
Third-part software calls and related process

management based on Eclipse

MingCheng Qu
1,2

,XiangHu Wu
1,2

, YongChao Tao
1,2

,QiGang Hu
1,2

1
School of Computer Science and Technology, Harbin Institute of Technology; Harbin 150001 Heilongjiang China

2
Shenzhen Academy of Aerospace Technology, Shenzhen 518057 Guangdong China

*
E-mail:qumingcheng@hit.edu.cn

Abstract—As embedded hardware and software become

increasingly complex, the traditional command based

development debugging operations have been unable to meet the

daily needs. Graphical debugging tools have become the most

popular choice. As a good open source software, Eclipse provides

a large number of expansion nodes for us to develop our own

functions. The embedded integrated development environment

needs to be integrated with other related software on the basis of

Eclipse. This article is to study how Eclipse invokes other

software and manages related processes. This article uses the

WorkspaceJob class and the Process class provided by Eclipse to

complete the related functions.

Keywords—Embedded debugging, Eclipse, WorkspaceJob,

Process manage

I. INTRODUCTION

As a good open source software, many embedded
integrated development environments are implemented based
on Eclipse. On the basis of Eclipse, the embedded integrated
development environment is developed. The core is to call
other related software and manage the related acquired process.
This article will tell you how to implement the above
functions through the function flow chart and the related
kernel code.Eclipse based calls to other tools for more
research, such as abroad on Github has an open source project:
GNU, ARM, Eclipse. The project includes a series of Eclipse
plug-ins and related tools developed specifically for multi
platform embedded ARM. The entire project is based on the
GNU tool chain. Hosted on Github and SourceForge. It
provides integration of the three debugging tools, OpenOCD,
JLink, and QEMU. However, it does not provide a unified
method for invoking other tools. And it does not provide the
process management mechanism, after calling the relevant
software did not do any processing, often there will be a large
number of invalid processes in the background, and waste of
CPU resources.

This article details how to call other tools in Eclipse, and
provides a base class to implement related functions. And on
the basis of the multithreading mechanism provided by
Eclipse, the management of the process is realized. After the
process fails, the invalid process is terminated in a timely
manner.

II. DETAILED DESIGN AND IMPLEMENTATION OF OTHER TOOL

CALL FUNCTIONS

Other tools are invoked in Eclipse, mostly through the Java
class of Process. The Process class will have two output
streams at execution time. One is the standard output stream,
and the output is the correct execution result. One is the error
output stream, and the output is the wrong execution result.

If the two output stream processing, only the standard
output stream, if the error or exception occurred during the
execution, likely to cause obstruction of output current, and
the program will not continue, locked state.

And if the two output stream into one output stream,
although can solve the blocking problem of output current, but
this error output and correct output merge together, not a clear
distinction between error and correct output output.

So here I did the processing, and extended the design and
implemented a RealtimeProcess class on the basis of the
Process class. Fig.1 is a design class diagram for the
RealtimeProcess class.

Fig. 1. RealtimeProcess design class diagram

The class contains two variables: the isRunning flag,
whether the process is running, and the name representing the
process's name. There are three kinds of the main methods:
(RealtimeProces) is a construction method of the class, is the
name of the process parameters; (exec) is a function of the
execution of other programs and process parameters for the
instruction to be executed list; openocd () and exec () function,
its function is similar, but openocd.exe is special, correct
execution it will output the error output stream, so the design
and implementation of a single function.

This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/).

Copyright © 2017, the Authors. Published by Atlantis Press. 103

2017 International Conference on Information Technology and Intelligent Manufacturing (ITIM 2017)
Advances in Intelligent Systems Research (AISR), volume 142

The general function flow chart that the RealtimeProcess
class calls other programs and gets the execution results, as
shown in fig.2.

start

Obtain an object builder through the

ProcessBuilder () function, which is

the other program to execute

Execute the other program through

builder.start () to obtain a process

object

The input stream of the process is

obtained via

process.getOutputStream (), and the

corresponding instructions are

executed through the input stream

Use WorkspaceJob to create a new

thread to monitor the output stream

of the process, which is assigned to

a collection via belongsTo and

executed by the Job

Is the output

stream

empty?

