorithms, such as batch gradient descent, Newton 
method, LBFGS, are used to obtain the global optimal solution 
for solving the minimum cost function of the sparse auto-
encoder feature learning algorithm. Finally, the accuracy of 
the softmax image classifier is measured. For the label test set, 
we first extract the convolution feature and obtain the pooled 
feature for getting the classification label via the trained 
softmax multi-classifier. If the softmax classifier outputs the 
same label as the test sample, it indicates that the classification 
result is correct, otherwise, the classification result is wrong. 
The total number of samples is divided by the total number of 
samples to obtain the correct rate for the classification of 
tagged test sets. 

 

Fig. 3. Structure of auto-encoder neural network and the softmax classifier. 

V. EXPERIMENTAL RESULTS 

In the experiment, seven classes are included for the 
training and recognition. They are: cry, music, speaking, wide 
band noise, other noise, explosion, and traffic. Their averaged 
recognition results are shown in Fig.4 using cross validation. 

The y-axis is the recognition rate, and the x-axis is the 
training and testing size ratio. We can see that the music has 
the lowest rate and the explosion has the highest rate. 

In this experiment, the feature extraction adopts a small 
image patch with the size of 9x9. The pooling size is 20 and 
the neural network hidden nodes are 200 and 400 respectively 
for two layers. The confusion matrix is shown in Table 2 when 
the training and testing ration is set to 10:1. 

 

Fig. 4.  Averaged Recognition Rates under Various Training-Testing Ratios. 

TABLE II.  CONFUSION MATRIX OF SPECTROGRAM RECOGNITION 

 Cry Music Speaking WB 
noise 

Other 
noise 

Explosion Traffic

Cry 81% 5% 2% 5% 7% 0% 0%

Music 0% 71% 11% 0% 9% 0% 9%

Speaking 10% 4% 76% 0% 10% 0% 0%

WB noise 0% 6% 4% 82% 2% 3% 3%

Other 
noise 

0% 5% 5% 2% 75% 3% 10%

Explosion 0% 0% 0% 2% 4% 88% 6%

Traffic 4% 2% 4% 5% 2% 8% 75%

 

A comparison with Gaussian Mixture Model (GMM) and 
Traditional 3-layer BP network is shown in Fig.5. GMM is 
initialized with K-means clustering and the number of 
mixtures is set to 64 for the best performance. We can see that 
the proposed algorithm outperforms the GMM and BP. It is 
more suitable for acoustic scene classification. The traditional 
features are confused with noisy environments and the 
spectrogram feature is more robust. 

 

Fig. 5. Averaged recognition rate using the proposed algorithm, GMM and 
BP. 
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VI. CONCLUSIONS 

In this paper a large dataset of acoustic events are 
introduced and deep neural network based classifier is adopted 
to analyze the acoustic events. Sparse auto-encoder is used to 
achieve a state-of-the-art performance against various 
traditional methods. We use a novel feature based on 
spectrogram analysis and achieved promising results. In the 
future work, the acoustic features will be further investigated 
and signal enhancement methods will be adopted. 

 

References 

 
[1] Mesaros A, Heittola T, Virtanen T. "TUT database for acoustic scene 

classification and sound event detection", Signal Processing Conference 
(EUSIPCO), 2016 24th European. IEEE, 2016, pp.1128-1132. 

[2] Giannoulis D, Stowell D, Benetos E, et al. "A database and challenge for 
acoustic scene classification and event detection", 21st European Signal 
Processing Conference (EUSIPCO 2013). IEEE, 2013, pp.1-5. 

[3] Giannoulis D, Benetos E, Stowell D, et al. "Detection and classification 
of acoustic scenes and events: an IEEE AASP challenge", 2013 IEEE 
Workshop on Applications of Signal Processing to Audio and Acoustics. 
IEEE, 2013, pp.1-4. 

[4] Geiger J T, Schuller B, Rigoll G. "Large-scale audio feature extraction 
and SVM for acoustic scene classification", 2013 IEEE Workshop on 
Applications of Signal Processing to Audio and Acoustics. IEEE, 2013, 
pp.1-4. 

[5] Larsen E, Schmitz C D, Lansing C R, et al. "Acoustic scene analysis 
using estimated impulse responses, Signals, Systems and Computers", 
2004. Conference Record of the Thirty-Seventh Asilomar Conference on. 
IEEE, 2003, 1, pp.725-729. 

[6] Teutsch H. "Wavefield decomposition using microphone arrays and its 
application to acoustic scene analysis", PhD thesis, University of 
Erlangen-Nuremberg, 2005. 

[7] Barchiesi D, Giannoulis D, Stowell D, et al. "Acoustic scene 
classification: Classifying environments from the sounds they produce",  
IEEE Signal Processing Magazine, 2015, 32(3), pp.16-34. 

[8] Deng L, Seltzer M L, Yu D, et al. "Binary coding of speech 
spectrograms using a deepauto-encoder", Interspeech. 2010, pp.1692-
1695. 

 

30

Advances in Intelligent Systems Research (AISR), volume 142


	I.  Introduction 
	II. The  database
	III. spectrogram  feature  extraction
	IV. Sparse Auto-encoder and Deep Neural Network
	V. Experimental Results
	VI. Conclusions
	References




