
Research on Error Diagnosis Method Based on Single

FSM State Machine Model

MingCheng Qu
1,2

,XiangHu Wu
1,2

,YongChao Tao
1,2

,Ying Liu
1,2

1
School of Computer Science and Technology, Harbin Institute of Technology; Harbin 150001 Heilongjiang China

2
Shenzhen Academy of Aerospace Technology, Shenzhen 518057 Guangdong China

*
E-mail:qumingcheng@hit.edu.cn

Abstract—The shortcomings of the existing single Finite State

Machine (FSM) model and diagnosis method are given by

analyzing the single FSM model and problem model. Then,

according to the shortcomings of the current single FSM error

model, a new state machine model and problem model are

proposed, that is, the traditional FSM model increase the non-

executable conversion, and then increase the two error models,

that is, the conversion unexecuted errors and the conversion

redundant error. According to the phased diagnosis method, an

improved algorithm is proposed based on the existing algorithm

to improve the efficiency of the algorithm. Experimental tests

show that the proposed improved FSM problem model and the

error diagnosis method are correct and effective.

Keywords—Finite state machine; forward analysis; reverses

analysis; judgment error

I. INTRODUCTION

State machine is finite state machine FSM [1] abbreviation,
divided into Moore state machine [2] and Mealy state machine
[3], Mealy state machine refers to the output is not only
related to the state and input-related state machine, The state
of the study refers to the Mealy state machine.

At present, there are some achievements in the research
based on the state machine diagnosis method, but the model of
the state machine is less, the error model is limited to the
output error and the conversion error. The designed algorithm
is also rough. For the actual state machine model based test,
there is no error diagnosis method for the case where the
conversion error is not performed or there is an excess
conversion, and the existing diagnostic method still needs to
be improved and optimized.

Aiming at the research status and existing problems of
state machine error diagnosis, this paper presents a new
problem model. Based on the new problem model, a complete
improved algorithm is proposed on a single state machine. The
idea of the algorithm in this paper is a good theoretical
guidance for the enrichment and perfection of the existing
state machine diagnosis method. Most of the studies on FSM
error diagnosis are based on a single FSM model, and this

article also examines the error diagnosis method under a single
FSM.

II. SINGLE FSM MODEL AND PROBLEM MODEL

As shown in Fig.1, a single FSM test framework, the state

machine from the external test channel to receive input, the
conversion will output to the external test channel.

Test channel / observer

FSM

Input Output

Fig. 1. Single FSM test framework

For a single FSM model, consider the following four errors,
that is the error model:

(1) Output error: After the conversion, the end state is the
same as expected, but the actual output is not consistent with
the expected (including the actual no output situation).

(2) Conversion error: After the conversion, the actual
output is consistent with the expected, but the arrival of the
end state is different from expected.

(3) Conversion is not implemented error: conversion does
not occur, the performance of the step without output; in the
state machine is expressed as the output is empty, end state
and head state consistent conversion.

(4) Conversion redundant error: the original state machine
does not exist in the conversion, the actual implementation of
the output (or output is empty), and a state transition (when
there is output from the transfer, the output is empty when not
self-transfer).

The error model has two situations to note: one situation is
when an auto-conversion occurs when the output is empty and
an auto-conversion is not performed. When this happens,

This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/).

Copyright © 2017, the Authors. Published by Atlantis Press. 112

2017 International Conference on Information Technology and Intelligent Manufacturing (ITIM 2017)
Advances in Intelligent Systems Research (AISR), volume 142

although it is impossible to determine which error is specific,
wrong conversion; the other case is when the conversion of
redundant errors for a self-conversion and output is empty, the
situation although the error occurred, but did not produce
symptoms, so do not discuss the situation.

A. Pretreatment

The first part is preprocessing, including the following
steps:

(1) generates a transition sequence TR and an expected
output O for each use case, and generates a conversion set T-
that cannot be executed by the generation state.

(2) Compare the expected output and actual output of each
use case, generate all the symptom sets SS, and divide the TS
into all use case tables TSs with symptoms and all use cases
without symptoms.

(3) In the use case with symptoms, the first symptom of
each use case is called the initial symptom, denoted as IS, and
the initial symptom set for all use cases is recorded as ISS.
The initial path before the transition path is called the Conflict
Set CS.

B. To determine the error

The second part is to determine the wrong process,
according to the wrong phenomenon is different; the decision
process in accordance with the output error, conversion is not
the implementation of errors, conversion errors and
conversion redundant error in the order.