Gets the output of the output stream.

If it is the output of the standard

output stream, it is displayed in the

normal color in console. Otherwise,

display in red color

No

Yes

end

Close the output

stream and refresh

the working range

Fig. 2. A function flow chart that calls other programs and gets output results

The concrete steps are as follows:

(1) create a builder object through the ProcessBuilder ()
function, which is the absolute path of other executable
programs that you want to execute.

(2) by executing the other program through builder.start (),
a Process process object process is obtained, and process is the
process after opening the other program.

(3) obtain the input stream of the process via
process.getOutputStream (), and execute the corresponding
instructions through the input stream. The specific code is as
follows:

New BufferedWriter (New OutputStreamWriter
(process.getOutputStream ())); initializes a BufferedWriter
object br through this line of code.

Then, by executing the function br.write (CMD), the
parameter is the program instruction to be executed, and the
instruction can be sent to other executable programs through
the input.

(4) to create a new thread using WorkspaceJob output to
monitor the process process flow, through the belongsTo (the
Job) belonging to a set, convenient for the unified
management of the process, through the schedule () to add the
thread to the waiting thread, waiting for the execution of the
Job operating system.

The multi threading option here is the Job mechanism of
the Eclipse itself.

In contrast to the two implementations of multithreading,
Runnable and Thread, the Eclipse mechanism provided by Job
is more easily controlled by programs and more compatible
with Eclipse. At the same time, it can display the progress bar

in the right lower UI interface of Eclipse real time, and it is
more practical and friendly.

Inheriting the Job base class, the Job mechanism of Eclipse
contains three extensions:

1.UIJob

UIJob is the UI thread of Eclipse. In the course of its
execution, UI is not refreshed, so it is not suitable to perform
long time-consuming operations in this thread, otherwise it
will cause the interface card to die easily.

2.WorkbenchJob

WorkbenchJob is also a UI thread. Is an extension of
UIJob. Unlike UIJob, it can run jobs only when Eclipse is
executing.

3.WorkspaceJob

WorkspaceJob is a non UI thread. You can use it when you
modify a resource file. Except for UI, the operation can also
use it.

Comparing the three Job, it takes a lot of time during the
execution of this function, so it cannot be executed on the UI
thread. So WorkspaceJob was chosen.

(5) when the monitor thread starts executing, it will listen
to the output stream of other executable programs. A while
loop is used here, and the termination condition of the loop is
that both the standard output stream and the error output
stream are null.

When the standard output stream has a result, it is output
to the custom console in white; when the error output stream
has a result, it is output to the custom console in red color.
This allows a clear distinction between correct information
and false information.

(6) when the standard output stream and the error output
stream are all empty, turn off the two output streams and
refresh the work area at which the project is located.

The reason for refreshing the working area of the project is
that sometimes, when invoking other executable programs, a
file result is generated, for example, when the FPGA project is
compiled, there will be a bit file. If you do not perform a
refresh operation, the bit file will not be displayed directly in
the Eclipse project directory, users need to manually refresh,
so in order to user friendliness, here on each call to end other
executable program will automatically refresh the project
workspace.

III. DETAILED DESIGN AND IMPLEMENTATION OF PROCESS

MANAGEMENT MODULE

Due to the integrated development environment often need
to call other executable programs, from the windows operating
system point of view, these are called other executable
programs and Eclipse.exe belong to different processes in the
background in a non graphical way of running. If you do not
provide a unified termination management for these processes,
problems can occur, such as Eclipse shutdown or abort, while
other executable programs that are called will still run in the

104

Advances in Intelligent Systems Research (AISR), volume 142

background. For example, when calling Vavido software, if
you do not kill the previous process, there may be repeated
establishment of the process, the use of a large number of
CPU resources.

Therefore, the integrated development environment needs
to provide a unified process management mechanism.
Management here refers mainly to the termination of the void
process. Here, the operation of the kill process encapsulates a
function. This is primarily called when the Eclipse is closed,
and other calls are needed to terminate the invalid process.
The following details describe how to automatically call the
process termination function when the Eclipse is closed.