(1) To determine the output error

The output error object is the transition that exists in the
state machine implementation, including the case where the
output is empty. Using forward analysis, when an output error
occurs, the arrival of the state does not change, it will not
affect the other expected conversion sequence. Since there is
only one error, all use cases produce the same symptoms, and
their corresponding conversions are the same and unique,
which we call the unique symptom transition (ust). So the
algorithm needs to determine whether all the corresponding
output and conversion of the symptoms are equal. If not, then
the error may be excluded, if so, then continue. Then use the
reverse analysis, because the output error will produce
symptoms, so in all cases without symptoms, there must be no
error conversion. So the algorithm needs to use the case in the
absence of symptoms to determine whether the existence of
the suspicious conversion. If it is present, it is possible to
exclude the error. If not, the error may be established and the
suspicious conversion will be recorded. After confirming the
suspicious conversion set, it is not necessary to verify all use
cases as long as it verifies that the output of the suspicious
conversion is verified in the use case that contains the
suspicious conversion to verify its output backwards. In
addition, if the output is empty error, suspend conversion that
step corresponds to the same conversion, the output is empty.

According to the above analysis, the output error judgment
algorithm is described as follows:

TABLE I. OUTPUT ERROR DECISION ALGORITHM

Algorithm input: state machine FSM, all symptom set SS, all

conversion sets TR
Algorithm output: ustset record output conversion error

Procedure ust-processing(FSM，SS，TR)

Flag=True，ustset=∅ ;

For ∀ sSS Do /* S for symptoms */

 While Si≠Sj or t(Si) ≠t(Sj) Do
/* Symptoms or symptoms corresponding to the conversion is not the

same */

 Flag=False;
 Exit;

End

ust←t(s); /* T (s) is the corresponding conversion of the symptoms */

For ∀ tcTS-s and tTR Do

 While t=ust Do
 Flag=False;

 Exit;

End

If（Flag=True）

 ustset=｛ust｝

In addition, if the output is empty error, suspend
conversion that step corresponds to the same conversion, the
output is empty.

The original algorithm for all use cases are verified
conversion and all the output results are checked, this step, the
use case is divided into use cases with symptoms and use
cases without symptoms, is conducive to the type of error type,
and in the verification of whether the output error, Just
traverse all use cases with symptoms, without traversing all
use cases.

(2) To determine the conversion did not perform the error

Using forward analysis, if the conversion does not perform
an error, the initial symptoms of the symptom with the use
case are the same as the conversion and the output must be "-".
Therefore, the algorithm should first determine the use case
with symptoms, the initial symptoms are output is empty and
the corresponding conversion tk is the same, otherwise the
error may be excluded, it is to continue. In a reverse analysis,
there is no suspicious conversion in a symptom-free use case,
if the conversion is not performed, a symptom is generated.
Then the algorithm should be in the case with no symptoms to
determine whether the existence of the tk, if there is to exclude
the error may be, there is no to continue. Finally, the tk into the
use case with symptoms, from the initial symptoms back to
verify, the output is consistent with the actual, then record the
tk, otherwise it will be excluded.

Since forward analysis and reverse analysis only exclude
nonconformities, in the final verification itself, including the
compliance verification that is to ensure the correctness of the
algorithm. Since no previous part of the proposed algorithm,
so no need for efficiency analysis.

(3) To determine the conversion error

To determine the conversion error, not only to determine
the wrong conversion, but also to determine the wrong state
changed, the wrong end state. We have the initial diagnostic
set ITC, in order to solve the suspicious conversion and
suspicious end state too much time complexity of the problem,
we first need to ITC about reduced. After narrowing the

113

Advances in Intelligent Systems Research (AISR), volume 142

suspicious transformation and the corresponding set of end
states, the possible errors are substituted into the state machine
model, and the scope of validation should be verified in all use
cases that contain the suspicious conversion errors, this is
because the conversion error does not necessarily produce
symptoms.

The main work of this algorithm is to optimize the set of
suspicious states. The optimization process has been expressed
in the algorithm analysis. The latter part of the algorithm is
verified from the position where the suspicious conversion of
the suspicious conversion case is used for the first time. If the
output is the same as the actual output, the possible error
information is recorded and the possibility is excluded if it is
not consistent. This verifies the correctness of the algorithm
after verifying the reduced set of suspicious conversions, and
also improves the efficiency.