In the plug-in development project you built, you inherited
AbstractUIPlugin to implement a Activator class that manages
the life cycle of the plug-in.

Fig. 3. Class Activator design class diagram.

The variables included: PLUGIN_ID ID plug-in, plug-in
can uniquely identify through this ID; MY_JOB_FAMILY is
used for all the Job management plugin created, all created by
the plugin Job belong to this collection.

The class contains methods: the killProcess () function is
the newly created function, used for process termination
operations. The start () function is a plug-in initialization
function that triggers execution when the plug-in starts calling.
The stop () function is the end function of the plug-in that
automatically leaves the function at the end of the plug-in
lifecycle.

In this class, you override the stop function, which will
execute when the plug-in terminates, the Eclipse exception
terminates, and the normal exit will trigger the function. In the
stop function, the process termination function is invoked, and
a unified termination operation is made to the process opened
by the integrated development environment. Fig.4 is a
functional flow chart that terminates the invalid process.

There are two types of processes that require termination,
one called the process produced by other executable programs,
and the other is the WorkspaceJob type process created by the
Eclipse when the integration development environment is
doing some operations. The two processes terminate in
different ways.

The process of terminating an invalid process is as follows:

(1) obtain the IJobManager object through
Platform.getJobManager (), which is the global job manager
of Eclipse.

In the introduction above, each time you create
WorkspaceJob, you assign it to a series, and the
WorkspaceJob created by this integrated development
environment is assigned to the same series. Therefore,
IJobManager.cancel (MY_JOB_FAMILY) is used to cancel
all job under this series, so that all WorkspaceJob created by
this integrated development environment is cancelled.

(2) similar to the other executable programs described
above, use the Java function to call the windows of cmd.exe,
first execute the Tasklist command, and get all the running
process information. This information is saved as a list.

(3) through the information list, if the need to traverse to
the line containing the termination process, the split function
using java cutting out the PID of the process, the
implementation of the "windows cmd.exe taskkill /F by
calling the /PID PID command to terminate the process.

(4) terminate the cmd.exe process after the completion of
the traversal.

By doing so, you can terminate all invalid processes when
needed.

start

Get the IJobManager object through

Platform.getJobManager (). Cancel all

job under this series via

IJobManager.cancel

(MY_JOB_FAMILY)

Obtain the process information list by

executing Tasklist by calling cmd.exe

Traversal of the resulting list of

process information

Whether

traverse end?

Intercept the PID that gets the

process, and execute the taskkill /

F /PID PID to terminate the

process by cmd.exe

No

Yes

end

Is it the

process to be

terminated?

No

No

Terminate the

cmd.exe process

Fig. 4. A function flow chart that terminates the invalid process

Acknowledgment

This work is funded by National natural Science
Foundation of China (No.61402131); China Postdoctoral
Science Foundation Special Fund (2016T90293); China
Postdoctoral Science Foundation Item (No.2014M551245);
Heilongjiang Provincial Postdoctoral Science Foundation Item
(No.LBH-Z13105); Central University Basic Scientific
Research Business Expence Special Fund
(No.HIT.NSRIF.201651); Harbin Science and Technology
Innovator Special Fund (2015RAQXJ047).

References
[1] Peng Hao Yang,Rong Liang Wang,Zi Guo Fan. Study on Debugging

Method Based on Embedded System Development Platform[J].
Advanced Materials Research,2013,2385(694):.

105

Advances in Intelligent Systems Research (AISR), volume 142

[2] Hui Qin He. Application Research of JTAG Standard Based on ARM
Debugging System[J]. Applied Mechanics and
Materials,2015,3749(719):.

[3] Neal Stollon. Multicore Debug[M].Elsevier Inc.:2013.

[4] Catalin Dan Udma. Software Development Tools for Embedded
Systems[M].Elsevier Inc.:2013

[5] Wang S, Kang M N. Implementation of Embedded Remote Debugging
Software Based on Eclipse Platform[J]. Microprocessors, 2014.

106

Advances in Intelligent Systems Research (AISR), volume 142