Determine the conversion of redundant errors the specific
algorithm is described as follows:

TABLE II. TRANSFORM THE REDUNDANT ERROR DETERMINATION

ALGORITHM

Algorithm input: state machine FSM, initial candidate set ITC
Algorithm Output: Final Candidate Set FTC, Error End State Endstate,

Error Output Output

Procedure NeedlessTr-processing(FSM，ITC)

For all tkITC and tkT- Do

 Flag=True

 For all tc and tk tc Do

 See whether tk first appears when the output is equal;
 If not equal, will be excluded tk, check the next suspicious

conversion;

 If equal and empty, the implementation of the algorithm TranFault-

processing（FSM，tk）;

 If（Flag=True）Then

 FTC= FTC∪{tk};

 Endstatek= Endstatek∪｛s｝;

 If it is equal and the output is ok, check to check if it contains tk;

 If included, will be tk excluded;

 If not included, then o(tk) ←o;

 Execute the algorithm TranFault-processing（FSM，tk）;

 If（Flag=True）Then

 FTC= FTC∪｛tk｝;

 Outputk=ok ;

 Endstatek= Endstatek∪｛s｝;

 End
End

The algorithm first eliminates the case where the
suspicious conversions are not equal for the first time
according to the wrong features, and then the output is empty
and non-empty discussion, which ensures the integrity of the
discussion scope. In this way, after determining the suspicious
conversion type, call the conversion error decision algorithm,
find suspicious end state. Since the extra conversion must
have been generated by the conversion of the state machine,
and the excess conversion is to ensure that the state machine is
defined, the state has an output of up to one input, so the
excess conversion must be from the "T-" Change from.

C. Identification error

If the result is not unique after the above steps, the
following processing is performed.

If there is an output error or the conversion is not possible,
the possible error conversion is unique. And for conversion
errors and conversion of redundant errors, the final candidate
error may not be unique. Moreover, there may be a possibility
of another type of error if there is one type of error at the same
time. So the result is not unique, indicating that in a single
error assumptions and existing test cases, the possibility of a
number of errors, the next need to take the initiative to test to
increase the test cases used to identify these possible, and thus
locate the only mistake. The method of generating the use case
in this step is only used to verify whether the error is the only
error of the target state machine, and the idea of generating the
algorithm using the test case.

For the four types of errors, we divide the error into two
categories:

(1) A class is wrong to convert that step to produce
symptoms, the output error, the conversion of the
implementation of the error and the excess error of the second
case belong to this type of error;

(2) The other is the wrong conversion after a step
conversion to produce symptoms, conversion errors and
conversion of the wrong case of the first case belong to this
type of error, and the conversion of the first case of excess
error we also classified as a conversion error.

When verifying the first type of suspect error tk, the
method of designing the use case should start from the initial
state and find a conversion sequence that arrives at tk, so that
the path does not go through other suspect error conversions.
When such a path is found, the corresponding use case is
generated. As the entire path only tk is a suspicious error
conversion, so it is based on tk output can determine whether
the wrong tk. Test the use case to see the output, if consistent
with the expected, then the suspicious error is not an error, the
error may be removed; if inconsistent with the expected, the
diagnosis of the error is the only error.

When the path to reach tk will pass through other
suspicious conversion tn, regardless of tn belong to the first
type of error or the second type of error, according to the
principle of the order of the path, from front to back in turn
verify the suspicious conversion, verify the conversion method
is as follows.

For the second type of suspicious error verification, that is,
verify the conversion error, assuming that the error may be tk:

/x y

i ks s
error into

/x y

i js s
, then the next to

determine whether the conversion is wrong, we designed the
use of cases divided into two steps, the first step is Generates a
transition sequence TR1 from the initial state to the state,
requiring that the path of the sequence is not subjected to other
suspicious conversions. If you need to go through other
suspicious conversions, a also in accordance with the order of
succession in turn. The next step is to find out the different
transformations (or conversion sequences) TR2 of Sk and Sj's
next output at the same input, called "difference conversion
(sequence)", which draws on the UIO method and DS
generated by the test case Method of thinking.

114

Advances in Intelligent Systems Research (AISR), volume 142

Similarly, the process of finding TR2 also requires that the
path of the sequence does not go through other suspicious
conversions. After finding such a TR2, a use case is generated
with the TR1 generated in the first step. For the use case test,
if the output is inconsistent with the expected, then the final
positioning of the error, if consistent, then the possibility of
excluding the error.

If you cannot find such a TR2, try to verify other possible
errors to narrow the error range. If all errors are handled and
cannot be verified at all, the given diagnostic result cannot
determine the unique error, giving the remaining error after
the step may be the result of the diagnosis.

Here we have the method proposed in this chapter to make
an error diagnosis of the instance.

(1) First of all, the state machine and test sets of results
pretreatment. The expected conversion sequence for the use
case, the expected output and the actual output are shown in
the following table:

TABLE III. EXPECTED CONVERSION SEQUENCE FOR USE CASES,
EXPECTED OUTPUT AND ACTUAL OUTPUT

TS Expect transfer seq Exp output Obs output

tc1:abcbab t2,t4,t3,t1,t16,t9 1121-1 1121-1

tc2:acbbca t2,t3,t1,t9,t17,t13 1211-1 1211-1

tc3:bacbac t1,t16,t10,t11,t7,t10 1-1111 1- 111-

tc4:bcbaac t1,t10,t11,t7,t16,t10 1111-1 11111 -

tc5:cbbaca t15,t1,t9,t13,t17,t13 - 111-1 - 111-1

tc6:cbaacb t15,t1,t16,t16,t10,t11 - 1 - -11 - 1 - - 11

 (2) Symptom corresponds to the conversion is not unique,
it is not the output error, tc3 initial symptoms corresponding to
t10, tc4 initial symptoms corresponding to the conversion to
t16, inconsistent, it is not a conversion error.

(3)Then verify the conversion error. (Tc3) = {t1, t16, t10,
t11, t7}, CS (tc4) = {t1, t10, t11, t7, t16}, it is impossible to
convert t16 and take the intersection of two, ITC = {t1 , T10,
t11, t7}. First analysis t1, t1 in the TS in the next step is
converted to a / -, c / 1 and b / 1. H (a / -) = {s2, s5}, H (c / 1)
= {s2, s3}, H (b / 1) = {s0, s1, s2, s5} (T1) = s2, suspicious
end set is empty, so t1 removed from the ITC. And then
analyze t10, t10 in the next step in the TS converted to b / 1, H
(b / 1) = {s0, s1, s2, s5}, remove E (t10) = s5, suspicious end
state S = {s0, s1 , S2}, respectively, replace s0, s1 and s2 t10,
into the use cases with t10 tc3, tc4 and tc6, verify from s0, s1,
s2 as a starting point, input bbc, baac and cb were 11- , 111-
and 11. Found that only s2 replaced t10 situation to meet. So
FTC10 = {t10}, EndStates10 = {s2}. Then, t11 and t11 are

transformed into a / 1, H (a / 1) = {s0, s1, s3, s4} in the next
step in TS, and E (t11) = s3 is removed, and the suspicious end
state S = {s0, s1 , S4}, respectively, s0, s1 and s4 replaced t11
end state, into the use of t11 with the use cases tc3 and tc4,
verify from s0, s1 and s4 as the starting point, input ac and aac
were 1 and 11-. Found that only s4 replaced t11 situation to
meet. So FTC11 = {t11}, EndStates11 = {s4}. Analysis t7, t7
The next step in TS is converted to a / - and c / -, H (a / -) =
{s2, s5}, H (c / -) = {s0, s4}) = S2, take the intersection of
suspicious end state S is empty. Remove t7 from ITC.

III. CONCLUDING REMARKS

In this paper, under the assumption of a single error, four

error models are proposed on a single FSM state machine
model, output errors, conversion errors, conversion errors and
conversion errors, and a set of improved error diagnosis
methods and algorithms , The method of error determination
based on forward analysis and inverse analysis is proposed.
The algorithm simplifies the processing step and improves the
efficiency compared with the existing algorithm. In addition,
the detailed test method is put forward.

The next step can be divided into three aspects, one is in
more state machine model to study its error diagnosis method,
on the other hand is to further enrich the error model, for
example, to increase the state of excess errors or research
multiple The wrong method of diagnosis, and on the other
hand is the combination of the method and the actual project,
the algorithm of this code for mapping, for the actual test.

Acknowledgment
This work is funded by National natural Science

Foundation of China (No.61402131); China Postdoctoral
Science Foundation Special Fund (2016T90293); China
Postdoctoral Science Foundation Item (No.2014M551245);
Heilongjiang Provincial Postdoctoral Science Foundation Item
(No.LBH-Z13105); Central University Basic Scientific
Research Business Expence Special Fund
(No.HIT.NSRIF.201651); Harbin Science and Technology
Innovator Special Fund (2015RAQXJ047).

References
[1] Author list, paper title, journal name, vol. no. pages-, year

[2] Wagner F, Schmuki R, Wagner T, et al. Modeling software with finite
state machines: a practical approach [M]. CRC Press, 2006.

[3] Barkalov A. Principles of optimization of logic circuit of Moore FSM [J].
Cybernetics and System Analysis (1), 1998: 65-72.

[4] Barkalov A, Titarenko L. Logic synthesis for FSM-based control units
[M]. Berlin: Springer, 2009.

115

Advances in Intelligent Systems Research (AISR), volume 142

